焚烧炉余热锅炉强化换热数值模拟与结渣分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是能源消耗大国,正处于经济飞速发展时期,能源消耗量逐年增加,城市生活污水和工业废水的产量也急剧地上升。广泛采用焚烧处理的办法是一种经济、有效、环保的措施,然而回收焚烧产物的余热成了工程设计的一大难题。
     本文从某废液焚烧炉余热锅炉的工程实际出发,分析和研究了实际问题的关键所在—强化换热与解决结渣问题。结合所学的理论知识以及相关领域的研究方法和方向进行实际问题的简化,应用fluent软件进行数值模拟,先是将实际的三维问题分成平面的和竖直两个方面来进行数值模拟,再从强化换热的方式和方法上出发,对比了直管和螺旋管的换热和流体动力特性,提出了进行管间距优化的模型。另外,从换热量、压力降方面比较详细地分析了挡板对换热量管换热和阻力特性,由实际的确定速度问题引发了进行综合考虑换热和阻力特性的速度确定方法—综合收益准则,提出可供工程参考的准则速度(极限速度和最优速度),并就此进行了深入的展开讨论。
     最后进行了结渣过程的数值模拟的尝试,通过目前对结渣现象认识的分析,得知只有将冷凝过程模拟的比较完善后,才能进行结渣过程的更真实的模拟。从水蒸气的冷凝过程的模拟入手,进行了无重力作用下窄通道内平行板间凝结换热数值模拟,对比分析了重力、相变对换热的影响。另外从非稳态的模拟给出了冷凝换热的两相流的流型的转变过程,并总结了模拟过程中存在的不足以及今后可发展的方向。对加强真实冷凝过程的认识具有很好的参考价值,为进一步的发展更完善的冷凝换热模型打下基础,也为模拟更复杂的具有物理化学反应的凝渣过程做好了铺垫。
China is a big nation in terms of energy production and consumption. With rapid development of the economic, the total energy consumption has increased speedily year by year, as well as Urban sewage and industrial waste water production has also increased sharply. The incineration widely used is an economical, efficient and environmentally harmonious measure. However, waste heat recovery of the burning product has become a major engineering challenge.
     In this paper, a waste heat boiler of waste incinerator of a real project has been analyzing and studying, the actual crux of the matter is to enhance heat transfer and settle the slagging problems. With the combination of theory and related knowledge in the field of research methods and the direction, the practical problems are simplified to apply fluent software to numerical simulation. The complex problem is divided into two parts to carry out numerical simulation. In order to strengthen heat transfer, heat transfer and dynamic characteristics of the spiral tube and tube are comprised, and an optimization model to adjust the pitch of heat transfer pipe for enhancing heat transfer is set up. In addition, a more detailed analysis in the aspects of heat transferring, pressure drop on the tailgate-for-tube is made. The actual problem that the velocity is selected led to a comprehensive consideration of the characteristics of heat transfer and resistance to determine the velocity—Comprehensive income Criteria is made reference to the guidelines of the velocity, which would be widely referred in an actual projects (the limited velocity and the optimal velocity), which has also been widely discussed in depth.
     Finally, to attempt to numerically simulate deposition process, through the current understanding of the phenomenon of the deposition, what is realized that only that a fairly complete process of condensation was simulated; the simulation of the deposition process could be more realistic. So water vapor condensation between parallel plates in a horizontal miniature channels is tried to conduct by using Volume of Fluid (VOF) method as the start of the simulation of the deposition process. The comparison of condensation with gravity and without gravity has been made to analyze the effects of gravity on film thickness and heat transfer, and heat transfer was compared with no condensation. In addition, non-steady-state simulation of the condensation show out the two-phase flow pattern change with heat transfer, and shortcomings in the simulated process are summed up, as well as the developing direction in the field in future, which have a good reference value on strengthening understanding condensation and lay a foundation in the further development of condensation model. It also do a good job in paving the way for more complex simulation of the condensation slag process with physical and chemical reactions.
引文
[1]刘纪福,白荣春,(日)山本格编著.实用余热回收和利用技术.北京:机械工业出版社,1993.
    [2]北京有色冶金设计研究总院.余热锅炉设计与运行.北京:冶金工业出版社,1982.
    [3]钱家麟主编.管式加热炉.北京:中国石化出版社,2003.
    [4]岑可法,樊建人,池作和,沈珞婵.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算.北京:科学出版社,1995.
    [5]张微.废液焚烧炉燃烧过程及污染物排放模拟:(硕士学位论文).大连理工大学,2007.
    [6]李德付,赵亮,尹洪超.齐鲁石化丙烯睛厂废水焚烧炉余热锅炉改造方案研究.节能,2004.
    [7]李建波,张沛存,赵亮,尹洪超.丙烯睛装置废水焚烧余热锅炉结渣原因与解决措施的研究.节能,2003.
    [8]尹洪超,李德付,赵亮.废液焚烧装置[P].中国专利:CN2802297,2006-08-02.
    [9]尹洪超,李德付,赵亮.废液焚烧余热锅炉[P].中国专利:CN1664445,2005-09-07.
    [10]尹洪超,崔峨,袁一.热能系统分析与综合-热能系统工程学方法[J].节能,1994.01
    [11]陶文铨编著.数值传热学.西安:西安交通大学出版社,2001.
    [12]陶文铨著.计算传热学的近代进展.北京:科学出版社,2000.
    [13]Fluent 6.2,User's Guide,Fluent Inc.,2002.
    [14]Fluent 6.3,User's Guide,Fluent Inc.,2007.
    [15]陆金甫,关治编著.偏微分方程数值解法.清华大学出版社,2004.
    [16]王瑞金,张凯,王刚编著.Fluent技术基础与应用实例.北京:清华大学出版社,2007.
    [17]王福军著.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004.
    [18]韩占忠,王敬,兰小平著.流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [19]林宗虎,汪军,李瑞阳等编著.强化传热技术.北京:化学工业出版社,2007.
    [20]过增元,黄素逸等著.场协同原理与强化传热新技术.北京:中国电力出版社,2004.
    [21]王娴,宋富强,屈治国等.场协同理论椭圆型流动中的数值验证.工程热物理学报,2002,23(1):pp.59-62
    [22]宋富强,屈治国,何雅玲,陶文铨.低速下空气横掠翅片管换热规律的数值研究.西安交通大学学报,2002,36(9):pp.99-902
    [23]屈治国,何雅玲,陶文铨.平直开缝翅片传热特性的三维数值模拟及场协同原理分析.工程热物理学报,2003,24(5):pp.825-827
    [24]马良栋,孙德兴,张吉礼.内环肋管道强化换热的场协同分析.哈尔滨工业大学学报
    [25]申盛,刘伟,陶文铨.多孔介质中自然对流传热的场协同分析.自然科学进展,2003,13(4):pp439-443
    [26]韩光泽,华贲,魏耀东.传质过程强化的新途径-场协同.自然杂志,2002,24(5):pp.273-277
    [27]郭平生,华贲,韦绍波.温度场与电场在奇异热点效应中的应用.华南理工大学学报,2002,30(4):pp.7-10
    [28]郭平生,华贲,韩光泽,魏耀东.液体非平衡相变强化传热的场协同.广西师范大学学报,2002,30(4):pp.7-10
    [29]吴明,何雅玲,陶文铨等.场协同理论在脉管制冷机研究中的应用.工程热物理学报,200223(4):pp.488-490
    [30]He Y L,Wu M,Tao W Q,Chen Z Q.improvements of pulse tube refrigerator revisited:application of field synergy principle,proceedings of the 12th int.conf.heat transfer,2002,pp.512-517
    [31]He Y L,Wu M,Tao W Q,Chen Z Q.improvements of the thermal performance of pulse tube refrigerator by using a general principle for enhancing energy and transport and conversion processes,applied thermal energy,2004,24(1):pp.79-93
    [32]赵小曦,邓先河,陈颖,王杨军.管壳式换热器壳程强化传热研究.现代化工,2001,7:pp.14-17
    [33]Alberto Garcia,Pedro G.Vicente,Antonio Viedma.Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers.
    [34]顾维藻,神家锐,马重芳等.强化传热.北京:科学出版社,1990.8.
    [35]钱颂文,朱冬生等编著.管式换热器强化传热技术.北京:化学工业出版社,2003.
    [36]程林著.换热器内流体诱发振动.北京:科学出版社,1995.8.
    [37]Bergles A E.Heat transfer enhancement the encouragement and accommodation of high heat fluxes,ASME Journal of Heat Transfer.1997,119:8-19.
    [38]崔凯.异形管传热与流动的数值模拟研究[D].天津大学,2005.
    [39]汪健生,刘志毅,张金凤等.斜截椭圆柱式涡流发生器强化传热的大涡模拟.机械工程学报,2007,第43卷,第10期.
    [40]王永庆.纵流壳程换热器不同支承结构壳程特性研究与分析[D].郑州大学,2005.
    [41]刘乾.壳程纵流异径管束换热器强化传热研究[D].郑州大学,2006.
    [42]李燕.低雷诺数下纵流壳程换热器强化传热研究[D].郑州大学,2006.
    [43]苏立建.帘式折流片换热器的研究与开发[D].郑州大学,2005.
    [44]古新.管壳式换热器数值模拟与斜向流换热器研究[D].郑州大学,2006.
    [45]魏晋.纵向涡的发生及强化换热性能的数值研究[D].河北工业大学,2002.
    [46]周国兵.新型涡流发生器强化传热的实验研究[D].河北工业大学,2002.
    [47]梅娜.新型螺旋折流片式换热器强化传热研究[D].东南大学,2005.
    [48]刘天丰.非对称管壳式换热器结构分析及改进中的问题研究[D].浙江大学,2005.
    [49]孙德敏编著.工程最优化方法及应用.合肥:中国科学技术大学出版社,1997.
    [50]唐焕文,秦学志编著.实用最优化方法.大连:大连理工大学出版社,1994.
    [51]汪定伟,王俊伟,王洪峰等编著.智能优化方法.北京:高等教育出版社,2007.
    [52]杨世铭,陶文铨编著.传热学.北京:高等教育出版社,1998.
    [53]John H.Lienhard Ⅳ and John H.Lienhard V.A heat transfer textbook.3rd ed.Cambridge,MA:Phlogiston Press,c2006.
    [54]Adrian Bejan.Convection heat transfer.Hoboken,N.J.:Wiley,c2004.
    [55]朱谷君主编.工程传热传质学.北京,航空工业出版社,1989.
    [56]张鸣远,景思睿,李国君著.高等工程流体力学.西安:西安交通大学出版社,2006.
    [57]林宗虎,王树众,王栋编著.气液两相流和沸腾传热.西安:西安交通大学出版社,2003.
    [58]徐济望主编.沸腾传热和气液两相流.北京:原子能出版社,2001.
    [59]杨本洛著.流体运动经典分析.北京:科学出版社.1996.
    [60]杨本洛著.理论流体力学的逻辑自洽化分析--源于“湍流”的哲学和数学思考.上海:上海交通大学出版社,1998.
    [61]杨本洛著.湍流及理论流体力学的理性重构--宏观力学的哲学和数学反思.上海:上海交通大学出版社,2003.
    [62]马沛生著.化工数据.北京:中国石化出版社,2003.
    [63](美)V.加纳佩西著.应用传热学.北京:机械工业出版社,1987.
    [64]车得福,李会雄.多相流及其应用.西安:西安交通大学出版社,2007.
    [65]W.M.Kays,M.E.Crawford,B.Weigand 著 赵镇南译.对流传热与传质.北京:高等教育出版社,2007.
    [66]M.Gustavsson.Fluid dynamic mechanisms of particle flow causing ductile and brittle erosion.Wear 252(2002) 845-858.
    [67]L.Margolin,J.M.Reisner,P.K.Smolarkiewicz.Application of the volume-of-fluid method to the advection-condensation problem.Monthly Weather Review.125(1997)2265-2273.
    [68]R.Rzehak,A.Leefken,F.Al-Sibai,H.M(u|¨)Uller-Krumbhaar,and U.Renz.Numerical Computation of an Immiscible Two-Phase Flow in Comparison with Experiment.Journal Of Engineering Thermophysics Vol.17 No.1 2008.
    [69]S.P.van der Pijl,A.Segal,C.Vuik and P.Wesseling.A mass-conserving Level-Set method for modelling of multi-phase flows.Int.J.Numer.Meth.Fluids 2005:47:339-361.
    [70]V.V.KUZNETSOV,O.V.VITOVSKY and A.S.SHAMIRZAEV.BOILING HEAT TRANSFER IN MINICHANNELS,Microscale Heat Transfer,255-272.
    [71]Begg,E.,Khrustalev,D.,and Faghri,A.Complete Condensation of Forced Convection Two-Phase Flow in a Miniature Tube.ASME J.Heat Transfer,1999,121,No.4,pp.904-915.
    [72]Barnea,D.,Luninski,Y.,and Taitel,Y.Flow Pattern in Horizontal and Vertical Two Phase Flow in Small Diameter Pipes.Can.J.Chem.Eng.,1983,61,pp.617-620.
    [73]Roger R.Riehl,and Jay M.Ochterbeck.Experimental Investigation Of The Convective Condensation Heat Transfer In Microchannel Flows.Proceedings of the ENCIT 2002,Caxambu-MG,Brazil-Paper CIT02-0495.
    [74]B' eatrice M' ed' eric,Marc Miscevic.Vincent Platel,Pascal Lavieille,Jean-Louis Joly,Experimental study of flow characteristics during condensation in narrow channels:the influence of the diameter channel on structure patterns.Superlattices and Microstructures 35(2004) 573-586.
    [75]Lixin Cheng,Dieter Mewes.Review of two-phase flow and flow boiling of mixtures in small and mini channels.International Journal of Multiphase Flow 32(2006) 183-207.
    [76]J.R.Baird,D.F.Fletcher,B.S.Haynes.Local condensation heat transfer rates in fine passages.International Journal of Heat and Mass Transfer 46(2003) 4453-4466.
    [77]T.S.Zhao,Q.Liao.Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels.International Journal of Heat and Mass Transfer 45(2002) 2829-2842.
    [78]Mohammad Passandideh-Fard,and Ehsan Roohi.Transient simulations of cavitating flows using a modified volume-of-fluid(VOF) technique.International Journal of Computational Fluid Dynamics Vol.22,Nos.1-2,January- February 2008,97-114.
    [79]Vladimir D.Stevanovic,Miroslav Stanojevic,Dejan Radic,Milorad Jovanovic.Three-fluid model predictions of pressure changes in condensing vertical tubes.International Journal of Heat and Mass Transfer(2008).
    [80]Y.Zhang,A.Faghri and M.B.Shafii.Capillary blocking in forced convection condensation in horizontal minature channels.J.Heat Transfer,Trans.ASME 123(2001),pp.501-511.
    [81]H.Louahlia-Gualous,and B.Mecheri.Unsteady steam condensation flow patterns inside a miniature tube.Applied Thermal Engineering Volume 27,Issues 8-9,June 2007,Pages 1225-1235.
    [82]任泽霈,蔡睿贤主编.热工手册.北京:机械工业出版社,2002.
    [83]W.Volz,H.Auracher.Condensation of Water Vapor and Acid Mixtures from Exhaust Gases.2004.11.22.
    [84]吕宏俊.流化床焚烧处理高浓度有机废液的结焦结渣特性研究(学位论文).浙江大学,2005.
    [85]刘凤鸣.锅炉低温受热面腐蚀、积灰与防治探析.石油化工设备技术,1997,18(5)27.
    [86]耿向东.丙烯腈装置焚烧炉余热回收系统积灰分析.石油化工设备技术,2006,27(3)12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700