含β-环糊精的纳米药物载体的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精(cyclodextrin, CD)是直链淀粉在芽孢杆菌产生的环糊精葡萄糖基转移酶作用下产生的一系列的环状低聚糖的总称,其结构是葡萄糖单元通过1,4-α-糖苷键连接的环状分子,环糊精具有的良好的生物相容性,且疏水性空腔具有对小分子客体的包合能力,因此,基于环糊精的新型功能材料越来越受关注。设计合成基于环糊精的精确控制的拓扑结构,利用环糊精空腔的包合作用组装纳米粒子作为药物载体,并且运用特定基团对外界环境的刺激响应性来控制药物的释放,可以为药物载体的合成领域提供一个新的思路。环糊精的强大的功能化的能力,使其可以作为核,合成星形聚合物,其独特的拓扑结构,是合成高载药量的载体的优良前体。
     富勒烯具有独特的笼状结构和很好的物理化学性能,但是其疏水性限制了其在生物学方面的应用,因此,设计合成富勒烯水溶性衍生物并且研究其生物性能具有重要的意义。富勒烯上的双键可以发生1,3-偶极环加成反应,Diels-Alder反应等等,这使富勒烯成为药物设计的理想基体,因此,用共价连接方法引入环糊精来提高富勒烯的水溶性,且研究其在细胞以及生物体内性能具有重要的生物学意义。
     本论文利用化学合成手段,设计合成了具有特殊性能的含环糊精的纳米药物载体,且研究了其体内外的行为,主要包括以下内容:
     (1)我们合成了由p-环糊精封端的多臂聚合物,通过p-环糊精/金刚烷的包合作用,将聚合物组装成为纳米粒子。纳米粒子中设计引入了酯键,通过酯键的水解可以使纳米粒子解离为多臂聚合物。因此,这一体系具有多级载体的特点,纳米粒子作为第一级载体,多臂聚合物作为第二级载体。多臂聚合物是通过原子转移自由基聚合的方法合成的,因此,其分子量及多分散度可控。且这一多臂聚合物在其端基β-环糊精上有大量的羟基,可以用来连接药物及其他的生物活性分子。
     (2)合成了以二氨基三乙二醇为间隔臂的新型水溶性环糊精-富勒烯结合物,这一物质在小鼠肿瘤中有着很好的富集效果,由于C60部分可以在光照条件下产生活性氧,因此在光照条件下,这一物质可以有效剪切DNA,有作为光动力学药物的潜在应用。
     (3)用原子转移自由基聚合方法,合成了以环糊精为核,丙烯酸叔丁酯为链的星形聚合物。水解后的产物星形聚丙烯酸,在4-二甲氨基吡啶/N,N'-二环己基碳二亚胺催化下连接抗肿瘤药物紫杉醇,结果表明,随着聚合物分子量的升高,载药量随之升高,最高可达到59%,且随着分子量的升高,粒子趋向于在肿瘤富集。
Cyclodextrins (CDs) is a series of cyclic oligosaccharides in general. They are produced from amylose under the action of cyclodextrin glycosyltransferase which is produced by Bacillus. Their structures of the cyclic molecules are made up of the glucose unit bound together by1,4-a-glycosidic linkage. Cyclodextrins have good biocompatibility, and the hydrophobic cavity has the ability to inclusion small molecules. Therefore, new functional materials based on cyclodextrins get increasingly attention. Design and synthesis of cyclodextrin-based precise topology, nanoparticles assembled via host-guest interactions, and specific groups which are stimuli-responsive to the external environment to control drug release, provide new ideas for the field of drug vector synthesis. The powerful functionalization capacity of cyclodextrins makes them attractive to be used as nuclears and synthesize star polymer whose unique topology can be used as excellent precursors for high drug loading carriers.
     Fullerene has a unique structure and excellent physical and chemical properties, but their hydrophobicity limits its applications in biology, therefore, the design of water-soluble fullerene derivatives and study its biological properties have important significance. The double bond of fullerene can occur the1,3-dipolar cycloaddition, Diels-Alder reaction, etc., which makes fullerene an ideal matrix in drug carrier design. Therefore, covalently attach cyclodextrin to fullerene to increase the water solubility of fullerene and study the in vitro and in vivo properties have important biological significance.
     In this dissertation, we designed cyclodextrin-containing drug carriers utilizing a variety of chemical synthesis techniques and intermolecular interactions. The main contents are described as below:
     (1) We present the synthesis of a giant multiarm polymer terminated by β-cyclodextrin (β-CD) and the assembly of this polymer into nanoparticles via the β-CD/adamantane inclusion complex. Ester linkage is introduced to the nanoparticles by design, which enables the nanoparticles to decompose into the multiarm polymers again by hydrolysis of the ester linkage. Thus, this system has the characteristics of MSVs with the nanoparticle as the first stage vector and the giant multiarm polymer as the second stage vector. The multiarm polymer is synthesized by atom transfer radical polymerization (ATRP). Thus, the preparation is facile, and its molecular weight and distribution can be well controlled. The multiarm polymer has abundant hydroxyl groups in the peripheral β-CD moieties which can be used to conjugate drug or other bioactive molecules.
     (2) We present the synthesis of a novel water soluble C60-CD conjugate containing a hydrophilic spacer of diaminotriethylene glycol. This compound can accumulate in tumor and exhibits an effective DNA cleavage ability under visible light irradiation thanks to the reactive oxygen species generated by the photoexcitation of the C60moiety.
     (3) A multiarm polymer with β-cyclodextrin as the core, poly (t-butyl acrylate) as arms was synthesized by atom transfer radical polymerization. After hydrolysis, the product of multiarm poly(acrylic acid) was combined with PTX under the catalyst of DMAP/DCC. The results showed that with the increase of polymer molecular weight, the amount of the drug increased, up to59%, and the particles tend to be accumulated in the tumor more easily.
引文
[1]. Parkin, D. M.; Bray, F.; Ferlay, J.; Pisani, P., Global cancer statistics,2002. CA-Cancer J. Clin.2005,55 (2),74-108.
    [2]. Kiparissides, C.; Kammona, O., Nanoscale carriers for targeted delivery of drugs and therapeutic biomolecules. Can. J. Chem. Eng.2013,91 (4),638-651.
    [3]. (a) Brewster, M. E.; Loftsson, T., Cyclodextrins as pharmaccutical solubilizers. Adv. Drug Deliv. Rev.2007,59 (7),645-666; (b) Loethen, S.; Kim, J. M.; Thompson, D. H., Biomedical applications of cyclodextrin based polyrotaxanes. Polym. Rev.2007, 47 (3),383-418.
    [4]. (a) Rekharsky, M. V.; Inoue, Y, Complexation thermodynamics of cyclodextrins. Chem. Rev.1998,98 (5),1875-1917; (b) Harries, D.; Rau, D. C.; Parsegian, V. A., Solutes probe hydration in specific association of cyclodextrin and adamantane. J. Am. Chem. Soc.2005,127 (7),2184-2190; (c) Loftsson, T.; Brewster, M. E., Pharmaceutical applications of cyclodextrins.1. Drug solubilization and stabilization. J. Pharm. Sci.1996,85 (10),1017-1025.
    [5]. (a) Wenz, G.; Han, B. H.; Muller, A., Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev.2006,106 (3),782-817; (b) Harada, A.; Takashima, Y.; Yamaguchi, H., Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev.2009,38 (4),875-882.
    [6]. Liu, Y. Y; Fan, X. D.; Gao, L., Synthesis and characterization of beta-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide. Macromol. Biosci.2003,3 (12),715-719.
    [7]. (a) Harada, A.; Furue, M.; Nozakura, S., Cyclodextrin-containing Polymers.1. Preparation of Polymers. Macromolecules 1976,9 (5),701-704; (b) Harada, A.; Furue, M.; Nozakura, S., Cyclodextrin-containing Polymers.2. Cooperative Effects in Catalysis and Binding. Macromolecules 1976,9 (5),705-709; (c) Seo, T.; Kajihara, T.; Iijima, T., The Synthesis of Poly(Allylamine) Containing Covalently Bound Cyclodextrin and Its Catalytic Effext in the Hydrolysis of Phenyl-esters. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1987,188 (9), 2071-2082; (d) Seo, T.; Kajihara, T.; Miwa, K.; Iijima, T., Catalytic Hydrolysis of Phenyl-esters in Cyclodextrin Poly (Allylamine) Systems. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1991,192 (10),2357-2369; (e) Martin, R.; Sanchez, I.; Cao, R.; Rieumont, J., Solubility and kinetic release studies of naproxen and ibuprofen in soluble epichlorohydrin-beta-cyclodextrin polymer. Supramol. Chem.2006,18 (8),627-631.
    [8]. (a) Liu, Y Y.; Fan, X. D., Preparation and characterization of a novel responsive hydrogel with a beta-cyclodextrin-based macromonomer. J. Appl. Polym. Sci.2003, 89 (2),361-367; (b) Liu, Y. Y.; Fan, X. D., Synthesis and characterization of pH-and temperature-sensitive hydrogel of N-isopropylacrylamide/cyclodextrin based copolymer. Polymer 2002,43 (18),4997-5003.
    [9]. Furue, M.; Harada, A.; Nozakura, S. I., Preparation of Cyclodextrin-containing Polymers and their Catalysis in Ester-hydrolysis. Journal of Polymer Science Part C-Polymer Letters 1975,13 (6),357-360.
    [10]. Carbonnier, B.; Janus, L.; Deratani, A.; Morcellet, M., Methacryloylpropyl-beta cyclodextrin and vinylpyrrolidone copolymers: Synthesis and characterization as potential chiral selector. J. Appl. Polym. Sci.2005,97 (6), 2364-2374.
    [11]. Maeda, K.; Mochizuki, H.; Watanabe, M.; Yashima, E., Switching of macromolecular helicity of optically active poly(phenylacetylene)s bearing cyclodextrin pendants induced by various external stimuli. J. Am. Chem. Soc.2006, 128 (23),7639-7650.
    [12]. Munteanu, M.; Choi, S.; Ritter, H., Cyclodextrin Methacrylate via Microwave-Assisted Click Reaction. Macromolecules 2008,41 (24),9619-9623.
    [13]. Wang, J.; Jiang, M., Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation.J. Am. Chem. Soc. 2006,128 (11),3703-3708.
    [14]. (a) Choi, S.; Munteanu, M.; Ritter, H., Monoacrylated cyclodextrin via "click" reaction and copolymerization with N-isopropylacrylamide: guest controlled solution properties. J. Polym. Res.2009,16 (4),389-394. (b) Trellenkamp, T.; Ritter, H., Poly(N-vinylpyrrolidone) Bearing Covalently Attached Cyclodextrin via Click-Chemistry: Synthesis, Characterization, and Complexation Behavior with Phenolphthalein. Macromolecules 2010,43 (13),5538-5543.
    [15]. Liu, Y. Y.; Yu, Y.; Zhang, G. B.; Tang, M. F., Preparation, characterization, and controlled release of novel nanoparticles based on MMA/beta-CD copolymers. Macromol. Biosci.2007,7(12),1250-1257.
    [16]. Gonzalez, H.; Hwang, S. J.; Davis, M. E., New class of polymers for the delivery of macromolecular therapeutics. Bioconjugate Chem.1999,10 (6), 1068-1074.
    [17]. Cheng, J. J.; Khin, K. T.; Jensen, G. S.; Liu, A. J.; Davis, M. E., Synthesis of linear, beta-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjugate Chem.2003,14 (5),1007-1017.
    [18]. Schluep, T.; Cheng, J. J.; Khin, K. T.; Davis, M. E., Pharmacokinetics and biodistribution of the camptothecin-polymer conjugate IT-101 in rats and tumor-bearing mice. Cancer Chemother. Pharmacol.2006,57 (5),654-662.
    [19]. Svenson, S.; Wolfgang, M.; Hwang, J.; Ryan, J.; Eliasof, S., Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. Journal of Controlled Release 2011,153 (1),49-55.
    [20]. Bartlett, D. W.; Davis, M. E., Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjugate Chem.2007,18 (2),456-468.
    [21]. (a) Weickenmeier, M.; Wenz, G., Cyclodextrin sidechain polyesters-Synthesis and inclusion of adamantan derivatives. Macromol. Rapid Commun.1996, 17 (10),731-736; (b) Renard, E.; Volet, G.; Amiel, C., Synthesis of a novel linear water-soluble beta-cyclodextrin polymer. Polym. Int.2005,54 (3),594-599; (c) Weickenmeier, M.; Wenz, G.; Huff, J., Association thickener by host guest interaction of a beta-cyclodextrin polymer and a polymer with hydrophobic side-groups. Macromol. Rapid Commun.1997,18 (12),1117-1123.
    [22]. Suh, J. H.; Lee, S. H.; Zoh, K. D., A Novel Host Containing Both Binding-site and Nucleophile Prepared by Attachment of Beta-Cyclodextrin to Poly(Ethylenimine). J. Am. Chem. Soc.1992,114 (20),7916-7917.
    [23]. Ramirez, H. L.; Valdivia, A.; Cao, R.; Torres-Labandeira, J. J.; Fragoso, A.; Villalonga, R., Cyclodextrin-grafted polysaccharides as supramolecular carrier systems for naproxen. Bioorg. Med. Chem. Lett.2006,16(6),1499-1501.
    [24]. (a) Petter, R. C.; Salek, J. S.; Sikorski, C. T.; Kumaravel, G.; Lin, F. T., Cooperative Binding by Aggregated Mono-6-(Alkylamino)-Beta-Cyclodextrins. J. Am. Chem. Soc.1990,112 (10),3860-3868; (b) Law, H.; Benito, J. M.; Fernandez, J. M. G.; Jicsinszky, L.; Crouzy, S.; Defaye, J., Copper(II)-Complex Directed Regioselective Mono-p-Toluenesulfonylation of Cyclomaltoheptaose at a Primary Hydroxyl Group Position: An NMR and Molecular Dynamics-Aided Design. J. Phys. Chem. B 2011,115 (23),7524-7532.
    [25]. (a) Guo, X. H.; Abdala, A. A.; May, B. L.; Lincoln, S. F.; Khan, S. A.; Prud'homme, R. K., Novel associative polymer networks based on cyclodextrin inclusion compounds. Macromolecules 2005,38 (7),3037-3040; (b) Takashima, Y.; Nakayama, T.; Miyauchi, M.; Kawaguchi, Y.; Yamaguchi, H.; Harada, A., Complex formation and gelation between copolymers containing pendant azobenzene groups and cyclodextrin polymers. Chem. Lett.2004,33 (7),890-891.
    [26]. Li, L.; Guo, X. H.; Wang, J.; Liu, P.; Prud'homme, R. K.; May, B. L.; Lincoln, S. F., Polymer Networks Assembled by Host-Guest Inclusion between Adamantyl and beta-Cyclodextrin Substituents on Poly(acrylic acid) in Aqueous Solution. Macromolecules 2008,41 (22),8677-8681.
    [27]. Hollas, M.; Chung, M. A.; Adams, J., Complexation of pyrene by poly(allylamine) with pendant beta-cyclodextrin side groups. J. Phys. Chem. B 1998, 102 (16),2947-2953.
    [28]. Brown, S. E.; Coates, J. H.; Coghlan, D. R.; Easton, C. J.; Vaneyk, S. J.; Janowski, W.; Lepore, A.; Lincoln, S. F.; Luo, Y.; May, B. L.; Schiesser, D. S.; Wang, P.; Williams, M. L., SYNTHESIS AND PROPERTIES OF 6A-AMINO-6A-DEOXY-ALPHA AND 6A-AMINO-6A-DEOXY-BETA-CYCLODEXTRIN. Aust. J. Chem.1993,46 (6), 953-958.
    [29]. Lin, Y. C.; Wang, P. I.; Kuo, S. W., Water-soluble, stable helical polypeptide-grafted cyclodextrin bioconjugates: synthesis, secondary and self-assembly structures, and inclusion complex with guest compounds. Soft Matter 2012,8 (37),9676-9684.
    [30]. Giammona, G.; Cavallaro, G.; Maniscalco, L.; Craparo, E. F.; Pitarresi, G., Synthesis and characterisation of novel chemical conjugates based on alpha,beta-polyaspartylhydrazide and beta-cyclodextrins. Eur. Polym. J.2006,42 (10), 2715-2729.
    [31]. Pun, S. H.; Bellocq, N. C.; Liu, A. J.; Jensen, G.; Machemer, T.; Quijano, E.; Schluep, T.; Wen, S. F.; Engler, H.; Heidel, J.; Davis, M. E., Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjugate Chem.2004,15 (4), 831-840.
    [32]. (a) Miura, Y.; Narumi, A.; Matsuya, S.; Satoh, T.; Duan, Q.; Kaga, H.; Kakuchi, T., Synthesis of well-defined AB(20)-type star polymers with cyclodextrin-core by combination of NMP and ATRP. J. Polym. Sci. Pol. Chem.2005, 43 (18),4271-4279; (b) Giacomelli, C.; Schmidt, V.; Putaux, J. L.; Narumi, A.; Kakuchi, T.; Borsali, R., Aqueous Self-Assembly of Polystyrene Chains End-Functionalized with beta-Cyclodextrin. Biomacromolecules 2009,10 (2), 449-453.
    [33]. Zeng, J. G.; Shi, K. Y.; Zhang, Y. Y.; Sun, X. H.; Zhang, B. L., Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem. Commun.2008, (32),3753-3755.
    [34]. Barbosa, M. E. M.; Bouteiller, L.; Commas-Marion, S.; Montembault, V.; Fontaine, L.; Ponchel, G., Synthesis and ITC characterization of novel nanoparticles constituted by poly(gamma-benzyl L-glutamate)-beta-cyclodextrin. J. Mol. Recognit. 2008,21 (3),169-178.
    [35]. Guo, M. Y.; Jiang, M.; Zhang, G. Z., Surface modification of polymeric vesicles via host-guest inclusion complexation. Langmuir 2008,24 (19), 10583-10586.
    [36]. Xu, J.; Liu, S. Y, Synthesis of Well-Defined 7-Arm and 21-Arm Poly (N-isopropylacrylamide) Star Polymers with beta-Cyclodextrin Cores via Click Chemistry and Their Thermal Phase Transition Behavior in Aqueous Solution. J. Polym. Sci. Pol. Chem.2009,47 (2),404-419.
    [37]. Karaky, K.; Reynaud, S.; Billon, L.; Francois, J.; Chreim, Y., Organosoluble star polymers from a cyclodextrin core.J. Polym. Sci. Pol. Chem.2005,43 (21), 5186-5194.
    [38]. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H., Polymers with complex architecture by living anionic polymerization. Chem. Rev.2001,101 (12), 3747-3792.
    [39]. Matyjaszewski, K.; Xia, J. H., Atom transfer radical polymerization. Chem. Rev.2001,101 (9),2921-2990.
    [40]. Ohno, K.; Wong, B.; Haddleton, D. M., Synthesis of well-defined cyclodextrin-core star polymers. J. Polym. Sci. Pol. Chem.2001,39 (13),2206-2214.
    [41]. Stenzel-Rosenbaum, M. H.; Davis, T. P.; Chen, V. K.; Fane, A. G., Synthesis of poly(styrene) star polymers grown from sucrose, glucose, and cyclodextrin cores via living radical polymerization mediated by a half-metallocene iron carbonyl complex. Macromolecules 2001,34 (16),5433-5438.
    [42]. Busche, B. J.; Tonelli, A. E.; Balik, C. M., Properties of polystyrene/poly(dimethyl siloxane) blends partially compatibilized with star polymers containing a gamma-cyclodextrin core and polystyrene arms. Polymer 2010, 51 (25),6013-6020.
    [43]. (a) Zhang, Z. X.; Liu, X.; Xu, F. J.; Loh, X. J.; Kang, E. T.; Neoh, K. G.; Li, J., Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core and guest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly. Macromolecules 2008,41 (16),5967-5970; (b) Xu, F. J.; Zhang, Z. X.; Ping, Y.; Li, J.; Kang, E. T.; Neoh, K. G., Star-Shaped Cationic Polymers by Atom Transfer Radical Polymerization from beta-Cyclodextrin Cores for Nonviral Gene Delivery. Biomacromolecules 2009,10 (2),285-293.
    [44]. Liu, Y Y.; Zhong, Y B.; Nan, J. K.; Tian, W., Star Polymers with Both Temperature Sensitivity and Inclusion Functionalities. Macromolecules 2010,43 (24), 10221-10230.
    [45]. Li, J. S.; Guo, Z. Z.; Xin, J. Y.; Zhao, G. L.; Xiao, H. N.,21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery. Carbohydrate Polymers 2010,79 (2),277-283.
    [46]. Adeli, M.; Zarnegar, Z.; Kabiri, F., Amphiphilic star copolymers containing cyclodextrin core and their application as nanocarrier. Eur. Polym. J.2008,44 (7), 1921-1930.
    [47]. Li, X.; Zhu, Y. H.; Ling, J.; Shen, Z. Q., Direct Cyclodextrin-Mediated Ring Opening Polymerization of epsilon-Caprolactone in the Presence of Yttrium Trisphenolate Catalyst. Macromol. Rapid Commun.2012,33 (11),1008-1013.
    [48]. Gou, P. F.; Zhu, W. P.; Xu, N.; Shen, Z. Q., Synthesis and characterization of well-defined cyclodextrin-centered seven-arm star poly(epsilon-caprolactone)s and amphiphilic star poly(epsilon-caprolactone-b-ethylene glycol)s. J. Polym. Sci. Pol. Chem.2008,46 (19),6455-6465.
    [49]. Guo, Y. Z.; Yu, C. J.; Gu, Z. W., Synthesis and characterization of novel beta-cyclodextrin cored poly(epsilon-caprolactone)s by anionic ring opening polymerization. e-Polymers 2008.
    [50]. Gou, P. F.; Zhu, W. P.; Shen, Z. Q., Synthesis, Self-Assembly, and Drug-Loading Capacity of Well-Defined Cyclodextrin-Centered Drug-Conjugated Amphiphilic A(14)B(7) Miktoarm Star Copolymers Based on Poly(epsilon-caprolactone) and Poly(ethylene glycol). Biomacromolecules 2010,11 (4),934-943.
    [51]. Jiang, Y.; Zhang, H. W.; Du, L. X.; Zhang, K.; Wang, J. Y., Synthesis and characterization of novel star polymer with beta-cyclodextrin core and its metal complexes. J. Appl. Polym. Sci.2007,106 (1),28-33.
    [52]. Yang, C. A.; Li, H. Z.; Goh, S. H.; Li, J., Cationic star polymers consisting of alpha-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials 2007,28 (21),3245-3254.
    [53]. Huin, C.; Eskandani, Z.; Badi, N.; Farcas, A.; Bennevault-Celton, V.; Guegan, P., Anionic ring-opening polymerization of ethylene oxide in DMF with cyclodextrin derivatives as new initiators. Carbohydrate Polymers 2013,94 (1),323-331.
    [54]. Kakuchi, T.; Narumi, A.; Matsuda, T.; Miura, Y; Sugimoto, N.; Satoh, T.; Kaga, H., Glycoconjugated polymer.5. Synthesis and characterization of a seven-arm star polystyrene with beta-cyclodextrin core based on TEMPO-mediated living radical polymerization. Macromolecules 2003,36 (11),3914-3920.
    [55]. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules 1998,31 (16),5559-5562.
    [56]. Barner, L.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C., Complex macromolecular architectures by reversible addition fragmentation chain transfer chemistry: Theory and practice. Macromol. Rapid Commun.2007,28 (5),539-559.
    [57]. Stenzel, M. H.; Davis, T. P., Star polymer synthesis using trithiocarbonate functional beta-cyclodextrin cores (Reversible addition-fragmentation chain-transfer polymerization). J. Polym. Sci. Pol. Chem.2002,40 (24),4498-4512.
    [58]. Zhang, L.; Stenzel, M. H., Spherical Glycopolymer Architectures using RAFT:From Stars with a beta-Cyclodextrin Core to Thermoresponsive Core-Shell Particles. Aust. J. Chem.2009,62 (8),813-822.
    [59]. Binder, W. H.; Sachsenhofer, R.,'Click' chemistry in polymer and materials science. Macromol. Rapid Commun.2007,28 (1),15-54.
    [60]. Hoogenboom, R.; Moore, B. C.; Schubert, U. S., Synthesis of star-shaped poly(epsilon-caprolactone) via 'click' chemistry and 'supramolecular click' chemistry. Chem. Commun.2006, (38),4010-4012.
    [61]. (a) van de Manakker, F.; van der Pot, M.; Vermonden, T.; van Nostrum, C. F.; Hennink, W. E., Self-assembling hydrogels based on beta-cyclodextrin/cholesterol inclusion complexes. Macromolecules 2008,41 (5),1766-1773; (b) van de Manakker, F.; Vermonden, T.; el Morabit, N.; van Nostrum, C. F.; Hennink, W. E., Rheological Behavior of Self-Assembling PEG-beta-Cyclodextrin/PEG-Cholesterol Hydrogels. Langmuir 2008,24 (21),12559-12567.
    [62]. Guo, M. Y.; Jiang, M., Macromolecular self-assembly based on inclusion complexation of cyclodextrins. Prog. Chem.2007,19 (4),557-566.
    [63]. Ge, Z. S.; Liu, H.; Zhang, Y. F.; Liu, S. Y, Supramolecular Thermoresponsive Hyperbranched Polymers Constructed from Poly(N-Isopropylacrylamide) Containing One Adamantyl and Two beta-Cyclodextrin Terminal Moieties. Macromol. Rapid Commun.2011,32(1),68-73.
    [64]. Adeli, M.; Kalantari, M.; Zarnega, Z.; Kabiri, R., Cyclodextrin-based dendritic supramolecules; new multivalent nanocarriers. RSC Adv.2012,2 (7), 2756-2758.
    [65]. Dong, R. J.; Liu, Y.; Zhou, Y F.; Yan, D. Y.; Zhu, X. Y, Photo-reversible supramolecular hyperbranched polymer based on host-guest interactions. Polym. Chem.2011,2 (12),2771-2774.
    [66]. Yu, S. J.; Zhang, W.; Zhu, J. Y.; Yin, Y Z.; Jin, H. Y.; Zhou, L. P.; Luo, Q.; Xu, J. Y.; Liu, J. Q., Construction of a Hyperbranched Supramolecular Polymer as a Bifunctional Antioxidative Enzyme Model. Macromol. Biosci.2011,11 (6),821-827.
    [67]. Wang, N.; Ding, L., Cyclodextrin-based hyperbranched polymers by acyclic diene metathesis polymerization of an AB(n) monomer: molecule design, synthesis, and characterization. J. Polym. Res.2012,19 (5).
    [68]. Tian, W.; Wei, X. Y.; Liu, Y. Y.; Fan, X. D., A branching point thermo and pH dual-responsive hyperbranched polymer based on poly(N-vinylcaprolactam) and poly(N,N-diethyl aminoethyl methacrylate). Polym. Chem.2013,4 (9),2850-2863.
    [69]. (a) Tian, W.; Lv, X. Y.; Mu, C. G.; Zhang, W. H.; Kong, J.; Liu, Y. Y; Fan, X. D., Cyclodextrin-overhanging hyperbranched core-double-shell miktoarm architectures: Synthesis and gradient stimuli-responsive properties. J. Polym. Sci. Pol. Chem.2012,50 (4),759-771; (b) Tian, W.; Wei, X. Y.; Yang, G.; Fan, X. D., Synthesis of amphiphilic hyperbranched polymers for the controlled release of double-guest molecules. Journal of Controlled Release 2011,152, E97-E98.
    [70]. Jin, H. B.; Liu, Y.; Zheng, Y. L.; Huang, W.; Zhou, Y. F.; Yan, D. Y, Cytomimetic Large-Scale Vesicle Aggregation and Fusion Based on Host-Guest Interaction. Langmuir 2012,28 (4),2066-2072.
    [71]. (a) Harada, A.; Li, J.; Kamachi, M., The Molecular Necklace-A Rotaxane Containing Many Threaded Alpha-Cyclodextrins. Nature 1992,356 (6367),325-327; (b) Harada, A.; Li, J.; Kamachi, M., Synthesis of A Tubular Polymer From Threaded Cyclodextrins. Nature 1993,364 (6437),516-518.
    [72]. Moffitt, M.; Khougaz, K.; Eisenberg, A., Micellization of ionic block copolymers. Accounts Chem. Res.1996,29 (2),95-102.
    [73]. Chen, G.; Jiang, M., Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev.2011, 40(5),2254-2266.
    [74]. Cho, S. Y; Allcock, H. R., Synthesis of Adamantyl Polyphosphazene-Polystyrene Block Copolymers, and beta-Cyclodextrin-Adamantyl Side Group Complexation. Macromolecules 2009,42 (13),4484-4490.
    [75]. Park, C.; Lee, I. H.; Lee, S.; Song, Y; Rhue, M.; Kim, C., Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Proc. Natl. Acad. Sci. U. S. A.2006,103 (5), 1199-1203.
    [76]. Taura, D.; Hashidzume, A.; Harada, A., Macromolecular recognition: Interaction of cyclodextrins with an alternating copolymer of sodium maleate and dodecyl vinyl ether. Macromol. Rapid Commun.2007,28 (24),2306-2310.
    [77]. Liu, H.; Zhang, Y. F.; Hu, J. M.; Li, C. H.; Liu, S. Y, Multi-Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Host-Guest Inclusion Complexation between beta-Cyclodextrin and Adamantyl Moieties. Macromol. Chem. Phys.2009,210 (24),2125-2137.
    [78]. Yan, Q.; Yuan, J. Y; Cai, Z. N.; Xin, Y.; Kang, Y.; Yin, Y. W., Voltage-Responsive Vesicles Based on Orthogonal Assembly of Two Homopolymers. J. Am. Chem. Soc.2010,132 (27),9268-9270.
    [79]. Zou, J.; Tao, F.; Jiang, M., Optical switching of self-assembly and disassembly of noncovalently connected amphiphiles. Langmuir 2007,23 (26), 12791-12794.
    [80]. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E., C-60-Buckminsterfullerene. Nature 1985,318 (6042),162-163.
    [81]. Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Hufman, D. R., SOLID C-60-ANEW FORM OF CARBON. Nature 1990,347 (6291),354-358.
    [82]. Xie, Q. S.; Perezcordero, E.; Echegoyen, L., Electrochemical Detection of C-60(6-) and C-70(6-)-enhanced Stability of Fullerides in Solution.J. Am. Chem. Soc.1992,114 (10),3978-3980.
    [83]. Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L., Photophysical Properties of C60. J. Phys. Chem.1991,95(1),11-12.
    [84]. (a) Tutt, L. W.; Kost, A., Optical Limiting Performance of C-60 and C-70 Solutions. Nature 1992,356 (6366),225-226; (b) Koudoumas, E.; Konstantaki, M.; Mavromanolakis, A.; Couris, S.; Fanti, M.; Zerbetto, F.; Kordatos, K.; Prato, M., Large enhancement of the nonlinear optical response of reduced fullerene derivatives. Chem.-Eur. J.2003,9 (7),1529-1534.
    [85]. Mas-Torrent, M.; Rovira, C., Novel small molecules for organic field-effect transistors:towards processability and high performance. Chem. Soc. Rev.2008,37 (4),827-838.
    [86]. (a) Segura, J. L.; Martin, N.; Guldi, D. M., Materials for organic solar cells: the C-60/pi-conjugated oligomer approach. Chem. Soc. Rev.2005,34 (1),31-47; (b) Delgado, J. L.; Bouit, P. A.; Filippone, S.; Herranz, M. A.; Martin, N., Organic photovoltaics:a chemical approach. Chem. Commun.2010,46 (27),4853-4865.
    [87]. Da Ros, T.; Prato, M., Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun.1999, (8),663-669.
    [88]. (a) Friedman, S. H.; Decamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. L., Inhibition of The HTV-1 Protease by Fullerene Derivatives Model-building Studies and Esperimental-verification. J. Am. Chem. Soc.1993,115 (15),6506-6509; (b) Sijbesma, R.; Srdanov, G.; Wudl, F.; Castoro, J. A.; Wilkins, C.; Friedman, S. H.; Decamp, D. L.; Kenyon, G. L., Synthesis of A Fullerene Derivative For the Inhibition of HTV Enzymes. J. Am. Chem. Soc.1993,115 (15),6510-6512.
    [89]. (a) Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N., Highly hydroxylated or gamma-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and beta-carotene bleaching assay. Bioorg. Med. Chem. Lett.2009,19 (18),5293-5296; (b) Liu, Y.; Liang, P.; Chen, Y.; Zhao, Y. L.; Ding, F.; Yu, A., Spectrophotometric study of fluorescence sensing and selective binding of biochemical substrates by 2,2'-bridged biso(beta-cyclodextrin) and its water-soluble fullerene conjugate. J. Phys. Chem. B 2005,109 (49), 23739-23744; (c) Ikeda, A.; Sato, T.; Kitamura, K.; Nishiguchi, K.; Sasaki, Y.; Kikuchi, J.; Ogawa, T.; Yogo, K.; Takeya, T., Effcient photocleavage of DNA utilising water-soluble lipid membrane-incorporated 60 fullerenes prepared using a 60 fullerene exchange method. Org. Biomol. Chem.2005,3 (16),2907-2909.
    [90]. (a) Islam, S. D. M.; Fujitsuka, M.; Ito, O.; Ikeda, A.; Hatano, T.; Shinkai, S., Photoexcited state properties of C-60 encapsulated in a water-soluble calixarene. Chem. Lett.2000, (1),78-79; (b) Ikeda, A.; Nobukuni, S.; Udzu, H.; Zhong, Z. L. Shinkai, S., A novel 60 fullerene-calixarene conjugate which facilitates self-inclusion of the 60 fullerene moiety into the homooxacalix 3 arene cavity. Eur. J. Org. Chem. 2000, (19),3287-3293; (c) Ikeda, A.; Hatano, T.; Kawaguchi, M.; Suenaga, H.; Shinkai, S., Water-soluble 60 fullerene-cationic homooxacalix 3 arene complex which is applicable to the photocleavage of DNA. Chem. Commun.1999, (15),1403-1404.
    [91]. Ungurenasu, C.; Airinei, A., Highly stable C-60/poly(vinylpyrrolidone) charge-transfer complexes afford new predictions for biological applications of underivatized fullerenes. J. Med. Chem.2000,43 (16),3186-3188.
    [92]. (a) Brant, J. A.; Labille, J.; Bottero, J. Y.; Wiesner, M. R., Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 2006,22 (8),3878-3885; (b) Lyon, D. Y.; Alvarez, P. J. J., Fullerene Water Suspension (nC(60)) Exerts Antibacterial Effects via ROS-Independent Protein Oxidation. Environ. Sci. Technol.2008,42 (21),8127-8132.
    [93]. (a) Ikeda, A.; Doi, Y.; Hashizume, M.; Kikuchi, J.; Konishi, T., An extremely effective DNA photocleavage utilizing functionalized liposomes with a fullerene-enriched lipid bilayer. J. Am. Chem. Soc.2007,129 (14),4140-+; (b) Zhou, Z. G.; Lenk, R. P.; Dellinger, A.; Wilson, S. R.; Sadler, R.; Kepley, C. L., Liposomal Formulation of Amphiphilic Fullerene Antioxidants. Bioconjugate Chem.2010,21 (9), 1656-1661.
    [94]. Lopez, A. M.; Mateo-Alonso, A.; Prato, M., Materials chemistry of fullerene C-60 derivatives. Journal of Materials Chemistry 2011,21 (5),1305-1318.
    [95]. Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.; Masumizu, T.; Nagano, T., Active oxygen species generated from photoexcited fullerene (C-60) as potential medicines:O-2(-center dot) versus O-1(2). J. Am. Chem. Soc.2003,125 (42),12803-12809.
    [96]. Nishibayashi, Y.; Saito, M.; Uemura, S.; Takekuma, S.; Takekuma, H.; Yoshida, Z., Buckminsterfullerenes-A non-metal system for nitrogen fixation. Nature 2004,428 (6980),279-280.
    [97]. Andersson, T.; Nilsson, K.; Sundahl, M.; Westman, G.; Wennerstrom, O., C-60 Embedded in Gamma-Cyclodextrin-A Water-Soluble Fullerene. J. Chem. Soc.-Chem. Commun.1992, (8),604-606.
    [98]. Priyadarsini, K. I.; Mohan, H.; Tyagi, A. K.; Mittal, J. P., Inclusion Complex of Gamma-Cyclodextrin-C-60-Formation, Characterization, and Photophysical Properties in Aqueous-solutions. J. Phys. Chem.1994,98 (17),4756-4759.
    [99]. Murthy, C. N.; Geckeler, K. E., The water-soluble beta-cyclodextrin-60 fullerene complex. Chem. Commun.2001, (13),1194-1195.
    [100]. Liu, Y.; Wang, H.; Liang, P.; Zhang, H. Y., Water-soluble supramolecular fullerene assembly mediated by metallobridged beta-cyclodextrins. Angew. Chem.-Int. Edit.2004,43 (20),2690-2694.
    [101]. Liu, Y.; Chen, G. S.; Chen, Y.; Zhang, N.; Chen, J.; Zhao, Y. L., Bundle-shaped cyclodextrin-Tb nano-supramolecular assembly mediated by C-60: Intramolecular energy transfer. Nano Lett.2006,6 (10),2196-2200.
    [102]. Zhang, Y.; Liu, W.; Gao, X.; Zhao, Y L.; Zheng, M.; Li, F. F.; Ye, D. L., The first synthesis of a water-soluble alpha-cyclodextrin/C-60 supramolecular complex using anionic C-60 as a building block. Tetrahedron Lett.2006,47 (48),8571-8574.
    [103]. Fathalla, M.; Li, S. C.; Diebold, U.; Alb, A.; Jayawickramarajah, J., Water-soluble nanorods self-assembled via pristine C-60 and porphyrin moieties. Chem. Commun.2009, (28),4209-4211.
    [104]. Furuishi, T.; Ohmachi, Y.; Fukami, T.; Nagase, H.; Suzuki, T.; Endo, T.; Ueda, H.; Tomono, K., Enhanced solubility of fullerene (C(60)) in water by inclusion complexation with cyclomaltononaose (delta-CD) using a cogrinding method. J. Incl. Phenom. Macrocycl. Chem.2010,67(1-2),233-239.
    [105]. Iohara, D.; Hirayama, F.; Higashi, K.; Yamamoto, K.; Uekama, K., Formation of Stable Hydrophilic C-60 Nanoparticles by 2-Hydroxypropyl-beta-cyclodextrin. Mol. Pharm.2011,8 (4),1276-1284.
    [106]. Wang, H. M.; Wenz, G., Molecular solubilization of fullerene C-60 in water by gamma-cyclodextrin thioethers. Beilstein J. Org. Chem.2012,8,1644-1651.
    [107]. Nobusawa, K.; Akiyama, M.; Ikeda, A.; Naito, M., pH responsive smart carrier of 60 fullerene with 6-amino-cyclodextrin inclusion complex for photodynamic therapy. Journal of Materials Chemistry 2012,22 (42),22610-22613.
    [108]. Guan, Z.; Wang, Y. L.; Chen, Y.; Zhang, L. H.; Zhang, Y M., Novel approach for synthesis of 2:1 permethylated beta-cyclodextrin-C-60 conjugate. Tetrahedron 2009,65(6),1125-1129.
    [109]. Samal, S.; Geckeler, K. E., Cyclodextrin-fullerenes:a new class of water-soluble fullerenes. Chem. Commun.2000, (13),1101-1102.
    [110]. Yuan, D. Q.; Koga, K.; Kourogi, Y.; Fujita, K., Synthesis of fullerene-cyclodextrin conjugates. Tetrahedron Lett.2001,42 (38),6727-6729.
    [111]. Liu, Y.; Zhao, Y. L.; Chen, Y.; Liang, P.; Li, L., A water-soluble beta-cyclodextrin derivative possessing a fullerene tether as an efficient photodriven DNA-cleavage reagent. Tetrahedron Lett.2005,46 (14),2507-2511.
    [112]. Giacalone, F.; D'Anna, F.; Giacalone, R.; Gruttadauria, M.; Riela, S.; Noto, R., Cyclodextrin- 60 fullerene conjugates: synthesis, characterization, and electrochemical behavior. Tetrahedron Lett.2006,47 (46),8105-8108.
    [113]. Chen, Y.; Wang, Y L.; Rassat, A.; Sinay, P.; Zhao, Y.; Zhang, Y M., Synthesis of water-soluble 2-alkylcyclodextrin-C-60 conjugates and their inclusion complexation in aqueous solution. Tetrahedron 2006,62 (9),2045-2049.
    [114]. (a) Filippone, S.; Heimann, F.; Rassat, A., A highly water-soluble 2:1 beta-cyclodextrin-fullerene conjugate. Chem. Commun.2002, (14),1508-1509; (b) Filippone, S.; Rassat, A., In search for internal complexation in cyclodextrin-fullerene conjugates. C. R. Chim.2003,6(1),83-86.
    [115]. Juan, Y.; Wang, Y L.; Rassat, A.; Zhang, Y M.; Sinay, P., Synthesis of novel highly water-soluble 2:1 cyclodextrin/fullerene conjugates involving the secondary rim of beta-cyclodextrin. Tetrahedron 2004,60 (52),12163-12168.
    [116]. Zhang, Y M.; Chen, Y.; Yang, Y.; Liu, P.; Liu, Y., Supramolecular Architectures by Fullerene-Bridged Bis(permethyl-beta-cyclodextrin)s with Porphyrins. Chem.-Eur. J.2009,15 (42),11333-11340.
    [117]. Xiao, S. L.; Wang, Q.; Yu, F.; Peng, Y Y.; Yang, M.; Sollogoub, M.; Sinay, P.; Zhang, Y M.; Zhang, L. H.; Zhou, D. M., Conjugation of cyclodextrin with fullerene as a new class of HCV entry inhibitors. Bioorganic & Medicinal Chemistry 2012,20 (18),5616-5622.
    [1]. Wang, A. Z.; Langer, R.; Farokhzad, O. C., Nanoparticle Delivery of Cancer Drugs. In Annual Review of Medicine, Vol 63, Caskey, C. T.; Austin, C. P.; Hoxie, J. A., Eds. Annual Reviews: Palo Alto,2012; Vol.63, pp 185-198.
    [2]. Tasciotti, E.; Liu, X. W.; Bhavane, R.; Plant, K.; Leonard, A. D.; Price, B. K.; Cheng, M. M. C.; Decuzzi, P.; Tour, J. M.; Robertson, F.; Ferrari, M., Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol.2008,3 (3),151-157.
    [3]. Wong, C.; Stylianopoulos, T.; Cui, J. A.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popovic, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D., Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. U. S. A. 2011,108 (6),2426-2431.
    [4]. Fan, Y. B.; Li, C. Y.; Cao, H.; Li, F. Y.; Chen, D. Y, The intranuclear release of a potential anticancer drug from small nanoparticles that are derived from intracellular dissociation of large nanoparticles. Biomaterials 2012,33 (16),4220-4228.
    [5]. Amajjahe, S.; Choi, S.; Munteanu, M.; Ritter, H., Pseudopolyanions based on poly(NIPAAM-co-beta-cyclodextrin methacrylate) and ionic liquids. Angew. Chem.-Int. Edit.2008,47(18),3435-3437.
    [6]. Goddard-Borger, E. D.; Stick, R. V., An efficient, inexpensive, and shelf-stable diazotransfer reagent: Imidazole-1-sulfonyl azide hydrochloride. Org. Lett.2007,9 (19),3797-3800.
    [7]. Savariar, E. N.; Ghosh, S.; Gonzalez, D. C.; Thayumanavan, S., Disassembly of noncovalent amphiphilic polymers with proteins and utility in pattern sensing. J. Am. Chem. Soc.2008,130 (16),5416-5417.
    [8]. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem.-Int. Edit.2001,40 (11), 2004-2005.
    [9]. (a) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H., Cu-I-catalyzed alkyne-azide "click" cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem.2006, (1),51-68;(b) Elchinger, P. H.; Faugeras, P. A.; Boens, B.; Brouillette, F.; Montplaisir, D.; Zerrouki, R.; Lucas, R., Polysaccharides:The "Click" Chemistry Impact. Polymers 2011,3 (4),1607-1651.
    [10]. Gao, H. F.; Matyjaszewski, K., Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers:From stars to gels. Prog. Polym. Sci.2009,34 (4),317-350.
    [11]. Zhang, Z. X.; Liu, X.; Xu, F. J.; Loh, X. J.; Kang, E. T.; Neoh, K. G.; Li, J., Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core and guest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly. Macromolecules 2008,41(16),5967-5970.
    [12]. Ohno, K.; Wong, B.; Haddleton, D. M., Synthesis of well-defined cyclodextrin-core star polymers. J. Polym. Sci. Pol. Chem.2001,39 (13),2206-2214.
    [13]. Plamper, F. A.; Becker, H.; Lanzendorfer, M.; Patel, M.; Wittemann, A.; Ballauff, M.; Muller, A. H. E., Synthesis, characterization and behavior in aqueous solution of star-shaped poly(acrylic acid). Macromol. Chem. Phys.2005,206 (18), 1813-1825.
    [14]. Li, J. S.; Xiao, H. N., An efficient synthetic-route to prepare 2,3,6-tri-O-(2-bromo-2-methylpropiony1-beta-cyclodextrin). Tetrahedron Lett. 2005,46(13),2227-2229.
    [15]. (a) Burckbuchler, V.; Wintgens, V.; Lecomte, S.; Percot, A.; Leborgne, C.; Danos, O.; Kichler, A.; Amiel, C., DNA compaction into new DNA vectors based on cyclodextrin polymer: Surface enhanced Raman spectroscopy characterization. Biopolymers 2006,81(5),360-370;(b) Bartlett, D. W.; Davis, M. E., Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjugate Chem.2007,18 (2),456-468;(c) Bohm, I.; Isenbugel, K.; Rirter, H.; Branscheid, R.; Kolb, U., Fluorescent Nanowires Self-Assembled through Host-Guest Interactions in Modified Calcein. Angew. Chem.-Int. Edit.2011,50 (32),7407-7409.
    [16]. (a) Postma, A.; Davis, T. P.; Donovan, A. R.; Li, G. X.; Moad, G.; Mulder, R.; O'Shea, M. S., A simple method for determining protic end-groups of synthetic polymers by 1H NMR spectroscopy. Polymer 2006,47 (6),1899-1911;(b) Donovan, A. R.; Moad, G., A novel method for determination of polyester end-groups by NMR spectroscopy. Polymer 2005,46 (14),5005-5011.
    [17]. Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y. W.; Zink, J. I.; Stoddart, J. F., Enzyme-responsive snap-top covered silica nanocontainers. J. Am. Chem. Soc.2008,130 (8),2382-2383.
    [18]. Azagarsamy, M. A.; Sokkalingam, P.; Thayumanavan, S., Enzyme-Triggered Disassembly of Dendrimer-Based Amphiphilic Nanocontainers. J. Am. Chem. Soc. 2009,131 (40),14184-+.
    [1]. Nakamura, E.; Isobe, H., Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Accounts Chem. Res.2003,36 (11), 807-815.
    [2]. (a) Kumar, A.; Rao, M. V.; Menon, S. K., Photoinduced DNA cleavage by fullerene-lysine conjugate. Tetrahedron Lett.2009,50 (47),6526-6530; (b) Gao, Y. Y.; Ou, Z. Z.; Yang, G. Q.; Liu, L. H.; Jin, M. M.; Wang, X. S.; Zhang, B. W.; Wang, L. X., Efficient photocleavage of DNA utilizing water soluble riboflavin/naphthaleneacetate substituted fullerene complex. J. Photochem. Photobiol. A-Chem.2009,203 (2-3),105-111; (c) Zhou, C. S.; Liu, Q. L.; Xu, W.; Wang, C. R.; Fang, X. H., A water-soluble C-60-porphyrin compound for highly efficient DNA photocleavage. Chem. Commun.2011, 47(10),2982-2984.
    [3]. (a) Chaudhuri, P.; Paraskar, A.; Soni, S.; Mashelkar, R. A.; Sengupta, S., Fullerenol-Cytotoxic Conjugates for Cancer Chemotherapy. ACS Nano 2009,3 (9), 2505-2514; (b) Zhang, G.; Liu, Y.; Liang, D.; Gan, L.; Li, Y, Facile Synthesis of Isomerically Pure Fullerenols and Formation of Spherical Aggregates from C60(OH)8. Angewandte Chemie 2010,122 (31),5421-5423.
    [4]. Munoz, A.; Illescas, B. M.; Sanchez-Navarro, M.; Rojo, J.; Martin, N., Nanorods versus Nanovesicles from Amphiphilic Dendrofullerenes. J. Am. Chem. Soc.2011, 133(42),16758-16761.
    [5]. (a) Juan, Y.; Wang, Y L.; Rassat, A.; Zhang, Y M.; Sinay, P., Synthesis of novel highly water-soluble 2:1 cyclodextrin/fullerene conjugates involving the secondary rim of beta-cyclodextrin. Tetrahedron 2004,60 (52),12163-12168; (b) Liu, Y.; Zhao, Y L.; Chen, Y.; Liang, P.; Li, L., A water-soluble beta-cyclodextrin derivative possessing a fullerene tether as an efficient photodriven DNA-cleavage reagent. Tetrahedron Lett.2005,46(14),2507-2511; (c) Giacalone, F.; D'Anna, F.; Giacalone, R.; Gruttadauria, M.; Riela, S.; Noto, R., Cyclodextrin- 60 fullerene conjugates: synthesis, characterization, and electrochemical behavior. Tetrahedron Lett.2006,47 (46),8105-8108.
    [6]. (a) Li, W.; Zhao, L. N.; Wei, T. T.; Zhao, Y. L.; Chen, C. Y., The inhibition of death receptor mediated apoptosis through lysosome stabilization following internalization of carboxyfullerene nanoparticles. Biomaterials 2011,32 (16), 4030-4041; (b) Periya, V. K.; Koike, I.; Kitamura, Y.; Iwamatsu, S. I.; Murata, S., Hydrophilic 60 fullerene carboxylic acid derivatives retaining the original 60 pi electronic system. Tetrahedron Lett.2004,45 (45),8311-8313.
    [7]. Kornev, A. B.; Khakina, E. A.; Troyanov, S. I.; Kushch, A. A.; Peregudov, A.; Vasilchenko, A.; Deryabin, D. G.; Martynenko, V. M.; Troshin, P. A., Facile preparation of amine and amino acid adducts of 60 fullerene using chlorofullerene C60C16 as a precursor. Chem. Commun.2012,48 (44),5461-5463.
    [8]. Ikeda, A.; Ishikawa, M.; Aono, R.; Kikuchi, J.-i.; Akiyama, M.; Shinoda, W., Regioselective Recognition of a [60]Fullerene-Bisadduct by Cyclodextrin. The Journal of Organic Chemistry 2013,78 (6),2534-2541.
    [9]. Wang, J. J.; Zhang, J. L.; Yu, S. L.; Wu, W.; Jiang, X. Q., Synthesis and Self-Assembly of a Nanoscaled Multiarm Polymer Terminated by beta-Cyclodextrin. ACS Macro Lett.2013,2 (1),82-85.
    [10]. Yuan, D. Q.; Koga, K.; Kourogi, Y.; Fujita, K., Synthesis of fullerene-cyclodextrin conjugates. Tetrahedron Lett.2001,42 (38),6727-6729.
    [11]. Yamakoshi, Y.; Sueyoshi, S.; Fukuhara, K.; Miyata, N., center dot OH and O-2(center dot-) generation in aqueous C-60 and C-70 solutions by photoirradiation: An EPR study. J. Am. Chem. Soc.1998,120 (47),12363-12364.
    [12]. Nakajima, N.; Nishi, C.; Li, F. M.; Ikada, Y, Photo-induced cytotoxicity of water-soluble fullerene. Fullerene Sci. Technol.1996,4 (1),1-19.
    [13]. Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.; Masumizu, T.; Nagano, T., Active oxygen species generated from photoexcited fullerene (C-60) as potential medicines:O-2(-center dot) versus O-1(2). J. Am. Chem. Soc.2003,125(42),12803-12809.
    [14]. (a) Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; Ausman, K. D.; Tao, Y J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V. L., The differential cytotoxicity of water-soluble fullerenes. Nano Lett.2004,4 (10), 1881-1887; (b) Rancan, F.; Rosan, S.; Boehm, F.; Cantrell, A.; Brellreich, M.; Schoenberger, H.; Hirsch, A.; Moussa, F., Cytotoxicity and photocytotoxicity of a dendritic C-60 mono-adduct and a malonic acid C-60 tris-adduct on Jurkat cells. J. Photochem. Photobiol. B-Biol.2002,67(3),157-162; (c) Kamat, J. P.; Devasagayam, T. P. A.; Priyadarsini, K. I.; Mohan, H.; Mittal, J. P., Oxidative damage induced by the fullerene C-60 on photosensitization in rat liver microsomes. Chem.-Biol. Interact. 1998,114 (3),145-159; (d) Irie, K.; Nakamura, Y.; Ohigashi, H.; Tokuyama, H.; Yamago, S.; Nakamura, E., Photocytotoxicity of water-soluble fullerene derivatives. Biosci. Biotechnol. Biochem.1996,60 (8),1359-1361.
    [15]. Kondo, S., The roles of keratinocyte-derived cytokines in the epidermis and their possible responses to UVA-Irradiation. J. Invest. Dermatol. Symp. Proc.1999,4 (2),177-183.
    [1]. (a) Pasut, G.; Sergi, M.; Veronese, F. M., Anti-cancer PEG-enzymes:30 years old, but still a current approach. Adv. Drug Deliv. Rev.2008,60 (1),69-78; (b) Duncan, R., Polymer conjugates as anticancer nanomedicines. Nat. Rev, Cancer 2006,6 (9), 688-701; (c) Kopecek, J., Biomaterials and Drug Delivery: Past, Present, and Future. Mol. Pharm.2010,7 (4),922-925.
    [2]. Rihova, B.; Kovar, L.; Kovar, M.; Hovorka, O., Cytotoxicity and immunostimulation:double attack on cancer cells with polymeric therapeutics. Trends Biotechnol.2009,27(1),11-17.
    [3]. (a) Matsumura, Y.; Maeda, H., A NEW CONCEPT FOR MACROMOLECULAR THERAPEUTICS IN CANCER-CHEMOTHERAPY - MECHANISM OF TUMORITROPIC ACCUMULATION OF PROTEINS AND THE ANTITUMOR AGENT SMANCS. Cancer Res.1986,46 (12),6387-6392; (b) Maeda, H.; Greish, K.; Fang, J., The EPR effect and polymeric drugs: A paradigm shift for cancer chemotherapy in the 21st century. In Polymer Therapeutics Ii: Polymers as Drugs, Conjugates and Gene Delivery Systems, SatchiFainaro, R.; Duncan, R., Eds. Springer-Verlag Berlin: Berlin,2006; Vol.193, pp 103-121; (c) Maeda, H., Tumor-Selective Delivery of Macromolecular Drugs via the EPR Effect: Background and Future Prospects. Bioconjugate Chem.2010,21 (5),797-802.
    [4]. Fox, M. E.; Szoka, F. C.; Frechet, J. M. J., Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture. Accounts Chem. Res. 2009,42(8),1141-1151.
    [5]. (a) Rennke, H. G.; Venkatachalam, M. A., GLOMERULAR-PERMEABILITY OF MACROMOLECULES-EFFECT OF MOLECULAR-CONFIGURATION ON THE FRACTIONAL CLEARANCE OF UNCHARGED DEXTRAN AND NEUTRAL HORSERADISH-PEROXIDASE IN THE RAT. J. Clin. Invest.1979,63 (4),713-717; (b) Venkatachalam, M. A.; Rennke, H. G., STRUCTURAL AND MOLECULAR-BASIS OF GLOMERULAR-FILTRATION. Circ.Res.1978,43 (3), 337-347; (c) Deen, W. M.; Lazzara, M. J.; Myers, B. D., Structural determinants of glomerular permeability. Am. J. Physiol.-Renal Physiol.2001,281 (4), F579-F596; (d) Asgeirsson, D.; Venturoli, D.; Fries, E.; Rippe, B.; Rippe, C., Glomerular sieving of three neutral polysaccharides, polyethylene oxide and bikunin in rat. Effects of molecular size and conformation. Acta Physiol.2007,191 (3),237-246; (e) Asgeirsson, D.; Axelsson, J.; Rippe, C.; Rippe, B., Similarity of permeabilities for Ficoll, pullulan, charge-modified albumin and native albumin across the rat peritoneal membrane. Acta Physiol.2009,196 (4),427-433.
    [6]. Nasongkla, N.; Chen, B.; Macaraeg, N.; Fox, M. E.; Frechet, J. M. J.; Szoka, F. C., Dependence of Pharmacokinetics and Biodistribution on Polymer Architecture: Effect of Cyclic versus Linear Polymers. J. Am. Chem. Soc.2009,131 (11),3842-+.
    [7]. Rodewald, R.; Karnovsk.Mj, POROUS SUBSTRUCTURE OF GLOMERULAR SLIT DIAPHRAGM IN RAT AND MOUSE. J. Cell Biol. 1974,60 (2),423-433.
    [8]. (a) Tencer, J.; Frick, I. M.; Oquist, B. W.; Alm, P.; Rippe, B., Size-selectivity of the glomerular barrier to high molecular weight proteins: Upper size limitations of shunt pathways. Kidney Int.1998,53 (3),709-715; (b) Sadekar, S.; Ray, A.; Janat-Amsbury, M.; Peterson, C. M.; Ghandehari, H., Comparative Biodistribution of PAMAM Dendrimers and HPMA Copolymers in Ovarian-Tumor-Bearing Mice. Biomacromolecules 2011,12 (1),88-96.
    [9]. Noguchi, Y.; Wu, J.; Duncan, R.; Strohalm, J.; Ulbrich, K.; Akaike, T.; Maeda, H., Early phase tumor accumulation of macromolecules:a great difference in clearance rate between tumor and normal tissues. Jpn. J. Cancer Res.1998,89 (3),307-314.
    [10]. Lammers, T.; Kuhnlein, R.; Kissel, M.; Subr, V.; Etrych, T.; Pola, R.; Pechar, M.; Ulbrich, K.; Storm, G.; Huber, P.; Peschke, P., Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. Journal of Controlled Release 2005,110 (1),103-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700