无盖板太阳墙换热过程的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在太阳能建筑的发展过程中,亟需解决太阳能与建筑一体化的问题。多孔渗透型太阳墙供热系统是解决以上问题的有效途径之一。本论文利用CFD技术,从多孔集热板的局部换热和太阳墙的整体流动两个方面进行数值研究,并对局部的流动换热进行了场协同分析。
     通过多孔集热板进行数值模拟和场协同分析发现:空气流过多孔集热板时不仅存在粘性阻力损失,还存在着惯性损失;在外表面区域内空气的温度场和速度场的协同程度最高,是空气和集热板之间的主要换热区域;渗流速度是影响集热性能的主要因素,孔距和孔径对热性能的影响较小;对于特定的集热板,换热效率只和雷诺数、孔隙率以及集热板的相对厚度有关,并给出了准则关联式;和传统的集热板相比,空气流过多孔渗透型集热板时的场协同性要好。
     本论文还建立了适用于多孔渗透型太阳墙的多孔介质模型,并以太阳墙表面风压的形式引入风速的影响。通过模型的数值计算发现,在太阳墙表面的顶部和底部区域速度小于平均抽吸速度,但对于高度较小的太阳墙,不会发生回流现象;随着抽吸速度的增大,风速的影响越来越小,表面温度和速度分布越均匀;空腔厚度越小,表面的温度和速度分布越不均匀。
In the process of development of solar architecture, the way how to integrate the solar air heating devices into the building is a problem. The porous transpired plate solar wall is an effective way to those problems. By the CFD technology, this paper studied numerically this solar air heating device in two perspectives: the local convection of plate and the flow of the whole solar wall. And make field synergy analysis for local representative area of the porous collector plate.
     Through the numerical simulation and field synergy analysis, we found that not only viscous drag loss, but also the inertia losses existed in the air flow over the plate. Because the fields of temperature and velocity are more synergical in the area of the outer surface of the plate, more energy exchange would take place in here. The transpired velocity is the main factor affecting performance of the collector, and pore pitch and diameter has less effect compared with velocity. For specific collator, the efficiency of heat exchange is only ralated to Reynolds, porosity, and the relative thickness, not influenced by solar radiation and outdoor air temperature. Compared to conventional soalr collector plate, the field synergy of the air flowing over the porous transpired collector plate is better.
     The paper also established a porous media model which is suit for porous transpired solar wall, and introduced effection of wind in the form of wind pressure. Through numerical calculation, we found that the local transpired velocity is less than the average pumping speed in the top and bottom of the surface of the plate, but for the low condition, there is not the flowback phenomenon happens. With the pumping speed increased, the influence of the wind becomes smaller, and the distribution of the surface temperature and transpired velocity are more uniform. But the thinner of the cavity, the surface temperature and transpired velocity are more uneven.
引文
[1]江亿,朱颖心.坚持科学发展,实现中国特色建筑节能[J].节能与绿色建筑,Urban Studies Vol.16,No.8,2009.
    [2]杜祥琬.中国能源的问题和可持续发展战略[J].决策咨询通讯,2007.
    [3]江亿,杨秀.我国建筑能耗状况及建筑节能工作的问题[J].中华建设,2006(2):12~18.
    [4]江亿.我国建筑能耗趋势与节能重点[J].绿色建筑,2006,07.
    [5]王顺庆.我国能源结构的不合理性及对策研究[J].2001
    [6] Young M.K. Stuart H.and Roy M. H.Concentrations and Source of VOCs in Urban Domestic and Public Microenvironments[J].Environment Science & Technology, 2001, 35(6): 997~1004.
    [7]杜文淳,裴清清.太阳墙与太阳能建筑一体化[C].第13届全国暖通空调技术信息网大会文集.
    [8]王崇杰,何文晶,薛一兵.太阳能热利用的实践[J].太阳能,2004,(04) :24~25.
    [9]张璧光,刘志军,谢拥群.太阳能干燥技术[M].北京:化学工业出版社,2006.
    [10]卫欣.一种公共建筑上的太阳能系统[J].太阳能,2007,1.
    [11] Hollick J.C. Solar cogeneration panels [J].Renewable Energy, 1998, 15(1-4). pp:195~200.
    [12]李志信,过增元.对流传热优化的场协同理论[M].北京:科学出版社,2010.
    [13]王崇杰,何文晶.太阳房式学生公寓设计—太阳能在建筑采暖上的利用[J].中外建筑.2004 ,(04):25~26.
    [14]卫欣.一种公共建筑上的太阳能系统[J].太阳能,2007,1.
    [15]张红,张立平,戴剑侠.太阳墙式空气集热器的供暖试验研究[J].煤气与热力.2007,(08):31~32.
    [16]王远峰.太阳墙系统热性能的研究[D].哈尔滨工业大学硕士论文,2009,7.
    [17]张学伟,刘伟,徐冬.太阳能多孔集热墙内传热与流动特性分析[J].建筑节能,2007,(12):54~56.
    [18]张学伟,张卫星,刘伟.太阳墙的冬季集热和夏季隔热性能研究[C].工程热物理学会学术会议论文,2008.
    [19] Hollick J.C.and Peter R.W.United States Patent, No.4, 1990: 934~938.
    [20] Hollands K.G.T.Principles of the transpired-plate air heating collector: the solarwall, Rene-nable Energy Tech nologies in Cold Climates’98 ( Incorporating the 1998 Annual Conference of the Solar Energy Society of Canada, Inc), The Solar Energy Society of Canada Inc, Ottawa, 1998, pp.139~144.
    [21] Dymond and Kutscher.A Computer Design Model for Transpired Solar Collector Systems, Pr-oceedings of the ASME/JSME/JSES Intenational Solar Energy Conference, Amercian Society of Mechanical Engineers, New York, 1995(02): 1165~1174.
    [22] Kutscher C.F. Christensen C.and Barker G . Unglazed transpired solar collectors: an analytic model and test results [J] .Elsevier Science, Vol. 2, Part 1, 1991, pp. 1245~1250.
    [23] Arulanandam S.J.A numerical investigation of unglazed transpired-plate solar collectors under zero-wind conditions[J] .M. A.Sc. Thesis, University of Waterloo, Water-loo, Canada, 1995.
    [24] Arulanandam S.J. Hollands K.G.T.and Brundrett E.A CFD heat transfer analysis of the tra-nspired solar collector under no-wind conditions[J].Solar Energy 67(1–3), 2000: 93~100
    [25] Van Decker G. W .E.Heat-exchange relations for unglazed transpired solar collectors with circular holes on a square or triangular pitch[J].Solar Energy, 2001, 71(1): 33~45.
    [26] Fleck B A.A field study of the wind effects on the performance of an unglazed transpired solar collector[J].Solar Energy,2002,73 (3): 209~216.
    [27] Gunnewiek L. H.Effect of wind on flow distributing in unglazed transpired-plate collectors [J] .Solar Energy, 2002, 72(4): 317~325.
    [28] Keith Gawlik . A numerical and experimental investigation of low-conductivityunglazed, tra-nspired solar air heaters[J].Journal of Solar Energy Engineering, 2005, 127(2): 153~155.
    [29] Kutscher C.F.An Investigation of Heat Transfer for Air Flow through Low Porosity Perfor-ated Plates, University of Colardo, Department of Mechanical Engineering, PH. D[C].Thesis, 1992.
    [30] Fernando M. A. Henriques.The effercts of differential thermal insulation of walls, XXX IAHS, World Congress on Housing, House Construstion-An Interdisciplinary Task[C].September 9~13, 2002, Coimbra, Portugal.
    [31]陶文铨.数值传热学(第2版)[M].西安交通大学出版社,2009:485~488.
    [32] Guo Z Y. Li D Y. Wang B X.A novel concept for convective heat transfer enhancement [J]. Int. J. Heat Mass Transfer, 1998, 41(2): 2 221 ~2 122.
    [33]过增元.对流换热的物理机制及其控制[J].科学通报,2001,45(19);2 118 ~2 122.
    [34]过增元.换热器中的场协同原则及其应用[J].机械工程学报,2003,12(39):651~654.
    [35]过增元,黄素逸等著.《场协同原理与强化传热新技术》[M].中国电力出版社,2006.
    [36] GUO Z.Y. TAO W.Q. and SHAH R K.The field synergy (coordination) principle and its applica-tions in enhancing single- phase convective heat transfer [J]. Int J Heat Mass Transfer, 2005, 48(9): 1797~1807.
    [37]周俊杰,陶文铨,王定标.场协同原理评价指标的定性分析和定量探讨[J].郑州大学学报(工学版),2006,6,2(27):321~327.
    [38]陶文铨,何雅玲.场协同原理在强化换热与脉动制冷机性能改进中的应用(上)[J].西安交通大学学报,2002:36(11): 1101~1105.
    [39]马良栋,孙德兴,张吉礼.内环肋管道强化换热的场协同分析[J].哈尔滨工业大学报,2005.
    [40] W.Q.Tao. Y.L.He and Q.W.Wang.A Unified Analysis on Enhancing Single Phase Convect-ive Heat Transfer with Field Synergy Principle [J] .Int.J.Heat Mass Transfer, 45(2002)4871–4879.
    [41] W.Q.Tao. Z Y Guo and B.X.Wang .Field Synergy Principle for EnhancingConvective He-at Transfer-its Extension and Numerical Verification [J] .Int.J .Heat Mass Transfer, 2002, 45: 3849~3856.
    [42] Liang-Dong Ma, Zeng-Yao Li, Wen-Quan Tao. Experimental verification of the fieldsynergy principle[J].International Communications in Heat and Mass Transfer , 34(2007)269~276.
    [43] Ya-Ling He. Ming Wu. Wen-Quan Tao and Zhong-Qi Chen.Improvement of the Thermal Performance of Pulse Tube Refrigerator by Using a General Principle for Enhancing Energy Tra-nsport and Conversion Processes[J].Applied Thermal Engineering, 2004(24): 79~93.
    [44]孟继安,陈泽敬,李志信,过增元.管内对流换热的场协同分析及换热强化[J].工程热物理学报,2003,24(4):652~654.
    [45]吴宏,宋耀祖,过增元.换热场协同理论的数值模拟[J].清华大学学报(自然科学版),2002,42(4):466~469.
    [46]陈颖,邓先和,王杨君.粗糙肋面上湍流热量传递中场协同关系的数值分析[J].化工学报,2003,54(8): 1055~1058.
    [47] L.H.GUNNEWIEK, E.BRUNDRETT and K.G.T.HOLLANDS . FLOW DISTRIBUTION IN UNGLAZED TRANSPIRED PLATE SOLAR AIR HEATERS OF LARGE AREA[J].Solar Energy, Vol. 58, No. 4-6. pp. 227~237, 1996.
    [48] Butterworth D.A.model for heat transfer during three-dimensional flow in tube bundles[J].Inter-national Heat Transfer Conference, Toronto, 1978.
    [49] Baer M.R, Nunziato J.W.A.Two phase mixture theory for the deflagration to detonation transit-itionn (DDT) in reactive granular materials[J] . Int J Multiphase Flow, 1986, 12: 861~889.
    [50]陈颖,邓先和,王杨君.粗糙肋面上湍流热量传递中场协同关系的数值分析[J].化工学报,2003,54(8):1055~1058.
    [51]王补宣.工程传热传质学[M].北京:科学出版社,1998.
    [52] Pascal J.P. Pascal H.Non-linear effects on some on some unstrady non Darcy flows through porous media[J].Int J Non Linear Mechanics, 1997,32(2): 361~376.
    [53] Nield D.A.Modeling high speed flow of a compressible fluid in a saturatedporous medium[J].Transport in Porous Media, 1994, 14(1): 85~88.
    [54] Somerton C.W . On thermal instability of superpose fluid and porous layer[J].Int J. Transfer, 1989: 357~362.
    [55]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006:32.
    [56] Hensen JLM.On the thermal interaction of building structure and heating and ventilating system[J].PhD thesis, Eindhoven University of Technology, 1991.
    [57] Grosso M . Wind pressure distribution around buildings: a parametrical mode[J].Energy and Buildings, 1992,18: 101~131.
    [58] Tuomaala P.Implementation and evaluation of air flow and heat transfer routines for building simulation tool[J].PhD thesis, Helsinki University of Technology, 2002.
    [59] D. Costola, B.Blocken, J.L.M. Hensen.Overview of pressure coefficient data in building energy simulation and airflow network programs[J].Building and Environment, 2009(4): 2027~2036.
    [60] ASHRAE(1997) Airflow around buildings[C].In 1997 ASHRAE Handbooks of Fundamentals, pp: 1~18, American Society of Heating, Refrigeration and Air-Conditioning Engineers, Atlabta, GA, USA, Chapter 15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700