交叉三角形波纹板流道传热与流动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对室内舒适度要求越来越高,空调人均占有率大大增长,空调已经成为耗能大户。全热交换器由于能同时回收空气中显热和潜热,降低空调的能耗,因而具有广阔的发展前景。目前市场上流行的全热交换器以板翅式较多,除了膜材的选择异常关键外,翅片和流道结构对换热也有重大影响。
     交叉三角形波纹板换热器不仅结构简单,机械强度适中,而且通过流道的周期性扩张和收缩强化了内部流动,传热系数高,非常适合在空调的工况下使用。当前对此类结构的研究不多,且多以数值模拟为主。本文以实验为主、数值模拟与实验研究相结合来研究其传热和流动,从宏观和微观层面探讨了交叉三角形波纹板流道的传热机理和流动特性,并结合场协同理论,对研究结果进行分析,充分探讨影响流道的综合传热效果的各项因素,为工程设计提供理论支持。本课题的主要工作包括以下几个方面:
     (1)建立了交叉三角形波纹板流道的传热实验台。通过测试不同Re数、不同折叠角和不同热流边界条件下的流道各点的温度、压降和风速,计算得到流道平均摩擦系数、平均传热系数、平均努塞尔数、换热因子j、面积质量因子j/fD和传热强化综合性能指标PEC值等参数,并对上述参数的变化规律进行了整理归纳。
     同时也建立了交叉三角形波纹板流道的流动实验台。利用IFA300热线热膜风速仪测量了交叉三角形波纹板流道内的三维速度,对气流方向速度分量进行频谱分析,研究流道内部流动特性,并绘制出不同平面上的速度矢量场、湍流强度场和湍动能场。研究表明:交叉三角形波纹板流道很容易达到湍流;当Re=275时,流动趋于过渡流;当Re>1000,流动趋于湍流状态。
     (2)建立了交叉三角形波纹板流道的数学模型,用Fluent软件对不同条件下的交叉三角形波纹板流道进行了模拟,并将结果与实验结果进行了对比分析。研究表明:利用低Re数k ε湍流模型研究交叉三角形波纹板流道内的传热和流动最符合;非耦合壁面比实际耦合壁面的Nu数夸大35%;对不同壁面边界条件进行了模拟,给出了流道内部各截面的速度矢量场、温度场和湍动能场;并就数值模拟与实验数据的偏差进行了分析。
     (3)对比了交叉三角形波纹板流道与其他管式或板式流道的传热参数。与圆管、椭圆管、方管、三角形流道等管式流道作对比,交叉三角形波纹流道除摩擦系数较大外,其传热和阻力的综合性能均较优,主要是由于交叉三角形波纹流道的三角形交叉区域的顺时针的漩涡和复杂的二次流,强化了流动和传热。与平行平板流道、波纹板流道和人字形波纹流道相比,交叉三角形波纹流道摩擦系数适中,换热较为理想。综合考虑空调全热交换器应用的工况以及加工难度、加工成本、传热强化、阻力等各方面因素,交叉三角形波纹流道是一种较理想的选择。
     (4)通过实验和模拟,分别对折叠角(included angle)α为45°、60°、90°和120°的四种交叉三角形流道的实验和模拟数据进行处理,发现折叠角α对流动和传热有重大影响。除了对摩擦系数、努塞尔数、j因子、PEC值等宏观参数进行比较外外,文中还结合三维空间温度场的分布云图、速度场分布,从微观和宏观两个层面阐述折叠角的影响。结果表明,折叠角为90°的交叉三角形流道具有最优的传热性能,若以折叠角为90°的交叉三角形波纹流道的NuD、j、和PEC为基准,另外三种折叠角的NuD值约小30%~75%;j值分别约小14%~76%;PEC值分别约小24%~73%。
     (5)为探讨交叉三角形波纹流道内部流场的强化传热机理,从场协同理论的基本定义出发,研究了速度及速度梯度、温度梯度及压力梯度之间的场协同关系。通过编制自定义函数UDF,使用Fluent模拟计算获得不同折叠角时流场的β、θ和γ三种局部协同角的云图分布,从微观上验证折叠角的影响规律。同时也将不同壁面条件的局部协同角云图作了进一步分析对比。为了验证宏观传热参数fD、NuD、j、PEC等值的变化规律,也对局部协同角进行场均计算,获得体积平均协同角和积分中值平均协同角,所获得的场均协同角的变化规律能够解释宏观传热参数的变化规律。研究表明,Re取2000时,折叠角为90°交叉三角形波纹板流道的场均协同角值βVOL为74.1°,比其他折叠角的该值小1~2.3°;而同等Re数下的螺旋扁管、圆直管和平行平板流道的该值分别为77.2°、88.2°和88.6°,说明交叉三角形波纹板流道的场协同程度最优。
Due to the increased requirements in people’s indoor comfort, air conditioning systemshave been widely used. Energy consumption for air conditionings is very large. The total heatexchanger, which can effectively recovery sensible and latent heat from ventilation air, hasattracted much attention. Up until now, plate fin total heat exchanger is the most popular onein the market. Besides membrane materials, the structures have significant impacts on thefluid flow and heat transfer for the plate fin heat exchanger.
     Cross corrugated triangular duct heat exchanger is better because of its high strength.Further, the flow is enchanted by the periodic expansion and contraction in the flowingchannels, which gives rise to heat transfer coefficients. Therefore the cross corrugatedtriangular duct heat exchanger is quite applicable to air conditioning systemss. Althoughthere are many reports on cross corrugated triangular ducts, they are mostly only focused onnumerical simulation. This paper addresses this problem, by the combination of experimentaland numerical studies. In addition, field synergy theory is employed to analyze the numericalresults. These works would provide a theoretical basis for engineering design. The mainworks are summarized as following:
     (1) A test rig for heat transfer in cross corrugated triangular ducts is set up. The frictionfactor and heat transfer coefficient are tested under different Reynolds numbers, includedvarious angles and various heat flux boundary conditions. The variations of these parametersare analyzed.
     Further, a test rig for fluid flow in the cross corrugated triangular ducts is set up. Tostudy the flow characteristics inside the channels, three velocity components are measuredusing IFA300high speed hot wire anemometer. Spectrum analysis is carried out for velocitycomponents. The velocity vectors fields in the different plane are plotted by the Tecplotsoftware. The turbulence intensity contours and the turbulence kinetic energy contours arealso plotted. The results show that the flow in the cross corrugated triangular ducts becomesturbulent easily. When Re is275, the flow has become transitional. When Re is above1000,the flow has become turbulent.
     (2) A mathematical model for cross corrugated triangular ducts is developed and solvedby Fluent software. The established model is validated by the experimental data. It has beenfound that the results obtained by the low Reynold number k ε turbulence model fit theexperimental results best. Compared to the conjugated wall surface, the Nusselt numbersobtained for an ideal wall surface increase35%. The velocity vectors, the temperature contours and the turbulence kinetic energy contours inside channels are given. Further, thedeviations between the simulated and the experimental data are analyzed.
     (3) Comparisons between the heat transfer parameters in the cross corrugated triangularducts and those in other shapes tubed or parallel plate channels are made. Compared to roundtubes, elliptical tubes, square tubes and triangular tube ducts, the friction factor in thecross corrugated triangular ducts is relatively larger. However, the integrated performances ofheat transfer and resistance are better. It is because that fluid flow is enhanced by theclockwise vortexes and the complex secondary flows appearing in triangular cross regions.Compared to parallel plate channels, corrugated plate channels, herringbone corrugatedchannels, the friction factor for the cross corrugated triangular ducts is moderate but the heattransfer is relatively higher. Considering application prospect, processing cost, heat transferenhancement and resistance for total heat exchanger, the cross corrugated triangular duct is anideal choice.
     (4) For included angles (α)45°,60°,90°and120°, the experimental and numerical datain the cross corrugated triangular ducts are investigated. It is found that the fluid flow andheat transfer are seriously influenced by the included angles. Besides the analyses of themacroscopic parameters such as friction factor, Nusselt number, j factor and PEC values,macro level parameters are also disclosed with temperature and velocity contours. It is foundthat the cross corrugated triangular duct with90°included angle has the best heat transferperformance. For included angles45°,60°and120°, the average Nusselt number (NuD), jfactor and PEC value decrease30%~75%,14%~76%and24%~73%, respectively.
     (5) To disclose the heat transfer enhancement mechanism in the cross corrugatedtriangular duct, the field synergies between velocity gradient, temperature gradient andpressure gradient are investigated. Effects of the included angles on the fluid flow and heattransfer are discussed by analyzing the contours ofβ、θandγlocal synergy angles withdifferent included angles. Further, the contours of the local synergy angles under differentwall conditions are analyzed and compared. To validate the performances of the macroscopicheat transfer parameters such as fD、NuD、j and PEC, the volume average synergy angles andthe integral mean synergy angles are calculated and analyzed. The results are used to disclosethe variations of the macroscopic heat transfer parameters. It can be found that when Re is2000, the field averaged synergy angle (βVOL) for cross corrugated triangular duct with90°included angle is74.1°, which is1~2.3°less than that for other included angles. The value is14.1°less than that for a straight tube and14.5°less than that for a parallel flat plates duct.
引文
[1]陈作义.在博士论文选题中贯彻科学方法论思想[J].广州化工,2011,39(11):160-162
    [2]中共中央.中华人民共和国国民经济和社会发展第十二个五年规划纲要[EB/OL].http://news.xinhuanet.com/politics/2011-03/16/c_121193916.htm,2011.3.16
    [3]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[/EB/OL].http://www.sdpc.gov.cn/,2008.02.16
    [4]国家发展和改革委员会.珠江三角洲地区改革发展规划纲要(2008-2020年)[EB/OL].http://politics.people.com.cn/GB/1026/8644751.html,2010.3.29
    [5]国家能源局.国家能源科技十二五规划(2011-2015年)[EB/OL].http://politics.people.com.cn,2011.12.19
    [6]雷敏.我国全社会总能耗的近一半被建筑“吞噬”[EB/OL].http://news.xinhuanet.com/newscenter/2005-04/27/content_2884551.html,2005.4.27
    [7]符敏慧.浅谈我们能源现状与建筑节能[J].建材发民导向,2006,(4):15-23
    [8]江亿.建筑节能——实现可持续发展的必由之路[J].科技潮,2005,(6):1
    [9]中国能源发展战略与政策硏究课题组.中国能源发展战略与政策研究[M].北京:经济科学出版社,2004:25
    [10]王冬利.多措并举,综合治理夏季空调高峰负荷[J].电力需求侧管理,2005,(4):5-28
    [11]王清勤.热泵节能创新为本——“2005年全国空调与热泵节能技术交流会”综述[J].建筑新能源.2005,(1):34-36
    [12]顾懿卿,黄健倩.冷却塔供冷技术的原理及应用分析[J].今日科苑,2009,(8):29-31
    [13]付明星,黄虎.舒适性空气调节系统的节能分析[J].水利电力施工机械,2002,(2):3-4
    [14]刘智敏.公共建筑新风系统设计探讨[J].广东科技,2006,(6):22
    [15] ASHRAE. ANSI/ASHRAE Standard62-1999, Ventilation for acceptable indoor airquality[S]. Atlanta: American Society of Heating, Refrigerating and Air-ConditioningEngineers,1999:220
    [16]陈作义.建筑节能中调湿材料的应用及研究进展[J].化工新型材料,2010,07:45
    [17]张立志.除湿技术[M].北京:化学工业出版社,2004:7-8
    [18] Niu J. L, Zhang L.Z., Zuo H. G. Energy savings potential of chilled-ceiling combinedwith desiccant cooling in hot and humid climates[J]. Energy and Building,2002,34(5):487-495
    [19] Bergles A.E. Heat transfer enhancement—the maturing of second-generation heattransfer technology [J]. Heat Transfer Engineering,1997,18(1):47-55
    [20]李延中.基于PIV技术的换热器内部场分布特性研究[D].西安交通大学,2006:36-38
    [21] Mulley A., Manglic R.M. Enhanced heat transfer characteristics of single-phase flowSinusoidal plate heat exchangers with mixed chevron plates [J]. Enhanced Heat Transfer,1997,4:187-201
    [22]李建军,陈江平,陈芝久.低雷诺数流动错位翅片传热和压降特性的实验研究[J].能源技术,2004,4:25-28
    [23] Metwally H. M., Manglic R. M. Enhanced heat transfer due to curvature-induced lateralvortices in laminar flow sinusoidal corrugated-plate channels[J]. International Journal ofHeat Mass Transfer,2004,47:2283-3392
    [24] Manglik R.M., Ding J. Laminar flow heat transfer to viscous power-law fluids indouble-sine ducts[J]. International Journal. International Journal of Heat Mass Transfer1997,40(6):1379-1390.
    [25] Yang L.C., AsakoY., Yamaguchi Y., et al., Numerical prediction of transitionalcharacteristics of flow and heat transfer in a corrugated duct[J]. Journal Heat Transfer1997,119(1):62-69
    [26] Nishimura T., Ohori Y., Kajmoto Y., Kawamura Y., Mass transfer characteristics in achannel with symmetric wavy wall for steady flow[J]. Chemical Engineering Jpn.,1985,18(6):550-555
    [27] Bellhouse B.J., Bellhouse F.H., Curl C.M., et al. A high efficiency membrane oxygenatorand pulsatile pumping system, and its application to animal trials[J]., Trans. Am. Soc.Artificial Internal Organs19,1973:72-78
    [28] Noorshahi S., Hall C., Glakpe E., Effect of mixed boundary conditions on naturalconvection in an enclosure with a corrugated surf ace, ASME-JSES-KS ES, Proceedingsof International Solar Energy Conference Part1, Maui, HI,1992:173-181
    [29] Ali M., Ali M.N. Finite element analysis of laminar co nvection heat transfer and flow ofthe fluid bounded by vee-corrugated vertical plates of different corrugation frequencies[J]. Indian Journal of Engineering Materials Sciences,1994,36:181-188
    [30] Randall R.K. Interferometric investigation of convection in salt flat plate andvee-corrugated solar collectors[J]. Solar Energy International Progress,2000,4:457-460
    [31] Patankar S.V., Liu C.H., Sparrow E.M. Fully developed flow and heat transfer in ductshaving streamwise-periodic variations of cross-sectional area[J]. Journal Heat Transfer,1977(99):180-186
    [32] Ciofalo M., Collins M.W., Stasiek J.A. Flow and heat transfer predictions in flowpassages of air preheaters: assessment of alternative modeling approaches[J]. ComputerSimulations in Compact Heat Exchangers,1998,22:223-235
    [33]范庆虎.板翅式换热器中流体传热的数值计算[C].第三届工程计算流体力学会(中国哈尔滨),2006:230-236
    [34]任承钦,汤广发,张国强等.一种新型板式换热器的设计及其传热特性的模拟研究[J].暖通空调,2003,33(5):106-109
    [35]徐伟.应用于新排风系统的热泵热回收装置的研究[J],制冷技术,1996,04:28-33
    [36] Hall D. W, Scott K., Jachuchk J. Determination of mass transfer coefficient of across-corrugated membrane reactor by the limiting current technique[J]. InternationalJournal of Heat Mass Transfer,2001,44(12):2201-2207
    [37] Scott K, Labato J. Mass transport in cross-corrugated membranes and the influence ofTiO2for separation processes[J]. Industrial Engineering Chemical Research,2003,42(22):5697-5701
    [38] Stasiek J, Collins M. W. Investigation of flow and heat transfer in corrugated passages-I.Experimental results[J]. International Journal of Heat and Mass Transfer,1996,39(1):149-164
    [39] Talukdar T, Olutmayin S. O, Osanyintola O. F, et al. An experimental data set forbenchmarking1-D, transient heat and moistrue transfer models of hygroscopic buildingmaterials. Part I: Expanerimental facility and material property data[J]. InternationalJournal of Heat and Mass transfer,2007,50(23):4527-4539
    [40] Islamoglu Y. Effect of rounding of protruding edge on convection heat transfer in aconverging-diverging channel[J]. International Communications in Heat and MassTransfer,2008,35(5):643-647
    [41] Kays W. M, Crawford M. E. Convective Heat and Mass Transfer[M], New York: McGraw-Hill Inc,1993:75-87
    [42]丁静,杨晓西,苏茂尧,等.吸附式空调系统的原理及添加剂强化吸附工质性能的研究[J].离子交换与吸附,1998,14(2):166-170
    [43]裴丽霞,张立志,张莉.一种具有壳-核结构的高选择性吸湿剂及其制备方法[P].中国发明专利.中国:200810199158.0,2008.10.17
    [44] Zhang L. Z. Total Heat Recovery: Heat and Moisture Recovery from Ventilation Air[M].New York: NOVA Press,2009:20-22
    [45] Zhang Y. P, Jiang Y, Zhang L. Z, et al. Analysis of thermal performance and energysavings of membrane based heat recovery ventilator [J]. Energy,2000,25(6):515-527
    [46] Kanaris A. G, Mouza A. A, Paras S. V. Optimal design of a plate heat exchanger withundulated surfaces[J]. International Journal of Thermal Sciences,2009,48(6):1184-1195
    [47]秦慧敏.板翅式静止型全热交换器的研制及其热工性能[J].制冷学报,1992,13(1):11-16
    [48]汪妇欢,次晋芳.板翅式全热交换器运行条件对性能影响的研究[J].制冷空调与电力机械,2004,26(98):29-32
    [49] Ogulata R. T, Doba F. Experiments and entropy generation minimization analysis of arossflow heat exchanger[J]. International Journal of Heat and Mass Transfer,1998,41(2):373-381
    [50] Zhang L. Z. Thermally developing forced convection and heat transfer in rectangularplate-fin passages under uniform plate temperature[J]. Numerical Heat Transfer, PartA-Applications,2007,51(7):697-714
    [51]张立志,赵夫峰.一种交叉三角形板式膜全热交换强化结构[P].中国实用新型专利:200420095114.0,2006.2.15
    [52] Kanaris A. G., Mouza A., Papas S. V. Flow and heat transfer in narrow channels withcorrugated walls[J], Chemical Engineering Research and Design,2005,83(A5):460–468
    [53] Manglik R.M.. Enhanced heat transfer due to curvature-induced lateral vortices inlaminar flows in sinusoidal corrugated-plate channels[J], International Journal of Heatand Mass Transfer,2004,47:2283-2292
    [54] Muley A., Manglik R.M, Metwally H.M. Enhanced heat transfer characteristics ofviscous liquid flows in a chevron plate heat exchanger[J]. Heat Transfer1999,121(4):1011-1017
    [55] Heavner R.L., Kumar H., Wanniarachchi A.S. Performance of an industrial plate heatexchanger effect of chevron angle[J]. Heat Transfer,1993,89:262-267
    [56] Ligrani P.M., Oliveira M.M. Comparison of heat transfer augmentation techniques[J].The American Institute of Aeronautics and Astronautics (AIAA) Journal,2003,41(3):337–362.
    [57] Mohammod Z.H., A. K. M. Sadrul. Fully developed flow structures and heat transfer insine-shaped wavy channels [J]. International Communications in Heat and Mass Transfer,2004,31(6):887-896
    [58]王中铮,刘可心,郭新川等.水蒸气在内插螺旋丝竖直圆管内流动凝结的实验研究[J].化工学报,1996,01:35-38
    [59] Focke W.W., Knibbe P.G. Flow visualization in parallel-plate ducts with corrugatedwalls[J], Journal Fluid Machinery,1986,165:73-77.
    [60] Stasiek J., Collins M. W. Investigation of flow and heat transfer in corrugated passages-I.Experimental results[J]. International Journal of Heat and Mass Transfer,1996,39(1):149-164
    [61] Biomerius H., Hoisken C., Mitra N. K. Numerical investigation of flow field and heattransfer in cross-corrugated ducts. ASME Journal of Heat Transfer.,1999,121(2):314-321
    [62] Mehraian M. A, Poulter R. Hydrodynamics and thermal characteristics of corrugatedchannels: computational approach[J]. Applied Mathematical Modeling,2000,24(5-6):343-364
    [63] Metwally H. M, Manglik R. M. Enhanced heat transfer due to curvature-induced lateralvortices in laminar flows in sinusoidal corrugated-plate channels[J]. International Journalof Heat and Mass Transfer,2004,47(10-11):2283-2292
    [64]田茂诚,周强泰.汽—水换热器内流体诱导振动强化传热试验[J].化工学报,2001,52(3):257-262
    [65]丰镇平.发动机氧涡轮喷嘴叶栅气动特性的试验研究[J].热科学与技术,2002,01:83
    [66] Scott K., Labato J. Mass transport in cross-corrugated membranes and the influence ofTiO2for separation processes[J]. Industrial Engineering Chemical Research,2003,42(22):5697-5701
    [67] Zhang L. Z. Numerical study of periodically fully developed flow and heat transfer incross-corrugated triangular channels in transitional flow regime[J]. Numerical HeatTransfer, Part A: Applications,2006,48(4):387-405.
    [68] Zhang L. Z. Convective mass transport in cross-corrugated membrane exchangers[J].Journal of Membrane Science,2005,260(1-2):75-83
    [69] Zhang L. Z. Turbulent Three-dimensional air flow and heat transfer in a cross-corrugatedtriangular duct[J]. ASME Journal of heat transfer,2005,127(10):1151-1158
    [70]赵伟杰,陈作义,张立志等.交叉三角形波纹板流道的流动与换热特性研究[J].工程热物理学报,2010,31(6):1016-1018
    [71]李惠珍,屈治国,程永攀等.开缝翅片流动和传热性能的实验研究及数值模拟[J].西安交通大学学报,2005,39(3):299-232.
    [72]楼波,梁平,许家济.花瓣管强化电站冷油器传热的试验与分析[J].华北电力技术报,2003,11:26-29
    [73]马良栋,孙德兴,张吉礼.内环肋管道强化换热的场协同分析[J].哈尔滨工业大学学报,2005,37(3):299-303
    [74] Leong K.C.,Jin L.W..An experimental study of heat transfer in oseillating flow througha channel filled with an aluminum foam[J]. International Joumal of Heat andMassTransfer,2005,48(2):243-253
    [75] Guo Z. Y., Li D. Y., Wang B. X. A novel concept for convective heat transferenhancement[J]. International Journal of Heat and Mass Transfer,1998,41:2221-2225
    [76]过增元.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
    [77] Tao W. Q, He Y. L, Qu Z. G.,et al. Application of the field synergy principle indeveloping new type heat transfer enhanced surfaces[J]. Journal Enhanced Heat Transfer,2004,11:433-449.
    [78] Tao W. Q., Guo Z. Y., Wang B. X. Field synergy principle for enhancing convective heattransfer-its extension and numerical verification[J]. International Journal of Heat andMass Transfer,2002,45(18):3849-3856.
    [79] Tao W. Q., He Y. L., Wang Q. W., et al. An unified analysis on enhancing single phaseconvective heat transfer with field synergy principle[J]. International Journal of Heat andMass Transfer,2002,45(24):4871-4879.
    [80] Guo Z. Y., TAO W. Q., Shah R. K. The Field Synergy(Coordination) Principle and itsApplications in Enhancing Single Phase Convective Heat Transfer[J]. InternationalJournal of Heat and Mass Transfer,2005,48(9):1797-1807
    [81] Webb R. L. Principles of Enhanced Heat Transfer[M]. New York: Wiley,1994:78-80
    [82]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122
    [83] Zhao T S, Song Y J. Forced convection in a porous medium heated by permeable wallperpendicular to flow direction: Analyses and measurements[J]. International Journal ofHeat and Mass Transfer,2001,44:1031-1037
    [84] Shen S, Liu W., Tao W. Q., et al. Analysis of field synergy on natural convective heattransfer in porous media[J]. International Communications in Heat and Mass Transfer,2003,30:1081-1090
    [85] Tao W. Q., He Y. L., Qu Z. G., et al. Application of the field synergy principle indeveloping new type heat transfer enhanced surfaces[J]. Journal Enhanced Heat Transfer,2004,11:433-449
    [86]马福才.扁管翅片通道中涡干涉及其对换热性能的影响[J].兰州交通大学学报,2004,23(6):129-133
    [87]陈群,任建勋,过增元.流体流动场协同原理以及其在减阻中的应用.科学通报,2008,53:489-492
    [88]刘伟,刘志春,过增元.对流换热层流流场的物理量协同与传热强化分析[J].科学通报,2009,54(12):1779-1785
    [89] Shen S, Liu W, Tao W Q, et al. Analysis of field synergy on natural convective heattransfer in porous media[J]. International Communications in Heat and Mass Transfer,2003,30:1081—1090
    [90]周俊杰,范承志,叶云岳等.基于斜磁极的盘式永磁电机齿槽转矩削弱方法[J].浙江大学学报(工学版),2010,44(8):1548-1552
    [91]王娴,宋富强,屈治国等.场协同理论在椭圆型流动中的数值验证[J].工程热物理学报,2002,23(01):59-62
    [92]陈颖,邓先和,王杨君.粗糙肋面上湍流热量传递中场协同关系的数值分析[J].化工学报,2003,54(8):1054-1058.
    [93]崔国民,卢洪波,蔡祖恢等.协同下的多股流换热器换热性能研究[J].工程热物理学报,2002,23(3):323-326.
    [94]李惠珍,屈治国,程永攀等.开缝翅片流动和传热性能的实验研究及数值模拟[J].西安交通大学学报,2005,39(3):299-232
    [95]孟继安,陈泽敬,李志信等.交叉缩放椭圆管换热与流阻实验研究及分析[J].工程热物理学报,2004,25(5):813-815
    [96]苏欣,程新广,孟继安.层流场协同方程的验证及其性质[J].工程热物理学报,2005,26(2):289-291
    [97]田文喜,余方伟,秋穗正等.场协同理论在平行通道内的数值验[J].核动力工程,工程热物理学报,2005,26(3):237-241
    [98]李革,张丽.场协同原理在强化换热器传热中的应用与分析[J].制冷与空调(北京),2008,8(1):30-32
    [99]屈治国,何雅铃,陶文铨.平直开缝翘片的三维数值模拟及场协同原理分析[J].工程热物理学报,2003,24(5):825-827.
    [100] Kang H. C., Kim M. H. Effect of Strip Location on the Air Side Pressure and HeatTransfer in Strip Fin and Tube Heat Exchanger[J]. International Journal ofRefrigeration,1999,22(6):303-310.
    [101]冷学礼.振动圆管外强化传热机理及污垢生长特性研究[D].山东大学,2007:16-19
    [102] Hua B., Guo P.S. The study of field synergy theory in transfer processes[C].Proceedings of2001IAMS International Semi nar on Material for Use in LithiumBatteries and Transport Phenomena in Materials Processing, Kasuga, Kyushu Unverisity,2001:107-115
    [103]王发刚,李瑞阳,郁鸿凌等.电场强化乙酸乙酯自然对流和沸腾换热的实验研究[J].化工学报,2003,54(9):1119-1222.
    [104]吴锋,郭方中.磁控电导流体传热的振荡强化[J].武汉化工学院学报,2006,23(4):35-38
    [105]吕树申,杨茉,华贲.磁热场协同作用下的传热传质强化[J].工程热物理,2004,25(3):460-462.
    [106] Guo Z. Y., Tao W. Q., Shah R. K. The field synergy (coordination) principle and itsapplications in enhancing single phase convective heat transfer[J]. International Journalof Heat and Mass Transfer,2005,48(9):1797-1807
    [107] Meng J. A, Liang X. G., Li Z. X. Field synergy optimization and enhanced heat transferby multi-longitudinal vortexes flow in tube[J]. International Journal of Heat and MassTransfer,2005,48(16):3331-3337
    [108] Chen C. K., Yen T. Z., Yang Y. T. Lattice Boltzmann method simulation ofbackward-facing step on convective heat transfer with field synergy principle[J].International Journal of Heat and Mass Transfer,2006,49:1195-1204
    [109]夏翔鸣,赵力伟,徐宏等.基于场协同理论的强化传热综合性能评价因子[J].热能动力工程,2011,26(2):197-139
    [110]刘伟,刘志春,黄素逸.湍流换热的场物理量协同与传热强化分析[J].科学通报2010,55(3):281-288
    [111] Lam C. K, Bremhorst K. A modified form of the k-epsilon model for predicting wallturbulence[J]. ASME Journal of Fluid Engineering,1981,103(9):456-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700