振动强化传热机理分析及新型振动传热元件实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益严重的能源短缺与环境污染,开发新能源、提高能源利用率已成为国际社会有效缓解这一双重压力的重要途径,与之相关的理论与方法必将继续成.为研究的热点。振动强化传热因其良好的效果曾在上世纪五六十年代引起了广泛的关注,但因难以在换热器内实现振动而停止研究。随着流体诱导振动传热元件的提出,实现振动的方法有了变革性的拓展,这一课题也在逐渐兴起。本文从理论分析、数值模拟与实验研究三方面对振动强化传热的机理进行了较为细致的分析,提出了流体诱导振动强化传热元件——新型弹性管束,并对其固有振动特性、传热特性进行了系统研究。
     建立了振动管外流动传热的CFD动网格模型,得到了1/4周期内不同时相位的管外速度矢量图。与无振动工况对比,振动能够增加管壁与近壁区流体的相对速度,能够在平行振动方向上的管壁两侧形成有效地冲刷。得到了有、无振动工况的温度场分布图,对比两者可以发现在相同的传热温差下振动工况的热边界层薄、温度梯度大,说明振动能够有效强化传热。
     提出了有效速度的概念,并采用该参数作为强化传热性能优劣的评价指标。计算了振动圆管近壁区流体在不同时相位、面相位的场协同角余弦值及有效速度值。在每一个确定的时相位下,面相位β=0-360°区间内其协同角余弦值与有效速度值均存在两个变化周期。其中,两峰值分别对应于平行振动方向的管壁左右两侧,两谷值则对应于垂直振动方向的上下两侧。在1/4周期内,随着时相位的升高,其管外平均场协同角余弦值及有效速度值均逐渐增加。
     计算了不同管型在不同振动频率、振幅下的管外平均场协同角余弦值及有效速度值。对于同一管型与振幅,随着频率的升高,其管外平均场协同角余弦值变化较小,但其管外流体的有效速度值呈近似线性增加。在相同振动频率与振幅下,沿椭圆长轴、圆管径向及椭圆短轴方向振动的管外平均场协同角余弦值、有效速度值均为依次增加,证明除频率和振幅等参数外,管型也是影响换热性能的重要因素。在半周期内,时相位为90°时振动管外的有效速度值最大。
     建立了振动管外流场的PIV实验台,对不同管型的振动管外流场进行了可视化实验研究,得到了不同工况下的管外流场速度矢量图,其结果与同参数的数值模拟结果吻合较好。
     建立了单管振动传热实验台,对实验装置与测试系统的可靠性进行了系统分析。得到了不同振幅、频率及振动管型下的表面传热系数,总结了三因素对管外换热性能的影响规律。在相同振动频率与振幅下,沿椭圆长轴、圆管径向及椭圆短轴方向振动的换热性能依次增强,采用三因素三水平正交表对实验数据进行极差及方差分析,结果证明除频率和振幅等参数外,管型也是影响换热性能的重要因素,与数值模拟结果吻合。同时,得到了表面传热系数和振动参数之间的拟合关联式。对实验中出现的共振现象进行了分析讨论,共振能够引起表面传热系数成倍提高,在实验装置可靠性允许的范围内,共振有利于强化传热。
     提出了一种新型的弹性管束,与原管束相比,该管束与立柱相连接的端部所受弯矩小于原管束的1/6,受力特性有了较大的改善;同时单位容积的换热面积约增加24.7%。对新型弹性管束进行模态实验研究,结果表明,新型弹性管束的振型较为复杂,为面内、面外振动相结合的三维振动:与原管束相比,其固有频率相对较低,并且其中间2#、3#两弹性管的振动较其它两根强烈,原因是其有着相对自由的边界条件。对新型弹性管束进行有限元分析,模拟结果与模态实验结果吻合较好,证明本文采用的实验模拟方法具有较高的可靠性。
     建立了新型弹性管束换热器电加热恒热流传热实验台,对实验装置和测试系统进行了可靠性验证。在管外流体诱导振动条件下,弹性管束的管外平均表面传热系数基本为固定管束的3倍以上,强化传热效果显著。
     设计了电机驱动及流体诱导脉动装置,得到了新型弹性管束在不同流体脉动频率下的管外平均表面传热系数,并对各脉动工况下的流动阻力及综合传热性能进行分析,得出低频脉动工况有利于强化传热。得到了不同布置方式下弹性管束的管外平均表面传热系数,通过比较可以发现,大多数工况下,管束换热效果的优劣顺序为:两侧分布-错排>单侧分布-错排>单侧分布-顺排。同时,拟合得到了不同工况下的实验关联式,与实验数据对比最大误差小于5.0%。得到了新型弹性管束的局部表面传热系数,中间两根弹性管的传热系数要明显高于边缘两管,将四根弹性管各位置所测传热系数平均可以得到四管换热性能的强弱次序,即2#>3#>1#>4#。其中,中间两弹性管小自由端的管外表面传热系数要略高于换热元件的其它位置。
     建立了新型弹性管束换热器水-水、汽-水传热实验台,对两种条件下的新型弹性管束进行了传热实验研究,并对弹性管束管内、管外传热系数进行分离。在新型弹性管束管内流体入口安装了脉动装置,得到了水-水换热条件下不同流量、脉动频率的弹性管束管内外表面传热系数、传热系数。实验结果表明,该工况下管内流体脉动对弹性管束的传热特性基本无影响。水-水与汽-水换热条件下,弹性管束的管外表面传热系数与恒热流条件相比有较为明显的提高,其中,汽-水换热条件下提高最大,原因为管内介质能够在很大程度上改变弹性管束的振动特性、从而强化传热。
     建立了流固耦合(FSI)简化模型,计算得出了流向最大形变随流体与结构各参数的变化规律曲线。通过极差分析得出了流体与结构参数对结构流向形变的影响大小,其中管长、流体速度、管厚与流体密度为影响结构形变的主要因素。通过数据拟合得到了最大流向形变与流体、结构参数间的计算关联式,与计算结果的平均误差为8.2%。同时,可以通过合理选择各参数的具体数值来有效控制结构形变的大小,为工程设备的运行设计提供参考依据。
In face of increasingly serious energy shortage and environmental pollution, to develop new energy sources and to improve energy utilization efficiency have been internationally recognized as important approaches to solve the problem. Theories and methods on this topic have been research focus in the field of energy and power engineering. In the 1950s and 1960s much attention was put to vibration enhanced heat transfer, which was suspended by the difficulty in implement of controllable vibration within heat exchangers. However, with the recent emergence of flow-induced vibration heat transfer components, transformative development has appeared for the implementation of vibration, which draws new attention to this topic. This paper conducts detailed research on the mechanism of vibration enhanced heat transfer from the aspects of theorectical analysis, numerical simulation and experimental study. A flow-induced vibration enhanced heat transfer component—a new type of elastic tube bundle is put forward, and systematic study is carried out on its inherent vibration, heat transfer and fluid-structure interaction characteristics.
     In this paper, CFD moving mesh model is established on the characteristics of the flow and heat transfer outside the vibrating tube and velocity vector chart outside the tube at different time phase is obtained during a quarter cycle. Compared with vibration-free conditions, it is found that vibration can enhance the relative velocity of fluid in near-wall region and can form effective erosion on the both sides of the wall in the direction parallel to vibration. By comparing the temperature distribution of vibration and vibration-free condition it is found that, with the same heat transfer temperature difference, the thinner thermal boundary layer and the greater temperature gradient occur under vibration, showing that the vibration can enhance heat transfer.
     The concept of effective velocity is put forward, which is regarded as the evaluation index of heat transfer performance. Then cosine of the field synergy angle and effective velocity at different time phase and surface phase are calculated near the wall of the vibrating tube.The results show that at every certain time-phase in the surface phase intervalβ=0-360°, there exists two variation periods for both cosine of the field synergy angle and the effective velocity, during which two peak values respectively appear at the left and right side of the direction parallel to vibration while two valley values at upside and downside of the direction vertical to vibration. In a quarter period, cosine of the average field synergy angle outside the tube and effective velocity increase with the time-phase goes up.
     Effective velocity and cosine of the average field synergy angle outside the tube under different vibration frequencies and amplitudes are calculated in this paper. For the same tube type under the same amplitude, cosine of average field synergy angle outside the tube varies little with frequency, while the effective velocity of fluid outside the tube varies approximately linearly. Under the same vibration frequency and amplitude, cosine of average field synergy angle and effective velocity both goes up in the order following:elliptic tube vibrating in the long-axis direction, tube vibrating in diameter direction and elliptic tube vibrating in the short-axis direction, showing that the tube type is also an important factor on heat transfer besides frequency and amplitude. In a half period, the effective velocity reaches the maximum when the time phase is 90°.
     PIV test bench is set up for visualization research on flow field outside different types of vibrating tube. Flow field vector charts outside tubes under different conditions are obtained, the results of which are in moderate agreement with that of numerical simulation.
     Single-tube vibration heat transfer experiment bench is set up and reliability analysis is carried out on the instruments and test system. The convective heat transfer coefficient is obtained under different amplitudes, frequencies and the vibration tube type, and the influence rules of the three factors on heat transfer outside the tube are summarized. Under the same vibration frequency and amplitude, the heat transfer performance improves in the order following:elliptic tube vibrating in the long-axis direction, tube vibrating in diameter direction and elliptic tube vibrating in the short-axis direction. Adopting the range method and variance method, it is shown that the tube shape is also an important factor on heat transfer and is consistent with the simulation results. Meanwhile, the fitting formula of vibration parameters for convective heat transfer coefficient is obtained. Analysis is carried out on resonance phenomenon in the experiment, which can increase the convective heat transfer coefficient by times. Within permissible range of experimental instruments credibility, resonance enhances heat transfer.
     A new elastic tube bundle is presented in this paper. Compared with the original one, the load conditon of the new bundle improves moderately. The heat transfer area per unit volume increases by 24.7%. Modal analysis on the new elastic tube bundle shows that its vibration mode is more complex, which is three-dimensional combined with in-plane and lateral vibration. Compared with the original one, the new bundle has lower natural frequency and the vibration of 2# and 3# tube of the new bundle is stronger than the other two tubes, the reason for which is that the intermediate two tubes possess a relatively free boundary condition. Finite element analysis on the new bundle reveals that simulation results are moderately consistent with experiment data, showing that the methods adopted in experiment and simulation have good reliability.
     The constant heat flux electric-heated heat transfer experiment bench for the new elastic-bundle heat exchanger is set up and reliability verification of the instruments and test system is carried out. Under the condition of flow-induced vibration outside the tube, the average convective heat transfer coefficient of the new bundle reaches more than three times as high as that of fixed one, which means remarkable improvement of heat transfer performance.
     Electric motor driven and flow induced pulsation devices are designed, and average convective heat transfer coefficients outside the tube of the new bundle at different frequency are obtained. Analysis on flow resistance and comprehensive heat transfer performance under different pulsation conditions is carried out, the results of which show that low frequency pulsation condition is benificial to heat transfer enhancement. Average convective heat transfer coefficients outside the tube of the elastic tube bundle in different arrangement mode are obtained. By comparing the results it is found that in most conditions, the order of heat transfer performance follows:bilateral-distribution-staggered arrangement>unilateral-distribution-staggered arrangement>unilateral-distribution-in-line arrangement. Meanwhile, fitting formulas for different experiment conditions are obtained, the error of which compared with experiment data is lower than 5%. Local convective heat transfer coefficients are obtained and it is found that those of the two intermediate tubes are apparently higher than those of the other two. The average heat transfer performance order can be briefed as follows:2#>3#>1#>4#. Among which the convective heat transfer coefficient of the small free end of the two intermediate tubes is a bit higher than those of other sections.
     Water-water and steam-water heat transfer experiment benches are set up for the new elastic-bundle heat exchanger and heat transfer experimental study is conducted for the two conditions. The in-tube and external-tube heat transfer coefficients are separated and the experiment results support the reliability of the separation method. The pulsation device is installed at the flow entrance of new elastic tube bundles and the in-tube and external-tube convective heat transfer coefficients under different flow and pulsation frequency are obtained in water-water condition. The results show that pulsation inside the tube has no effect on heat transfer characteristics of the tube bundle. Compared with the constant heat flux condition, the external-tube convective heat transfer coefficient increases significantly under both water-water and steam-water conditions, between which that of steam-water condition is even higher. This shows that the medium in tube exerts important influence on both vibration and heat transfer characteristics.
     Simplified model for fluid-solid interaction (FSI) is set up to obtain the change curve for flow maximum deformation with other parameters of fluid and structure. By range analysis, the influence order of fluid and structure parameters is obtained, among which the tube length, fluid velocity, tube thickness and fluid density are the main factors on structural deformation. The fitting formula for maximum structural deformation with fluid and structure parameters is obtained, the average error of which with calculation results is 8.2%. Meanwhile, proper selection of specific values of the parameters can make an effective control of structural deformation, which provides beneficial reference for the operation and design of engineering equipment.
引文
[1]顾维藻,神家锐,马重芳等.强化传热,北京:科学出版社,1990.
    [2]Bergles A E. Heat Transfer Enhancement-The Encouragement and Accommodation of High
    Heat Fluxes. Journal of Heat Transfer,1995,119:8-19.
    [3]Bergles A E. Application of Heat Transfer Augmentation. Hemisphere Pub. Co.,1981.
    [4]Webb R L, Bergles A E. Heat Transfer Enhancement:Second Generation Technology, Mechanical Engineering,1983,115(6):60-67.
    [5]Bergles A E. Techniques to Augment Heat Transfer, Chap.3 in Handbook of Heat Transfer Applications, New York:McGraw-Hill,1985:3-80.
    [6]Bergles A E. Some Perspectives on Enhanced Heat Transfer Second Generation HeatTransfer Technology, ASME Journal of Heat Transfer,1988,110:1082-1096.
    [7]O'Connor J P, You S M. A painting technique to enhance pool boiling heat transfer in saturated FC-72. Journal of Heat Transfer,1995,117(2):387-393.
    [8]You S M, Rainey K N, Ammerman C N. A New Microporous Surface Coating for Enhancement of Pool and Flow Boiling Heat Transfer. Advances in Heat Transfer,2004,38:73-142.
    [9]Arik M, Bar-Cohen A, You S M. Enhancement of pool boiling critical heat flux in dielectric liquids by microporous coatings. International Journal of Heat and Mass Transfer,2007,50(5-6): 997-1009.
    [10]Ciofalo M. Collins M W. Predictions of heat transfer for turbulent flow in plane and rib-roughened channels using large eddy simulation. Proceedings of the Seventh National Congress on Heat Transfer, bologna, Italy,1989:57-72.
    [11]Turner A B, Hubbe-Walker S E, Bayley F J. Fluid flow and heat transfer over straight and curved rough surfaces. International Journal of Heat and Mass Transfer,2000,43(2):251-262.
    [12]Eckels S J, Doerr T M, Pate M G. Heat transfer and Pressure drop of R-134a and Ester Lubricant mixtures in a smooth and a micro-fin tube:Part1-evaporation. ASHRAE Transactions, 1994,100(2):265-281.
    [13]Eckels S J, Doerr T M, Pate M G. Heat transfer and Pressure drop of R-134a and Ester Lubricant mixtures in a smooth and a micro-fin tube:Part 2-condensation. ASHRAE Transactions, 1994,100(2):283-294.
    [14]Yun R, Kim Y C, Seo K J, Kim H Y. A generalized correlation for evaporation heat transfer of refrigerants in micro-fin tubes. International Journal of Heat and Mass Transfer,2002,45(10): 2003-2010.
    [15]Laohalertdecha S, Wongwises S. Effects of EHD on heat transfer enhancement and pressure drop during two-phase condensation of pure R-134a at high mass flux in a horizontal micro-fin tube. Experimental Thermal and Fluid Science,2006,30(7):675-686.
    [16]Posew K, Laohalertdecha S, Wongwises S. Evaporation heat transfer enhancement of R-134a flowing inside smooth and micro-fin tubes using the electrohydrodynamic technique. Energy Conversion and Management,2009,50(7):1851-1861.
    [17]Fiebig M, Sanchez M A. Enhancement of heat transfer and pressure Loss by winglet vortex generators in a fin-tube element. Compact Heat Exchangers for Power and Process Industries, HTD-v201, ASME, NewYork, NY,1992,7-14.
    [18]Valencia A. Heat transfer enhancement in a channel with a built-in square cylinder. International Communications in Heat and Mass Transfer,1995,22(1):47-58.
    [19]Garcia A, Solano J P, Vicente P G, Viedmam A. Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts. International Journal of Heat and Mass Transfer, 2007,50(15-16):3176-3189.
    [20]Bergles A E, Lee R A, Mikic B B. Heat transfer in rough tubes with tape-generated swirl flow. Journal of Heat Transfer,1969,91:443-450.
    [21]Yilmaz M, Comakli O, Yapici S, Sara O N. Heat transfer and friction characteristics in decaying swirl flow generated by different radial guide vane swirl generators. Energy Conversion and Management,2003,44(2):283-300.
    [22]Eiamsa-ard S, Promvonge P. Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators. Solar Energy,2005,78(4):483-494.
    [23]Garcia A, Vicente P G, Viedma A. Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers. International Journal of Heat and Mass Transfer,2005,48(21-22):4640-4651.
    [24]Eason R M, Bayazitoglu Y, Miade A. Enhancement of heat transfer in square helical ducts. International Journal of Heat and Mass Transfer,1994,37(14):2077-2087.
    [25]Lin C X, Ebadian M A. Developing turbulent convective heat transfer in helical pipes. International Journal of Heat and Mass Transfer,1997,40(16):3861-3873.
    [26]Takahashi M, Momozaki Y. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field. Fusion Engineering and Design,2000,51-52(11):869-877.
    [27]Thomson D L, Bayazitoglu Y, Meade Jr A J. Series solution of low Dean and Germano number flows in helical rectangular ducts. International Journal of Thermal Sciences,2001,40(11): 937-948.
    [28]Kumar V, Saini S, Sharma M, Nigam K D P. Pressure drop and heat transfer study in tube-in-tube helical heat exchanger. Chemical Engineering Science,2006,61(13):4403-4416.
    [29]Fukusako S, Yamada M, Kimoshita K, etal. Boiling heat transfer in liquid-saturated porous bed. Proceedings of the 1991 ASME-JSME Thermal Engineering Joint Conference, JSME, Tokyo, Japan and ASME, New York,1991,2:281-288.
    [30]Miscevic M, Rahli O, Tadrist L, Topin F. Experiments on flows, boiling and heat transfer in porous media:Emphasis on bottom injection. Nuclear Engineering and Design,2006,236(19-21): 2084-2103.
    [31]Cioulachtjian S, Tadrist L, Occelli R, Santini R, Pantaloni J. Experimental analysis of heat transfer with phase change in porous media crossed by a fluid flow. Experimental Thermal and Fluid Science,1992,5(4):533-547.
    [32]McGillis W R, Carey V P. On the role of marangoni effects on the critical heat flux for pool boiling of binary mixtures. Journal of Heat Transfer,1996,118(1):103-109.
    [33]D'Aubeterre A, Silva R D, Aguilera M E. Experimental study on Marangoni effect induced by heat and mass transfer. International Communications in Heat and Mass Transfer,2005,32(5): 677-684.
    [34]Wang J S, Yan J J, Hu S H, Liu J P. Marangoni condensation heat transfer of water-ethanol mixtures on a vertical surface with temperature gradients. International Journal of Heat and Mass Transfer,2009,52(9-10):2324-2334.
    [35]Lee J H, Singh R K. Mathematical models of scraped surface heat exchangers in relation to food sterilization. Chemical Engineering Communications,1990,87:21-52.
    [36]Barbeu F, Gbahoue L, Martemianov S. Energy cascade in a tornado wise flow generated by magnetic stirrer. Energy Conversion and Management,2002,43(3):399-408.
    [37]Metcalfe G, Lester D. Mixing and heat transfer of highly viscous food products with a continuous chaotic duct flow. Journal of Food Engineering,2009,95(1):21-29.
    [38]Soria J, Norton M P. The effect of transverse plate vibration on the mean laminar convective boundary layer heat transfer rate. Experimental Thermal and Fluid Science,1991,4:226-238.
    [39]Hong J S. The study of ultrasonic enhancement in phase-changer process. ASME paper NO.93-HT-2,1993.
    [40]Ohadi M M, Nelson D A, Zia S. Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge. International Journal of Heat and Mass Transfer,1991,34:1175-1187.
    [41]Tangthieng C, Finlayson B A, Maulbetsch J, Cader T. Heat transfer enhancement in ferrofluids subjected to steady magnetic fields. Journal of Magnetism and Magnetic Materials,1999,201(1-3): 252-255.
    [42]Umeda N, Takahashi M. Numerical analysis for heat transfer enhancement of a lithium flow under a transverse magnetic field. Fusion Engineering and Design,2000,51-52(11):899-907.
    [43]Uda N, Yamaoka N, Horiike H, Miyazaki K. Heat transfer enhancement in lithium annular flow under transverse magnetic field. Energy Conversion and Management,2002,43(3):441-447.
    [44]Yang L J, Ren J X, Song Y Z, Min J C, Guo Z Y. Convection heat transfer enhancement of air in a rectangular duct by application of a magnetic quadrupole field. International Journal of Engineering Science,2004,42(5-6):491-507.
    [45]Inagaki T, Komori K. Experimental study of heat transfer enhancement in turbulent natural convection along a vertical flow plate-part 1:the effect of injection or suction. Heat Transfer, Japanese Research,1993,22:387-397.
    [46]Ali M E. On thermal boundary layer on a power-law stretched surface with suction or injection. International Journal of Heat and Fluid Flow,1995,16(4):280-290.
    [47]Al-Sanea S A. Mixed convection heat transfer along a continuously moving heated vertical plate with suction or injection. International Journal of Heat and Mass Transfer,2004,47(6-7): 1445-1465.
    [48]Roy S, Saikrishnan P. Multiple slot suction/injection into an exponentially decreasing free stream flow. International Communications in Heat and Mass Transfer,2008,35(2):163-168.
    [49]Roy S, Saikrishnan P, Ravindran R. Role of non-uniform slot injection (suction) model on the separation of a laminar boundary layer flow. Mathematical and Computer Modeling,2009,50(1-2): 45-52.
    [50]Ma C F, Zhuang Y, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid-I:unconfined circular jets. International Journal of Heat and Mass Transfer,1997,40(6):1481-1490.
    [51]Ma C F, Zhuang Y, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid-Ⅱ:initially laminar confined slot jets. International Journal of Heat and Mass Transfer,1997,40(6):1491-1500.
    [52]Sarghini F, Ruocco G. Enhancement and reversal heat transfer by competing modes in jet impingement. International Journal of Heat and Mass Transfer,2004,47(8-9):1711-1718.
    [53]Katti V, Prabhu S V. Heat transfer enhancement on a flat surface with axisymmetric detached ribs by normal impingement of circular air jet. International Journal of Heat and Fluid Flow,2008, 29(5):1279-1294.
    [54]Zhou J W, Wang Y G, Middelberg G, Herwig H. Unsteady jet impingement:Heat transfer on smooth and non-smooth surfaces. International Communications in Heat and Mass Transfer,2009, 36(2):103-110.
    [55]Gua C, Lee C C. Impingement cooling flow structure and heat transfer along rib-roughened walls. International Journal of Heat and Mass Transfer,1992,35(12):3009-3020.
    [56]Hong M N, Deng X H, Huang K, Li Z W. Compound Heat Transfer Enhancement of a Converging-Diverging Tube with Evenly Spaced Twisted-tapes. Chinese Journal of Chemical Engineering,2007,15(6):814-820.
    [57]Thianpong C, Eiamsa-ard P, Wongcharee K, Eiamsa-ard S. Compound heat transfer enhance-ment of a dimpled tube with a twisted tape swirl generator. International Communications in Heat and Mass Transfer,2009,36(7):698-704.
    [58]Bharadwaj P, Khondge A.D, Date A.W. Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert. International Journal of Heat and Mass Transfer,2009,52(7-8): 1938-1944.
    [59]Chang S W, Lees A W. Endwall heat transfer and pressure drop in scale-roughened pin-fin channels. International Journal of Thermal Sciences,2010,49(4):702-713.
    [60]Lemlich R. Effect of vibration on natural convective heat transfer. Industrial and Engineering Chemistry,1955,47(6):1175-1181.
    [61]Lemlich R, Rao M A. The effect of transverse vibration on free convection from a horizontal cylinder. International Journal of Heat and Mass Transfer,1965,8:27-33.
    [62]Deaver F K, Penney W R, Jefferson T B. Heat transfer from an oscillating horizontalwire to water. Journal of Heat Transfer,1962,84(8):251-256.
    [63]Penney W R, Jefferson T B. Heat transfer from an oscillating horizontal wire to water and Ethylene Glycol. Journal of Heat Transfer,1966,88:359-366.
    [64]Hsieh R, Marsters G F. heat transfer from a vibrating vertical array of horizontal cylinders. Canadian Journal of Chemistry (Engineering),1973,51:302.
    [65]Dawood A S, Manocha B L, Ali S M J. The effect of vertical vibrations on natural convection heat transfer from a horizontal cylinder. International Journal of Heat and Mass Transfer,1981, 24(3):491-496.
    [66]Scanlan J A. Effects of normal surface vibration on laminar forced convective heat transfer. Industrial and Engineering Chemistry,1958,50(10):1565-1568.
    [67]Saxena U C, Laird A D K. Heat transfer from a cylinder oscillating in a cross-flow. Journal of Heat Transfer,1978,100:684-689.
    [68]Leung C T, Ko N W M, Ma K H. Heat transfer from a vibrating cylinder. Journal of Sound and Vibration,1981,75(4):581-582.
    [69]Katinas V I, Markericius A A, Zukauskas. Heat transfer behavior of vibrating tubes operating in cross flow.1. Temperature and velocity fluctuations. Heat Transfer-Soviet Research,1986,18(2): 1-9.
    [70]Katinas V I, Markericius A A, Zukauskas. Heat transfer behavior of vibrating tubes operating in cross flow.2. Local and average heat transfer coefficients. Heat Transfer-Soviet Research,1986, 18(2):10-17.
    [71]Takahashi K, Endoh K. A new correlation method for the effect of vibration on forced-convection heat transfer, Journal of Chemical Engineering of Japan,1990,23(1):45-50.
    [72]Cheng C H, Chen H N, and Aung W. Experimental study of the effect of transverse oscillation on convection heat transfer from a circular cylinder. Journal of Heat Transfer,1997,119:474-482.
    [73]Gau C, Wu J M, Liang C Y. Heat transfer enhancement and vortex flow structure over a heated cylinder oscillating in the crossflow direction. Journal of Heat Transfer,1999,121:789-795.
    [74]Bronfenbrener L, Grinis L, Korin E. Experimental study of heat transfer intensification under vibration condition. Chemical Engineering and Technology, 2001,24(4):367-371.
    [75]Fu W S, Tong B H. Numerical investigation of heat transfer from a heated oscillating cylinder in a cross flow. International Journal of Heat Mass and Transfer,2002,45(11):3033-3043.
    [76]Lee Y H, Kim D H, Chang S H. An experimental investigation on the critical heat flux enhancement by mechanical vibration in vertical round tube. Nuclear Engineering and Design, 2004,229(1):47-58.
    [77]冷学礼,程林,杜文静.流体低速绕流振动圆管的传热特性研究.工程热物理学报,2003,24(2):328-330.
    [78]Klaczak A. Report from experiments on heat transfer by forced vibrations of exchangers. Heat and Mass Transfer,1997,32(6):477-480.
    [79]田茂诚,程林,刘建清,张梦珠.弹性管束型容积式热交换器的研究.热能动力工程,1999,14(5):173-176.
    [80]程林,田茂诚,林颐清,张冠敏.弹性管束汽-水换热器强化传热试验研究,2001,22(2):199-202.
    [81]田茂诚,林颐清,程林,张冠敏,周强泰.汽-水换热器内流体诱导振动强化传热试验.化工学报,2001,52(3):257-261.
    [82]程林,田茂诚,张冠敏,邱燕.流体诱导振动复合强化传热的理论分析.工程热物理学报,2002,23(3):330-332.
    [83]程林,田茂诚,张冠敏,邱燕.流体诱导振动复合强化传热的实验研究.工程热物理学报,2002,23(4):485-487.
    [84]张冠敏,田茂诚,林颐清,程林.弹性管束换热器动态特性分析及仿真系统设计.工程热物理学报,2003,24(1):91-93.
    [85]程林,田茂诚,张冠敏.一种复杂非线性传热元件的传热及污垢特征.工程热物理学报,2004(1):130-132.
    [86]Tian M C, Cheng L, Lin Y Q, Zhang G M. Heat transfer enhancement by crossflow-induced vibration, Heat Transfer-Asian Research,2004,33 (4):211-218.
    [87]Cheng L, Luan T, Du W, Xu M. Heat transfer enhancement by flow-induced vibration in heat exchangers, International Journal of Heat and Mass Transfer,2009,52 (3-4):1053-1057.
    [88]Go J S, Kim S J, Lim G, Yun H, Lee J, Song I, Pak Y E. Heat transfer enhancement using flow-induced vibration of a microfin array. Sensors and Actuators A:Physical,2001,90(3): 232-239.
    [89]Go J S. Design of a microfin array heat sink using flow-induced vibration to enhance the heat transfer in the laminar flow regime. Sensors and Actuators A:Physical,105(2):201-210.
    [90]Go J S. Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling. Sensors and Actuators A:Physical,2005,121(2):549-556.
    [91]Yakut K, Sahin B. Flow-induced vibration analysis of conical rings used for heat transfer enhancement in heat exchangers. Applied Energy,2004,78(3):273-288.
    [92]Yakut K, Sahin B, Canbazoglu S. Performance and flow-induced vibration characteristics for conical-ring turbulators. Applied Energy,2004,79(1):65-76.
    [93]Yakut K, Sahin B. The effects of vortex characteristics on performance of coiled wire turbulators used for heat transfer augmentation. Applied Thermal Engineering,2004,24(16): 2427-2438.
    [94]Promvonge P, Eiamsa-ard S. Heat transfer enhancement in a tube with combined conical-nozzle inserts and swirl generator. Energy Conversion and Management,2006,47(18-19): 2867-2882.
    [95]Promvonge P, Eiamsa-ard S. Heat transfer and turbulent flow friction in a circular tube fitted with conical-nozzle turbulators. International Communications in Heat and Mass Transfer,2007, 34(1):72-82.
    [96]Promvonge P. Heat transfer behaviors in round tube with conical ring inserts. Energy Conversion and Management,2008,49(1):8-15.
    [97]Kim H Y, Kim Y G, Kang B H. Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration. International Journal of Heat and Mass Transfer,2004,47(12-13): 2831-2840.
    [98]Hyun S, Lee D R, Loh B G. Investigation of convective heat transfer augmentation using acoustic streaming generated by ultrasonic vibrations. International Journal of Heat and Mass Transfer,2005,48(3-4):703-718.
    [99]周定伟,刘登瀛,胡学功.声空化场下单相对流传热的实验研究.工程热物理学报,2002,23(1):82-84.
    [100]周定伟,刘登瀛.声空化场强化单相对流传热的实验研究.自然科学进展,2002,12(5): 553-555.
    [101]傅俊萍,李录平,刘泽利,李秋仪.超声波除垢与强化传热实验研究,热能动力工程,2006,21(4):355-357.
    [102]Richardson E G, Tyler E. The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow is established. Proceedings of the physical Society, London,1929, 42:1-15.
    [103]Uchida S. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. ZAMP,1956,7:403-422.
    [104]Siegel R, Perlmutter M. Heat transfer for pulsating laminar duct flow. Journal Heat and Transfer,1962,84(2):111-123.
    [105]Havemann N A, Rao N N. Heat transfer in pulsating flow. Nature,1954,7(4418):41.
    [106]West F B, Taylor A T. The effect of pulsations on heat transfer:turbulent flow of water inside tubes. Chemical Engineering Progress,1952,48(1):39-43.
    [107]Darling G B. Heat transfer to liquids in intermittent flow. Petroleum,1959,5:177-180.
    [108]Lemlich R. Vibration and pulsation boost heat transfer. Chemical Engineering,1961:171-176.
    [109]Baird M H I, Duncan G J, Smith J I, et al. Heat transfer in pulsed turbulent flow. Chemical Engineering Science,1966,21:197-199.
    [110]Mamayev V V, Nosov V S, Syromyatnikov N I. Investigation of heat transfer in pulsed flow of air in pipes. Heat Transfer Soviet Research,1976,8(3):111-115.
    [111]Al-Haddad A, Al-Binally N. Prediction of heat transfer coefficient in pulsating flow. International Journal of Heat Fluid Flow,1989,10(2):131-131.
    [112]Mackley M R, Tweddle G M Wyatt I D. Experimental heat transfer measurements for pulsatile flow in baffled tubes. Chemical Engineering Science,1990,45(5):1237-1242.
    [113]Shuai X. Cheng S, Antonini G. Amelioration du transfert convectif de chaleur par l'doulement pulse dans un fluide visqueux. Canadian Journal of Chemical Engineering,1994,72: 468-475.
    [114]Habib M A, Said SAM, Al-Farayedhi A A, et al. Heat transfer characteristics of pulsated turbulent pipe flow. Heat and Mass Transfer,1999,34(5):413-421.
    [115]Habib M A, Attya A M, Said S A M, et al. Heat transfer characteristics and Nusselt number correlation of turbulent pulsating pipe air flows. Heat and Mass Transfer,2004,40(4):307-318.
    [116]Guo Z X, Sung H J. Analysis of the Nusselt number in pulsating pipe flow. International Journal of Heat and Mass Transfer,1997,40:2486-2489.
    [117]Yu J C, Li Z X, Zhao T S. An analytical study of pulsating laminar heat convection in a circular tube with constant heat flux. International Journal of Heat and Mass Transfer,2004,47: 5297-5301.
    [118]Chattopadhyay H, Durst F, Ray S. Analysis of heat transfer in simultaneously developing pulsating laminar flow in a pipe with constant wall temperature. International Communications in Heat and Mass Transfer,2006,33:475-481.
    [119]Zohir A E, Habib M A, Attya A M. An experimental investigation of heat transfer to Pulsating pipe air flow with different tamplitudes. Heat and Mass Transfer,2006,42:625-635.
    [120]愈接成,李志信.环形内肋片圆管层流脉冲流动强化对流换热数值模拟分析.清华大学学报,2005,45(8):1091-1094.
    [121]杨卫卫,何雅玲,陶文铨,赵春凤.凹槽通道中脉动流动强化传质的数值研究.西安交通大学学报,2004,38(11):1119-1122.
    [122]谢公南,王秋旺,曾敏,罗来勤.渐扩渐缩波纹通道内脉动流的传热强化.高校化学工程学报,2006,20(1):32-35.
    [123]Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhaneement. International Journal of Heat and Mass Transfer,1998,41(2):2221-2225.
    [124]过增元.换热器中的场协同原则及其应用.机械工程学报,2003,39(12):1-9.
    [125]Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. International Journal of Heat and Mass Transfer, 2005,48(9):1797-1807.
    [126]过增元.对流换热的物理机制及其控制:速度场与热流场的协同,科学通报,2000,45(19):2118-2122.
    [127]Tao W Q, He Y L, Wang Q W, Qu Z G, Song F Q. A unified analysis on enhancing single phase convective heat transfer with field synergy principle. International Journal of Heat and Mass Transfer,2002,45 (24):4871-4879.
    [128]Tao W Q, Guo Z Y, Wang B X. Field synergy principle for enhancing convective heat transfer—its extension and numerical verifications. International Journal of Heat and Mass Transfer, 2002,45(18):3849-3856.
    [129]陶文铨,何雅玲.场协同原理在强化换热与脉管制冷机性能改进中的应用(上).西安交通大学学报,2002,36(11):1101-1105.
    [130]何雅玲,陶文铨.场协同原理在强化换热与脉管制冷机性能改进中的应用(下).西安交通大学学报,2002,36(11):1106-1110.
    [131]杨泽亮,宋卓睿,宋耀祖.纵向涡发生器强化换热的场协同分析.华南理工大学学报(自然科学版),2002,30(6):33-35.
    [132]Wu J M, Tao W Q. Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned arrangement with longitudinal vortex generator from the viewpoint of field synergy principle. Applied Thermal Engineering,2007,27(14-15):2609-2617.
    [133]Wu J M, Tao W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A:Verification of field synergy principle. International Journal of Heat and Mass Transfer,2008,51(5-6):1179-1191.
    [134]武俊梅,陶文铨.纵向涡强化通道内换热的数值研究及机理分析.西安交通大学学报,2006,40(9):996-1000.田丽亭,雷勇刚,何雅玲.纵向涡强化换热特性及机理分析.工程热物理学报,2008,29(12):2128-2130.
    [135]田丽亭,雷勇刚,何雅玲.纵向涡强化换热特性及机理分析.工程热物理学报,2008,29(12):2128-2130.
    [136]孟继安,陈泽敬,李志信,过增元.交叉缩放椭圆管换热与流阻实验研究及分析.工程热物理学报,2004,25(5):813-815.
    [137]孟继安,梁新刚,李志信.多纵向涡对管内湍流换热特性影响的数值分析.工程热物理学报,2005,26(3):498-500.
    [138]孟继安,过增元,李志信.应用流场协同理论的多纵向涡强化换热管.动力工程,2005,25(3):404-407.
    [139]孟继安,李志信,过增元.不连续双斜向内肋强化换热管性能.化工学报,2005,56(6):995-998.
    [140]Meng J A, Liang X G, Li Z X. Field synergy optimization and enhanced heat transfer by multi-longitudinal vortexes flow in tube. International Journal of Heat and Mass Transfer,2005, 48(16):3331-3337.
    [141]刘志春,刘伟,杨金国,邓芳芳.CPL蒸发器毛细芯中流动与传热的场协同分析.工程 热物理学报,2006,27(2):295-297.
    [142]黄晓明,刘伟.CPL蒸发器毛细芯非饱和流动与传热的场协同分析.中国空间科学技术,2007,29(4):14-20.
    [143]薄守石,马学虎,陈嘉宾,白涛.场协同原理强化管外降膜吸收传热特性实验研究.大连理工大学学报,2008,48(1):18-21.
    [144]钱吉裕,平丽浩,徐德好.丁胞结构强化换热机理的场协同分析.热科学与技术,2007,6(3):214-218.
    [145]陈颖,邓先和,王杨君.粗糙肋面上湍流热量传递中场协同关系的数值分析.化工学报,2003,54(8):1055-1058.
    [146]陈颖,邓先和,丁小江.缩放管内湍流对流换热(Ⅰ)——场协同控制机理.化工学报,2004,55(11):1759-1763.
    [147]陈颖,邓先和,丁小江.缩放管内湍流对流换热(Ⅱ)——结构优化.化工学报,2003,54(8):1764-1767.
    [148]周水洪,邓先和,何兆红,李志武.旋流片强化传热的数值模拟和场协同分析.化工学报,2007,58(10):2437-2443.
    [149]王杨君,邓先和.内插旋流片的管内流动与换热的数值模拟.化工学报,2007,58(10):2455-2461.
    [150]黄德斌,邓先和,朱冬生,欧阳惕.气流横向冲刷管束换热的场协同数值模拟验证.华南理工大学学报(自然科学版),2005,33(7):32-35.
    [151]黄德斌,邓先和,朱冬生,欧阳惕.气流横向冲刷管束湍流换热的场协同分析.化学工程,2006,34(7):13-16.
    [152]马良栋,孙德兴,张吉礼.内环肋管道强化换热的场协同分析,哈尔滨工业大学学报,2005,37(3):299-302.
    [153]田文喜,余方伟,秋穗正,贾斗南,苏光辉,王桂芳.场协同理论在平行通道内的数值验证.核动力工程,2005,26(3):237-241.
    [154]王娴,宋富强,屈治国,李明秀,王秋旺,陶文栓.场协同理论在椭圆型流动中的数值验证.工程热物理学报,2002,23(1):59-62.
    [155]施明恒,王海.离心力场作用下对流换热场协同理论的实验验证.上海理工大学学报,2003,25(4):346-349.
    [156]Chen Q, Meng J A. Field synergy analysis and optimization of the convective mass transfer in photocatalytic oxidation reactors. International Journal of Heat and Mass Transfer,2008, 51(11-12):2863-2870.
    [157]陈群,任建勋,过增元.流体流动场协同原理及其在减阻中的应用.科学通报,2008,53(4):489-492.
    [158]Chen Q, Ren J X, Guo Z Y. Field synergy analysis and optimization of decontamination ventilation designs. International Journal of Heat and Mass Transfer,2008,51(3-4):873-881.
    [159]Wu L B, Li Z, Song Y Z. Field synergy principle of heat and mass transfer. Chinese Science Bulletin,2009,54(14):2045-2050.
    [160]吉洪湖.离心力场作用下三维流动和传热的场协同理论探讨.工程热物理学报,2003,24(3):459-462.
    [161]何雅玲,雷勇刚,田丽亭,楚攀,刘占斌.高效低阻强化传热技术的三场协同性探讨.工程热物理学报,2009,30(11):1904-1906.
    [162]Liu W, Liu Z C, Guo Z Y. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement. Chinese Science Bulletin,2009,54(12): 1779-1785.
    [163]Liu W, Liu Z C, Ming T Z, Guo Z Y. Physical quantity synergy in laminar flow field and its application in heat transfer enhancement. International Journal of Heat and Mass Transfer,2009, 52(19-20):4669-4672.
    [164]陶文铨.数值传热学.西安:西安交通大学出版社,2001:508-509.
    [165]卢云涛,张怀新,潘徐杰.四种湍流模型计算回转体流噪声的对比研究.水动力学研究与进展,2008,23(3):348-355.
    [166]过增元,黄素逸,等.场协同原理与强化传热新技术.北京:中国电力出版社,2004:2-15.
    [167]冷学礼.振动圆管外强化传热机理及污垢生长特性研究.济南:山东大学,2007:16-19.
    [168]Lee S H, Kim J H, Sung H J. PIV measurements of turbulent boundary layer over a rod-roughened wall. International Journal of Heat and Fluid Flow,2008,29(6):1679-1687.
    [169]Weier T, Cierpka C, Gerbeth G. Coherent structure eduction from PIV data of an electromagnetically forced separated flow. Journal of Fluids and Structures,2008,24(8): 1339-1348.
    [170]李红智,罗毓珊,王海军,陈听宽,熊伟,李晨飞.圆弧型与X型开缝翅片空气侧流动 与传热特性可视化试验.化工学报,2008,59(8):1936-1941.
    [171]李永,吴玉林,袁辉靖,潘海林.三维PIV技术在吸入涡流态测量中的应用.水科学进展,2007,18(3):368-373.
    [172]戴光清,王滨蓉,杨庆.数字PIV技术在圆柱振荡流中的应用.四川大学学报(工程科学版),2001,33(6):1-5.
    [173]Lin J C, Rockwell D. Quantitative interpretation of vortices from a cylinder oscillating in quiescent fluid. Experiments in Fluids,1997,23:99-104.
    [174]Unal M F, Lin J C, Rockwell D. Force prediction by PIV imaging:a momentum-based approach. Journal of Fluids and Structures,1997,11:965-971.
    [175]吴有钏,等.附面层理论.北京:航空出版社,1989:8-15.
    [176]Paidoussis M P. Real-life experiences with flow-induced vibration. Journal of Fluids and Structures,2006,22(6-7):741-755.
    [177]Mohammad N, Van Moorhem W K. An investigation of heat and mass transfer in oscillating flows at high acoustic Reynolds numbers. International Communications in Heat and Mass Transfer, 1996,23(5):613-622.
    [178]Leong K C, Jin L W. An experimental study of heat transfer in oscillating flow through a channel filled with an aluminum foam. International Journal of Heat and Mass Transfer,2005, 48(2):243-253.
    [179]Leong K C, Jin L W. Effect of oscillatory frequency on heat transfer in metal foam heat sinks of various pore densities. International Journal of Heat and Mass transfer,2006,49(3-4):671-681.
    [180]Zheng J, Zeng D L, Wang P, et al. An experimental study of heat transfer enhancement with a pulsating flow. Heat Transfer-Asian Research,2004,33(5):279-286.
    [181]Camci C, Herr F. Forced convection heat transfer enhancement using a self-oscillating impinging planar Jet. Journal of Heat Transfer-Transactions of ASME 2002,124(4):770-782.
    [182]Zhang Y L, Reese J M, Gorman D G. An experimental study of the effects of pulsating and steady internal fluid flow on an elastic tube subjected to external vibration. Journal of Sound and Vibration,2003,266(2):355-367.
    [183]Sailor D J, Rohli D J. Mechanically-driven pulsating flow valve for heat and mass transfer enhancement. U.S.A.:6053203,2000.
    [184]A.A.茹卡乌斯卡斯.换热器内的对流换热.科学出版社,1986:306-338.
    [185]杨世铭,陶文铨.传热学(第三版).高等教育出版社,1998:157-162.
    [186]陈钟颀.传热学专题讲座.高等教育出版社,1989:288-297.
    [187]田茂诚.弹性管束换热器的振动强化传热及动态特性研究.南京:东南大学,1999:62-67.
    [188]Sara S, Tomarov G V, Povarov O A. Experimental investigation into the flow of liquid film under saturated steam condition on a vibrating surface. International Journal of Heat and Mass Transfer,1995,38(4):593-597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700