用户名: 密码: 验证码:
亚低温诱导MKP-1保护TNF-α引起的内皮细胞屏障功能紊乱和凋亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     临床研究表明亚低温疗法(32-34℃)在中风、脑损伤、心脏骤停等多种疾病中具有显著的保护作用。而血管内皮与许多病理过程的发生发展关系密切。然而,迄今为止,亚低温在各种原因引起的内皮细胞损伤中能否起到保护作用以及其中的作用机制尚不明确。因此,本研究拟探讨亚低温在肿瘤坏死因子-α(tumor necrosis factor-alpha, TNF-α)引起的内皮细胞屏障功能紊乱和凋亡中的作用及其中的分子机理。
     实验方法:
     用TNF-α处理人脐静脉内皮细胞(human umbilical vein endothelial cells, HUVECs),再分别放置于正常温度(37℃)和亚低温(33℃)培养箱中培养2-6小时。用异硫氰酸荧光素标记的牛血清白蛋白(FITC-BSA)体外通透性实验检测单层内皮细胞的通透性、用罗丹明标记的鬼笔环肽染色法检测细胞内纤维状的肌动蛋白(F-肌动蛋白)骨架、用原位末端标记(terminal dUTP nick-end labeling, TUNEL)染色法检测细胞的凋亡。用免疫印记(western blot)法检测半胱氨酸蛋白水解酶-3片段(Cleaved caspaspe-3, Asp175)、丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK) p38、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)、热休克蛋白27 (heat shock protein 27, HSP27)、c-Jun、MAPK激酶3/6 (MAPK kinase3/6, MKK3/6)、MAPK激酶7 (MAPK kinase7, MKK7)和MAPK磷酸酶-1(MAPK phosphatase-1, MKP-1)的蛋白表达;另外,用p38 MAPK特异性抑制剂SB203580或者JNK特异性抑制剂SP600125预处理HUVECs,再进行TNF-α处理,并对上述各项指标进行检测;同时,将HUVECs不加任何刺激剂放置于亚低温培养箱中培养,再检测MKP-1的蛋白水平和mRNA水平以及p38 MAPK和JNK的蛋白表达;最后用MKP-1的siRNA转染HUVECs,再进行TNF-α处理,同时检测各项指标。
     实验结果:
     (1)TNF-α处理引起单层HUVECs通透性显著增强、细胞肌动蛋白骨架重排、和凋亡发生,而亚低温能显著抑制TNF-α引起的这些内皮损伤效应。
     (2)亚低温抑制TNF-α活化的p38 MAPK和JNK信号通路。
     (3)亚低温通过抑制p38 MAPK/HSP27信号通路减弱TNF-α引起的内皮细胞肌动蛋白骨架的重排和压力纤维的形成。
     (4)亚低温对内皮细胞凋亡的保护作用是通过抑制p38 MAPK和JNK信号通路而实现的。
     (5)亚低温对p38 MAPK和JNK的上游激酶MKK3/6和MKK7无明显影响,但可显著上调p38 MAPK和JNK的上游磷酸酶MKP-1。
     (6) siRNA实验表明,亚低温通过诱导MKP-1的表达抑制TNF-a引起的p38MAPK和JNK信号通路的激活以及内皮细胞屏障功能紊乱和凋亡
     结论:
     亚低温通过诱导MKP-1的表达,抑制TNF-a引起的p38 MAPK和JNK信号通路的激活,从而保护TNF-a引起的内皮细胞屏障功能紊乱和凋亡。
Aims:Hypothermia therapy has been shown to confer robust protection against numerous diseases inclusing stroke, brain injury, and cardiac arrest, and vascular endothelial cells are involved in stress-induced pathogenesis under insult conditions. However, the mechanisms underlying protective effect of mild hypothermia on endothelial cells have not yet been completely elucidated. Here, we investigated molecular effects of mild hypothermia on tumor necrosis factor-alpha (TNF-α)-induced endothelial barrier dysfunction and apoptosis.
     Methods:Human umbilical vein endothelial cells (HUVECs) treated with TNF-a were incubated under normothermia (37℃) or mild hypothermia (33℃). Endothelial permeability was detemined by fluorescein-isothiocyanate-labeled bovine serum albumin (FITC-BSA); actin cytoskeleton alterations was stained and tested with rhodamine-phalloidin; apoptosis was examined by terminal dUTP nick-end labeling (TUNEL) assay; the protein levels were determined by immunoblot. Then, the cells were transfected with MKP-1 siRNA, and were treated with TNF-α. The former detections were also performed.
     Results:
     (1) Treatment of HUVECs with TNF-αresulted in a significant increase of nomo-endothelial permeability, actin reorganization and apoptosis. Mild hypothermia markedly attenuated TNF-α-induced these effects.
     (2) Mild hypothermia inhibits TNF-α-induced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) pathways.
     (3) The inhibitory action of mild hypothermia on stress fiber formation was mediated via inactivation of p38 MAPK/heat shock protein 27 (HSP27).
     (4) The decrease in TNF-α-induced apoptosis by mild hypothermia was associated with inhibition of p38 MAPK and JNK activity.
     (5) Mild hypothermia had no action on p38 MAPK and JNK upstream kinases MAPK kinase 3/6 (MKK3/6) and MAPK kinase 7 (MKK7), but markedly induced the expression of MAPK phosphatase-1 (MKP-1).
     (6) siRNA experiments showed that MKP-1 was an important mediator of mild hypothermia in attenuatting TNF-α-induced activation of p38 MAPK and JNK, endothelial barrier dysfunction, and apoptosis in HUVECs.
     Conclusion:These results for the first time demonstrate that mild hypothermia protects against TNF-α-induced endothelial barrier dysfunction and apoptosis through MKP-1-dependent mechanism.
引文
1. Baines CP, Molkentin JD. STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 2005;38:47-62.
    2. Raines EW, Ross R. Biology of atherosclerotic plaque formation:possible role of growth factors in lesion development and the potential impact of soy. J Nutr 1995;125:624S-630S.
    3. Brett J, Gerlach H, Nawroth P, Steinberg S, Godman G, Stern D. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. JExp Med 1989;169:1977-1991.
    4. Lum H, Malik AB. Mechanisms of increased endothelial permeability. Can J Physiol Pharmacol 1996;74:787-800.
    5. Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ. Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 1998;176:150-165.
    6. Heller RA, Kronke M. Tumor necrosis factor receptor-mediated signaling pathways. J Bio Chem 1994;126:5-9.
    7. Wang Q, Doerschuk CM. The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon intracellular adhesion molecule-1 ligation. J Immunol 2001;166:6877-6884.
    8. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997;110 (Pt 3):357-368.
    9. Huot J, Houle F, Marceau F, Landry J. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 1997;80:383-392.
    10. Kiemer AK, Weber NC, Furst R, Bildner N, Kulhanek-Heinze S, Vollmar AM. Inhibition of p38 MAPK activation via induction of MKP-1:atrial natriuretic peptide reduces TNF-alpha-induced actin polymerization and endothelial permeability. Circ Res 2002;90:874-881.
    11. Gerthoffer WT, Gunst SJ. Invited review:focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J
    Appl Physiol 2001,91:963-972.
    12. Grethe S, Ares MP, Andersson T, Porn-Ares MI. p38 MAPK mediates TNF-induced apoptosis in endothelial cells via phosphorylation and downregulation of Bcl-x(L). Exp Cell Res 2004;298:632-642.
    13. Varfolomeev EE, Ashkenazi A. Tumor necrosis factor:an apoptosis JuNKie? Cell 2004;116:491-497.
    14. Krens SF, Spaink HP, Snaar-Jagalska BE. Functions of the MAPK family in vertebrate-development. FEBS lett 2006;580:4984-4990.
    15. Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, Manson ME et al. MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 2006;203:131-140.
    16. Chu Y, Solski PA, Khosravi-Far R, Der CJ, Kelly K. The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J Bio Chem 1996;271:6497-6501.
    17. Nichols A, Camps M, Gillieron C, Chabert C, Brunet A, Wilsbacher J et al. Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3. J Bio Chem 2000;275:24613-24621.
    18. Salojin K, Oravecz T. Regulation of innate immunity by MAPK dual-specificity phosphatases:knockout models reveal new tricks of old genes. J leukoc Bio 2007;81:860-869.
    19. Furst R, Schroeder T, Eilken HM, Bubik MF, Kiemer AK, Zahler S et al. MAPK phosphatase-1 represents a novel anti-inflammatory target of glucocorticoids in the human endothelium. FASEB J 2007;21:74-80.
    20. Weber NC, Blumenthal SB, Hartung T, Vollmar AM, Kiemer AK. ANP inhibits TNF-alpha-induced endothelial MCP-1 expression--involvement of p38 MAPK and MKP-1. J leukoc Bio 2003;74:932-941.
    21. Wang X, Nelin LD, Kuhlman JR, Meng X, Welty SE, Liu Y. The role of MAP kinase phosphatase-1 in the protective mechanism of dexamethasone against endotoxemia. Life Sci 2008;83:671-680.
    22. Dae MW, Gao DW, Sessler DI, Chair K, Stillson CA. Effect of endovascular cooling on myocardial temperature, infarct size, and cardiac output in human-sized pigs. Am J Physiol Heart Circ Physiol 2002;282:H1584-1591.
    23. Hale SL, Kloner RA. Ischemic preconditioning and myocardial hypothermia in
    rabbits with prolonged coronary artery occlusion. Am J Physiol 1999;276:H2029-2034.
    24. Ning XH, Chi EY, Buroker NE, Chen SH, Xu CS, Tien YT et al. Moderate hypothermia (30 degrees C) maintains myocardial integrity and modifies response of cell survival proteins after reperfusion. Am J Physiol Heart Circ Physiol 2007;293:H2119-2128.
    25. Stefanutti G, Pierro A, Parkinson EJ, Smith VV, Eaton S. Moderate hypothermia as a rescue therapy against intestinal ischemia and reperfusion injury in the rat. Crit Care Med 2008;36:1564-1572.
    26. Stefanutti G, Pierro A, Vinardi S, Spitz L, Eaton S. Moderate hypothermia protects against systemic oxidative stress in a rat model of intestinal ischemia and reperfusion injury. Shock 2005;24:159-164.
    27. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002;346:557-563.
    28. Nagel S, Papadakis M, Hoyte L, Buchan AM. Therapeutic hypothermia in experimental models of focal and global cerebral ischemia and intracerebral hemorrhage. Expert rev of neurother 2008;8:1255-1268.
    29. Vouret-Craviari V, Boquet P, Pouyssegur J, Van Obberghen-Schilling E. Regulation of the actin cytoskeleton by thrombin in human endothelial cells:role of Rho proteins in endothelial barrier function. Mol Biol Cell 1998;9:2639-2653.
    30. Yang D, Guo S, Zhang T, Li H. Hypothermia attenuates ischemia/reperfusion-induced endothelial cell apoptosis via alterations in apoptotic pathways and JNK signaling. FEBS Lett 2009.
    31. Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ et al. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 2004;114:1058-1071.
    32. Fan Y, Xie P, Zhang T, Zhang H, Gu D, She M et al. Regulation of the stability and transcriptional activity of NFATc4 by ubiquitination. FEBS lett 2008;582:4008-4014.
    33. Armstrong SC. Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res 2004;61:427-436.
    34. Wu JJ, Bennett AM. Essential role for mitogen-activated protein (MAP) kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling. J Biol Chem 2005;280:16461-16466.
    35. Laptook AR, Corbett RJ, Sterett R, Garcia D, Tollefsbol G. Quantitative relationship between brain temperature and energy utilization rate measured in vivo using 31P and 1H magnetic resonance spectroscopy. Pediatr Res 1995;38:919-925.
    36. Ning XH, Chen SH, Xu CS, Hyyti OM, Qian K, Krueger JJ et al. Hypothermia preserves myocardial function and mitochondrial protein gene expression during hypoxia. Am J Physiol Heart Circ Physiol 2003;285:H212-219.
    37. Scumpia PO, Sarcia PJ, Kelly KM, DeMarco VG, Skimming JW. Hypothermia induces anti-inflammatory cytokines and inhibits nitric oxide and myeloperoxidase-mediated damage in the hearts of endotoxemic rats. Chest 2004;125:1483-1491.
    38. Sarcia PJ, Scumpia PO, Moldawer LL, DeMarco VG, Skimming JW. Hypothermia induces interleukin-10 and attenuates injury in the lungs of endotoxemic rats. Shock 2003;20:41-45.
    39. Ning XH, Chen SH, Xu CS, Li L, Yao LY, Qian K et al. Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis. JAppl Physiol 2002;92:2200-2207.
    40. Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J. Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur JBiochem 1995;227:416-427.
    41. Liu J, Lin A. Role of JNK activation in apoptosis:a double-edged sword. Cell Res 2005;15:36-42.
    42. Wang X, Liu Y. Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal 2007;19:1372-1382.
    43. Kuwano Y, Kim HH, Abdelmohsen K, Pullmann R, Jr., Martindale JL, Yang X et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 2008;28:4562-4575.
    44. Obata, T, G.E. Brown, and M.B. Yaffe, MAP kinase pathways activated by stress:the p38 MAPK pathway. Crit Care Med 2000;28(4 Suppl):N67-N77.
    45. Borbiev, T., et al., p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol 2004;287:L911-L918.
    46. Garcia, J.G., et al., Critical involvement of p38 MAP kinase in pertussis toxin-induced cytoskeletal reorganization and lung permeability. FASEB J 2002;16:1064-1076.
    47. Goldberg, P.L., et al., p38 MAPK activation by TGF-betal increases MLC phosphorylation and endothelial monolayer permeability. Am J Physiol Lung Cell Mol Physiol 2002;282:L146-L154.
    48. Armstrong, S.C., Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res 2004.61(3):p.427-36.
    49. Huot, J., et al., Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 1997;80:383-392.
    50. Guay, J., et al., Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997;110:357-368.
    51. Petrache, I., et al., The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol 2003;28:574-581.
    52. Cook SJ, Beltman J, Cadwallader KA et al. Regulation of mitogen-activated protein kinase phosphatase 1 expression by extracellular signal-related kinase-dependent and Ca2+-dependent signal pathways in Rat-1 cells. J Biol Chem 1997;272:13309-13319.
    53. Kusari AB, Byon J, Bandyopadhyay D et al. Insulin-induced mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) attenuates insulin-stimulated MAP kinase activity:a mechanism for the feedback inhibition of insulin signaling. Mol Endocrinol 1997;11:1532-1543.
    1. Niwa,-M; Hara,-A; Iwai,-T; Nakashima,-M; Yano,-H; Yoshimi,-N; Mori,-H; Uematsu,-T.Relationship between magnitude of hypothermia during ischemia and preventive effect against post-ischemic DNA fragmentation in the gerbil hippocampus. Brain-Res.1998 Jun 1; 794(2):338-42.
    2. Ding,-D; Moskowitz,-S-I; Li,-R; Lee,-S-B; Esteban,-M; Tomaselli,-K; Chan,-J; Bergold,-P-J Acidosis induces necrosis and apoptosis of cultured hippocampal neurons. Exp-Neurol.2000 Mar; 162(1):1-12
    3. Johnston,-M-V; Trescher,-W-H; Ishida,-A; Nakajima,-W Novel treatments after experimental brain injury. Semin-Neonatol.2000 Feb; 5(1):75-86
    4. Berger,-R; Garnier,-Y. Perinatal brain injury. J-Perinat-Med.2000; 28(4):261-85
    5. Nakamura,-T; Miyamoto,-O; Yamagami,-S; Toyoshima,-T; Negi,-T; Itano,-T; Nagao,-S.The chronic cell death with DNA fragmentation after post-ischaemic hypothermia in the gerbil hippocampus. Acta-Neurochir-(Wien).1999; 141(4): 407-12; discussion 412-3
    6. Ferrand-Drake,-M; Wieloch,-T.The time-course of DNA fragmentation in the choroid plexus and the CA1 region following transient global ischemia in the rat brain. The effect of intra-ischemic hypothermia. Neuroscience.1999; 93(2): 537-49
    7. Van-Hemelrijck,-A; Vermijlen,-D; Hachimi-Idrissi,-S; Sarre,-S; Ebinger,-G; Michotte,-Y. Effect of resuscitative mild hypothermia on glutamate and dopamine release, apoptosis and ischaemic brain damage in the endothelin-1 rat model for focal cerebral ischaemia. J-Neurochem.2003 Oct; 87(1):66-75
    8. Lin X et al.Inhibiting effect of moderate hypothermia on cell apoptosis after diffuse brain injury in rats.Chinese Journal of Traumatology.2001.4(1):14-9
    9. Carolina M et al. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia:effects on neurologic outcome, infarct size, apoptosis, and inflammation.Stroke.1998 Oct.29(10):2171-80
    10. Ruxiang X et al. Specific inhibition of apoptosis after cold-induced brain injury by moderate postinjury hypothermia.Neurosurgery.1998 Jul.43(1):107-14; discussion 114-5
    11. Edwards AD. Yue X. Squier MV. Thoresen M. Cady EB. Penrice J. Cooper CE. Wyatt JS. Reynolds EO. Mehmet H. Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia.Biochemical & Biophysical Research Communications.1995 Dec 26. 217(3):1193-9
    12. Bossenmeyer-Pourie C. Koziel V. Daval JL. Effects of hypothermia on hypoxia-induced apoptosis in cultured neurons from developing rat forebrain: comparison with preconditioning.Pediatric Research.2000.47(3):385-91
    13. Bo W et al. Pulmonary artery perfusion with hypothermic solution inhibits the apoptosis of lung parenchymal cells during cardiopulmonary bypass. Chung-Hua Wai Ko Tsa Chih.2004 Feb 22.42(4):227-9
    14. Shibano T et al. Effects of mild and moderate hypothermia on apoptosis in neuronal PC12 cells.British Journal of Anaesthesia.2002 Aug.89(2):301-5
    15. Amon,-M; Menger,-M-D; Vollmar,-B. Heme oxygenase and nitric oxide synthase mediate cooling-associated protection against TNF-alpha-induced microcirculatory dysfunction and apoptotic cell death. FASEB-J.2003 Feb; 17(2):175-85
    16. Slikker,-W 3rd; Desai,-V-G; Duhart,-H; Feuers,-R; Imam,-S-Z. Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in Chinese hamster ovary cells. Free-Radic-Biol-Med.2001 Aug 1; 31(3):405-11
    17. Babu,-P-P; Suzuki,-G; Ono,-Y; Yoshida,-Y. Attenuation of ischemia and/or reperfusion injury during myocardial infarction using mild hypothermia in rats:an immunohistochemical study of Bcl-2, Bax, Bak and TUNEL. Pathol-Int.2004 Dec; 54(12):896-903
    18. Mi,-L; Gong,-W; Nelson,-P; Martin,-L; Sawyer,-T-W. Hypothermia reduces sulphur mustard toxicity. Toxicol-Appl-Pharmacol.2003 Nov 15; 193(1):73-83
    19. Shao,-Z-H; Chang,-W-T; Chan,-K-C; Wojcik,-K-R; Hsu,-C-W; Li,-C-Q; Li,-J; Anderson,-T; Qin,-Y; Becker,-L-B; Hamann,-K-J; Vanden-Hoek,-T-L. Hypothermia-induced cardioprotection using extended ischemia and early reperfusion cooling. Am-J-Physiol-Heart-Circ-Physiol.2007 Apr; 292(4): H1995-2003
    20. Ning,-X-H; Chen,-S-H. Mild hypothermic cross adaptation resists hypoxic injury in hearts:a brief review. Chin-J-Physiol.2006 Oct 31; 49(5):213-22
    21. Vaquero,-J; Belanger,-M; James,-L; Herrero,-R; Desjardins,-P; Cote,-J; Blei,-A-T; Butterworth,-R-F. Mild hypothermia attenuates liver injury and improves survival in mice with acetaminophen toxicity. Gastroenterology.2007 Jan; 132(1):372-83
    22. Low temperature protects mammalian cells from apoptosis initiated by various stimuli in vitro.Experimental Cell Research.2005 Oct 1.309(2):264-72
    23. Xuehan N et al. Hypothermic protection of the ischemic heart via alterations in
    apoptotic pathways as assessed by gene array analysis.Journal of Applied Physiology.2002 May.92(5):2200-7
    24. Uemura,-K; Hoshino,-S; Uchida,-K; Tsuruta,-R; Maekawa,-T; Yoshida,-K. Hypothermia attenuates delayed cortical cell death and ROS generation following CO inhalation. Toxicol-Lett.2003 Nov 30; 145(2):101-6
    25. Van Hemelrijck A. Hachimi-Idrissi S. Sarre S. Ebinger G. Michotte Y. Post-ischaemic mild hypothermia inhibits apoptosis in the penumbral region by reducing neuronal nitric oxide synthase activity and thereby preventing endothelin-1-induced hydroxyl radical formation. European Journal of Neuroscience. 2005 Sep.22(6):1327-37
    26. George L et al.Therapeutic hypothermia modulates TNFR1 signaling in the traumatized brain via early transient activation of the JNK pathway and suppression of XIAP cleavage. European Journal of Neuroscience.2006 Oct.24(8):2283-90
    27. Lei M et al.Moderate hypothermia prevents neural cell apoptosis following spinal cord ischemia in rabbits. Cell Research.2005 May.15(5):387-93
    28. Kelly,-S; Cheng,-D; Steinberg,-G-K; Yenari,-M-A. Mild hypothermia decreases GSK3beta expression following global cerebral ischemia. Neurocrit-Care.2005; 2(2):212-7
    29. Xu L. Yenari MA. Steinberg GK. Giffard RG. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. Journal of Cerebral Blood Flow & Metabolism.2002 Jan.22(1):21-8
    30. Mild hypothermia mitigates post-ischemic neuronal death following focal cerebral ischemia in rat brain:immunohistochemical study of Fas, caspase-3 and TUNEL. Neuropathology.2000 Dec.20(4):273-82
    31. Takuji Tomimutsu et al. Effects of hypothermia on neonatal hypoxic-ischemic brain injury in the rat:phosphorylation of Akt, activation of caspase-3-like protease. Neuroscience Letters.2001 Oct 12.312(1):21-4
    32. Bian J et al. Decompressive craniectomy and mild hypothermia reduces infarction size and counterregulates Bax and Bcl-2 expression after permanent focal ischemia in rats. Neurosurgical Review.2006 Apr.29(2):168-72
    33. EBERSPACHER E et al. Long-term effects of hypothermia on neuronal cell death and the concentration of apoptotic proteins after incomplete cerebral ischemia and reperfusion in rats.Acta Anaesthesiologica Scandinavica.2005.49(4):477-87
    34. Prakasa P et al. Immunohistochemical expression of Bcl-2, Bax and cytochrome c following focal cerebral ischemia and effect of hypothermia in rat.Neuroscience Letters.2000 Sep 22.291(3):196-200
    35. Yenari MA. Iwayama S. Cheng D. Sun GH. Fujimura M. Morita-Fujimura Y. Chan PH. Steinberg GK. Mild hypothermia attenuates cytochrome c release but does not alter Bcl-2 expression or caspase activation after experimental stroke. Journal of Cerebral Blood Flow & Metabolism.2002 Jan.22(1):29-38
    36. Eva Eberspacher et al. The effect of hypothermia on the expression of the apoptosis-regulating protein Bax after incomplete cerebral ischemia and reperfusion in rats.Journal of Neurosurgical Anesthesiology.2003.15(3):200-8
    37. Inamasu J et al. Postischemic hypothermia attenuates apoptotic cell death in transient focal ischemia in rats. Acta Neurochirurgica-Supplement.2000.76:525-7
    38. Yenari,-M-A; Zhao,-H; Giffard,-R-G; Sobel,-R-A; Sapolsky,-R-M; Steinberg,-G-K. Gene therapy and hypothermia for stroke treatment. Ann-N-Y-Acad-Sci.2003 May; 993:54-68; discussion 79-81
    39. Zhao,-H; Yenari,-M-A; Cheng,-D; Sapolsky,-R-M; Steinberg,-G-K. Biphasic cytochrome c release after transient global ischemia and its inhibition by hypothermia. J-Cereb-Blood-Flow-Metab.2005 Sep; 25(9):1119-29
    40. Lai-Shuang W et al.Mild hypothermia attenuates neuronal apoptosis after cerebral hypoxia-ischemia in neonatal rats. Zhongguo Dangdai Erke Zazhi.2007 Feb 9(1):37-41
    41. Changlian Z et al. Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemia.Brain Research. 2004 Jan 16.996(1):67-75
    42. Ohmura A. Nakajima W. Ishida A. Yasuoka N. Kawamura M. Miura S. Takada G. Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis. Brain & Development. 2005 Oct.27(7):517-26
    43. Hirotsugu Fukuda et al. Post-ischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia-ischemia.Brain Research.2001 Aug 10. 910(1-2):187-91
    44. Adachi M. Sohma O. Tsuneishi S. Takada S. Nakamura H. Combination effect of systemic hypothermia and caspase inhibitor administration against hypoxic-ischemic brain damage in neonatal rats. Pediatric Research.2001 Nov.50(5):590-5
    45. Motoyoshi,-N; Sakurai,-M; Hayashi,-T; Aoki,-M; Abe,-K; Itoyama,-Y; Tabayashi,-K. Establishment of a local cooling model against spinal cord ischemia representing prolonged induction of heat shock protein. J-Thorac-Cardiovasc-Surg.2001 Aug; 122(2):351-7
    46. Fukuda,-A; Fukuda,-H; Jonsson,-M; Swanpalmer,-J; Hertzman,-S; Lannering,-B; Bjork-Eriksson,-T; Marky,-I; Blomgren,-K. Progenitor cell injury after irradiation to the developing brain can be modulated by mild hypothermia or hyperthermia. J-Neurochem.2005 Sep; 94(6):1604-19
    1 MEHTA, D.& A.B. MALIK.2006. Signaling mechanisms regulating endothelial permeability. Physiol. Rev.86:279-367.
    2 LIBBY, P., M. AIKAWA & M.K. JAIN.2006. Vascular endothelium and atherosclerosis. Handb. Exp. Pharmacol.176:285-306.
    3 KIM, J.A. et al.2006. Reciprocal relationships between insulin resistance and endothelial dysfunction:molecular and pathophysiological mechanisms. Circulation 113:1888-1904.
    4 MINSHALL, R.D. et al.2003. Caveolin regulation of endothelial function. Am. J. Physiol. Lung Cell Mol. Physiol.285:L1179-L1183.
    5 SIMIONESCU, N.,M. SIMONIONESCU&G.E. PALADE.1978. Open junctions in the endothelium of the postcapillary venules of the diaphragm. J. Cell Biol.79: 27-44.142 Annals of the New York Academy of Sciences
    6 WYMAN, T.H. et al.2002. A two-insult in vitro model of PMN-mediated pulmonary endothelial damage:requirements for adherence and chemokine release. Am. J. Physiol. Cell Physiol.283:C1592-C1603.
    7 ORRINGTON-MYERS, J. et al.2006. Regulation of lung neutrophil recruitment by VE-cadherin. Am. J. Physiol. Lung Cell Mol. Physiol.291:L764-L771.
    8 MINSHALL, R.D.& S.M. VOGEL.2005. Lung edema and microvascular permeability. In Microvascular Research:Biology and Pathology. D. Shepro, Ed.: 491-495. Elsevier Science. Burlington, MA.
    9 MINSHALL, R.D.,& A.B. MALIK.2006. Transport across the endothelium: regulation of endothelial permeability. Handb. Exp. Pharmacol.107-144.
    10 FRASER, P.A., A.D. DALLAS & S. DAVIES.1990. Measurement of filtration coefficient in single cerebral microvessels of the frog. J. Physiol.423:343-361.
    11 VOGEL, S.M. et al.2000. Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiol. Genomics 4: 137-145.
    12 BALKOVETZ, D.F.2006. Claudins at the gate:determinants of renal epithelial tight junction paracellular permeability. Am. J. Physiol. Renal Physiol.290:F572-F579.
    13 LAMPUGNANI, M.G. et al.1995. The molecular organization of endothelial cell to cell junctions:differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J. Cell Biol.129: 203-217.
    14 XIA, X., D.J. MARINER & A.B. REYNOLDS.2003. Adhesion-associated and PKC-modulated changes in serine/threonine phosphorylation of p120-catenin. Biochemistry 42:9195-9204.
    15 YANAGISAWA, M. et al.2004. A novel interaction between kinesin and p120 modulates p120 localization and function. J. Biol. Chem.279:9512-9521.
    16 KONDAPALLI, J., A.S. FLOZAK & M.L.C. ALBUQUERQUE.2004. Laminar shear stress differentially modulates gene expression of p120 catenin, kaiso transcription factor, and vascular endothelial cadherin in human coronary artery endothelial cells. J. Biol. Chem.279:11417-11424.
    17 DAVIS, M.A., R.C. IRETON & A.B. REYNOLDS.2003. A core function for p120-catenin in cadherin turnover. J. Cell Biol.163:525-534.
    18 XIAO,K. et al.2003. Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J. Cell Biol.163: 535-545.
    19 DUDEK, S.M.& J.G.N.GARCIA.2001. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol.91:1487-1500.
    20 TIRUPPATHI, C. et al.2002. Role of Ca2+signaling in the regulation of endothelial permeability. Vascul. Pharmacol.39:173-185.
    21 SANDOVAL, R. et al.2001. Ca2+signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. J. Physiol. 533:433-445.
    22 GOECKELER, Z.M.& R.B. WYSOLMERSKI.1995. Myosin light chain kinase-regulated endothelial cell contraction:the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J. Cell Biol.130: 613-627.
    23 GARCIA, J.,H.DAVIS&C. PATTERSON.1995. Regulation of endothelial cell gap formation and barrier dysfunction:role ofmyosin light chain phosphorylation. J.Cell Physiol.163:510-522.
    24 NOD A, M. et al.1995. Involvement of rho in GTP [gamma] S-induced enhancement of phosphorylation of 20 kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity. FEBS Letters 367:246-250.
    25 YOSHIOKA, K. et al 2007. Essential role for class Ⅱ phosphoinositide 3-kinase {alpha}-isoform in Ca2+induced, Rho-and Rho kinase-dependent regulation of myosin phosphatase and contraction in isolated vascular smooth muscle cells. Mol. Pharmacol.71:912-920.
    26 MOY, A.B. et al.1996. Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces. J. Clin. Invest.97:1020-1027.
    27 PETRACHE, I. et al.2003. The role of the microtubules in tumor necrosis factor-{alpha}-induced endothelial cell permeability. Am. J. Respir. Cell Mol. Biol. 28:574-581.
    28 VERIN, A.D. et al.2001. Microtubule disassembly increases endothelial cell barrier dysfunction:role of MLC phosphorylation. Am. J. Physiol. Lung Cell Mol. Physiol. 281:L565-L574.
    29 GOROVOY, M. et al.2005. LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cell. J. Biol. Chem.280:26533-26542.
    30 KONSTANTOULAKI, M., P. KOUKLIS & A.B. MALIK.2003. Protein kinase C modifications of VE-cadherin, p120, and {beta}-catenin contribute to endothelial barrier dysregulation induced by thrombin. Am. J. Physiol. Lung Cell Mol. Physiol. 285:L434-L442.
    31 GAVARD, J.& J.S. GUTKIND.2006. VEGF controls endothelial-cell permeability by promoting the [beta]-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell Biol.8:1223-1234.
    32 MARINER, D.J. et al.2001. Identification of Src phosphorylation sites in the catenin p120ctn. J. Biol. Chem.276:28006-28013.
    33 NOREN, N.K. et al.2000.p120 Catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol.150:567-580.
    34 LAMPUGNANI, M.G. et al.1997. Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J. Cell Sci. 110:2065-2077.
    35 BAZZONI, G.2006. Endothelial tight junctions:permeable barriers of the vessel wall. J. Cell Physiol.209:122-130.
    36 BAZZONI, G.& E. DEJANA.2004. Endothelial cell-to-cell junctions:molecular organization and role in vascular homeostasis. Physiol. Rev.84:869-901.
    37 VAN ITALLIE, C.M.& J.M. ANDERSON.1997. Occludin confers adhesivenesswhen expressed in fibroblasts. J. Cell Sci.110:1113-1121.
    38 MORITA, K. et al.1999. Endothelial claudin:claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol.147:185-194.Vandenbroucke et al.: Endothelial Junctional Permeability 143
    39 CORDENONSI, M. et al.1999. Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J. Cell Biol.147:1569-1582.
    40 BALD A, M.S. et al.1993. Assembly of the tight junction:the role of diacylglycerol. J. Cell Biol.123:293-302.
    41 OJAKIAN, G.K.1981. Tumor promoter-induced changes in the permeability of epithelial cell tight junctions. Cell 23:95-103.
    42 WEBER, C., L. FRAEMOHS & E. DEJANA.2007. The role of junctional adhesion molecules in vascular inflammation.Nat. Rev. Immunol.7:467-477.
    43 BAZZONI, G.& E. DEJANA.2001. Pores in the sieve and channels in the wall: control of paracellular permeability by junctional proteins in endothelial cells. Microcirculation 8:143-152.
    44 BRUEWER, M. et al.2003. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J. Immunol.171:6164-6172.
    45 MARTINEZ-ESTRADA, O.M. et al.2005. Opposite effects of tumor necrosis factor and soluble fibronectin on junctional adhesion molecule-A in endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol.288:L1081-L1088.
    46 ORLOVA, V.V. et al.2006. Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts. J. Exp. Med.203:2703-2714.
    47 AURRAND-LIONS, M. et al.2001. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J. Biol. Chem.276: 2733-2741.
    48 KEIPER, T. et al.2005. The role of junctional adhesion molecule-C (JAM-C) in oxidized LDL-mediated leukocyte recruitment. FASEB J.19:2078-2080.
    49 OSTERMANN, G. et al.2005. Involvement of JAM-A in mononuclear cell recruitment on inflamed or atherosclerotic endothelium:inhibition by soluble JAM-A. Arterioscler. Thromb. Vasc. Biol.25:729-735.
    50 WOJCIAK-STOTHARD, B.& A.J. RIDLEY.2002. Rho GTPases and the regulation of endothelial permeability.Vasc. Pharmacol.39:187-199.
    51 SINGH, I. et al.2007. G{alpha}q-TRPC6-mediated Ca2+entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J. Biol. Chem.282:7833-7843.
    52 CARBAJAL, J.M.& R.C. SCHAEFFER.1999. RhoA inactivation enhances endothelial barrier function. Am. J. Physiol.277:C955-C964.
    53 HIRASE, T. et al.2001. Regulation of tight junction permeability and occludin phosphorylation by RhoAp160ROCK-dependent and-independent mechanisms. J. Biol. Chem.276:10423-10431.
    54 MATSUI, T. et al.1998. Rho-kinase phosphorylatesCOOHterminal threonines of ezrin/radixin/moesin (ERM)proteins and regulates their head-to-tail association. J. Cell Biol.140:647-657.
    55 TSUKITA, S.& S. YONEMURA.1999. Cortical actin organization:lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem.274:34507-34510.
    56 KOSS, M. et al.2006. Ezrin/radixin/moesin proteins are phosphorylated by TNF-{alpha}and modulate permeability increases in human pulmonary microvascular endothelial cells. J. Immunol.176:1218-1227.
    57 WILDENBERG, G.A. et al.2006. p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell 127:1027-1039.
    58 KAIBUCHI, K. et al.1999. Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr. Opin. Cell Biol.11:591-596.
    59 KURODA, S. et al.1996. Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J. Biol. Chem.271:23363-23367.
    60 RIDLEY, A.1999. Rho family proteins and regulation of the actin cytoskeleton. Prog. Mol. Subcell Biol.22:1-22.
    61 KOUKLIS,S P. et al.2004. Cdc42 regulates the restoration of endothelial barrier function. Circ. Res.94:159-166.
    62 BROMAN, M.T. et al.2006. Cdc42 regulates adherens junction stability and endothelial permeability by inducing alpha-catenin interaction with the vascular endothelial cadherin complex. Circ. Res.98:73-80.
    63 GOROVOY, M. et al.2007. RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs.Circ.Res. 101:50-58.
    64 HOLINSTAT, M. et al.2006. Suppression of RhoA activity by focal adhesion kinase-induced activation of p190RhoGAP:role in regulation of endothelial permeability. J. Biol. Chem.281:2296-2305.
    65 SCHILLING, W., O. CABELLO & L. RYAN.1992. Depletion of the inositol 1,4,5-triphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway. Biochem. J.284:521-530.
    66 MEHTA, D. et al.2003. RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry:role in signaling increased endothelial permeability. J. Biol. Chem.278:33492-33500.
    67 YAO, X.& C.J. GARLAND.2005. Recent developments in vascular endothelial cell transient receptor potential channels. Circ. Res.97:853-863.
    68 NILIUS, B.&G.DROOGMANS.2001. Ion channels and their functional role in vascular endothelium. Physiol.Rev.81:1415-1459.
    69 PARIA, B.C. et al.2004. Tumor necrosis factor-alphainduced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am. J. Physiol. Lung Cell Mol. Physiol.287:L1303-L1313.
    70 TIRUPPATHI, C. et al.2006. Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13:693-708.
    71 MOORE, T.M. et al.1998. Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trpl. Am. J. Physiol. Lung Cell Mol. Physiol.275:L574-L582.
    72 MEHTA, D. et al.2004. Integrated control of lung fluid balance. Am. J. Physiol. Lung Cell Mol. Physiol.287:L1081-L1090.
    73 AHMMED, G.U. et al.2004. Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store-operated 144 Annals of the New York Academy of Sciences Ca2+ entry in endothelial cells. J. Biol. Chem.279:20941-20949.
    74 BIRNBAUMER, L.2002. TRPC4 knockout mice:the coming of age of TRP channels as gates of calcium entry responsible for cellular responses. Circ. Res.91: 1-3.
    75 TIRUPPATHI, C. et al.2002. Impairment of store-operated Ca2+ entry in TRPC4-/-mice interferes with increase in lung microvascular permeability. Circ. Res.91: 70-76.
    76 LYNCH, J.J. et al.1990. Increased endothelial albumin permeabilitymediated by protein kinaseCactivation. J. Clin. Invest.85:1991-1998.
    77 HOLINSTAT, M. et al.2003. Protein kinase C{alpha}-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J. Biol. Chem. 278:28793-28798.
    78 HARRINGTON, E.O. et al.2003. Role of protein kinase C isoforms in rat epididymal microvascular endothelial barrier function. Am. J. Respir. CellMol. Biol. 28:626-636.
    79 RATCLIFFE, M.J., L.L. RUBIN & J.M. STADDON.1997. Dephosphorylation of the cadherin-associated p100/p120 proteins in response to activation of protein kinase C in epithelial cells. J. Biol. Chem.272:31894-31901.
    80 RATCLIFFE, M.J., C. SMALES & J.M. STADDON.1999. Dephosphorylation of the catenins p120 and p100 in endothelial cells in response to inflammatory stimuli. Biochem. J.338:471-478.
    81 OHKUBO, T.& M. OZAWA.1999. p120ctn binds to the membrane-proximal region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion activity. J. Biol. Chem.274:21409-21415.
    82 AONO, S. et al.1999. p120ctn acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J.Cell Biol.145:551-562.
    83 MEHTA, D., A. RAHMAN & A.B. MALIK.2001. Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J. Biol. Chem.276:22614-22620.
    84 NAGPALA, P.G., et al.1996. Protein kinase C beta 1 overexpression augments phorbol ester-induced increase in endothelial permeability. J. Cell Physiol.166: 249-255.
    85 VUONG, P.T. et al.1998. Protein kinase C beta modulates thrombin-induced Ca2+ signaling and endothelial permeability increase. J. Cell Physiol.175:379-387.
    86 DAS EVCIMEN, N.& G.L.KLING.2007. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol. Res.55:498-510.
    87 YUAN, S.Y.2002. Protein kinase signaling in themodulation of microvascular permeability. Vascul. Pharmacol.39:213-223.
    88 TINSLEY, J.H., N.R. TEASDALE&S.Y. YUAN.2004. Involvement of PKC{delta} and PKD in pulmonary microvascular endothelial cell hyperpermeability. Am. J. Physiol. Cell Physiol.286:C105-C111.
    89 COOPER, J.T. et al.1996. A20 blocks endothelial cell activation through a NF-kappa B-dependent mechanism. J. Biol. Chem.271:18068-18073.
    90 KISSELEVA, T. et al.2006. NF-{Kappa}B regulation of endothelial cell function during LPS-induced toxemia and cancer. J. Clin. Invest.116:2955-2963.
    91 ABRAHAM, E.2003. Nuclear factor-kappaB and its role in sepsis-associated organ failure. J. Infect. Dis.187(Suppl2):S364-S369.
    92 OPAL, S.M.2007. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int. J. Med. Microbiol.297:365-377.
    93 LEE, H.-S. et al.2004. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc. Res.68: 231-238.
    94 MARTIN, T.A. et al.2006. Synergistic regulation of endothelial tight junctions by antioxidant (Se) and polyunsaturated lipid (GLA) via Claudin-5 modulation. J. Cell Biochem.98:1308-1319.
    95 MCLAUGHLIN, J.N. et al.2005. Thrombin modulates the expression of a set of genes including thrombospondin-lin human micro vascular endothelial cells. J. Biol. Chem.280:22172-22180.
    96 MCLAUGHLIN, J.N. et al.2005. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J. Biol. Chem. 280:25048-25059.
    97 LUM, H.& A.B.MALIK.1994. Regulation of vascular endothelial barrier function. Am. J. Physiol.267:L223-L241.
    98 WU, S.Q.&W.C.AIRD.2005. Thrombin, TNF-alpha, and LPS exert overlapping but nonidentical effects on gene expression in endothelial cells and vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol.289:H873-H885.
    99 ZHOU, X. et al.2005. LPS activation of Toll-like receptor 4 signals CD11b/CD 18 expression in neutrophils. Am. J. Physiol. Lung Cell Mol. Physiol.288:L655-L662.
    100PERO, R.S. et al.2007. Galphai2-mediated signaling events in the endothelium are involved in controlling leukocyte extravasation. Proc. Natl. Acad. Sci. USA 104: 4371-4376.
    101 THOMPSON, P.W., A.M. RANDI & A.J. RIDLEY.2002. Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells. J. Immunol.169:1007-1013.
    102PREDESCU, D. et al.2005. Constitutive eNOS-derived nitric oxide is a determinant of endothelial junctional integrity. Am. J. Physiol. LungCellMol. Physiol.289: L371-L381.
    103KAMINSKI, A. et al.2007. Endothelial nitric oxide synthase mediates protective effects of hypoxic preconditioning in lungs. Respiratory Physiol. Neurobiol.155: 280-285.
    104 YOU, D. et al.2006. Increase in vascular permeability and vasodilation are critical for proangiogenic effects of stem cell therapy. Circulation 114:328-338.
    105BUCCI, M. et al.2005. Endothelial nitric oxide synthase activation is critical for vascular leakage during acute inflammation in vivo. PNAS 102:904-908.
    106HATAKEYAMA, T. et al.2006. Endothelial nitric oxide synthase regulates microvascular hyperpermeability in vivo. J. Physiol.574:275-281.
    107MIN, J.-K. et al.2007. Receptor activator of nuclear factor (NF)-{kappa}B ligand (RANKL) increases vascular permeability:impaired permeability and angiogenesis in eNOS-deficient mice. Blood 109:1495-1502. Vandenbroucke et al.:Endothelial Junctional Permeability 145
    108SPEYER, C.L. et al.2003. Regulatory effects of iNOS on acute lung inflammatory
    responses inmice. Am. J. Pathol.163:2319-2328.
    109 WORRALL, N. et al.1997. TNFalpha causes reversible in vivo systematic vascular barrier dysfunction via NOdependent and-independent mechanisms. Am. J. Physiol. 273:H2565-H2574.
    110 RICCIARDOLO, F.L.M., F.P.NIJKAMP&G. FOLKERTS.2006. Nitric oxide synthase (NOS) as therapeutic target for asthma and chronic obstructive pulmonary disease. Current Drug Targets 7:721-735.
    111 DAVIDSON, S.M.&M.R.DUCHEN.2007. Endothelialmitochondria:Contributing to vascular function and disease. Circ. Res.100:1128-1141.
    112 DULL, R.O., I. MECHAM & S. MCJAMES.2007. Heparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species. Am. J. Physiol. Lung Cell Mol. Physiol.292: L1452-L1458.
    113 CONNOLLY, D. et al.1989. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. Clin. Invest.84:1470-1478.
    114CARMELIET, P.& D. COLLEN.2000. Molecular basis of angiogenesis:Role of VEGFand VE-cadherin. Ann.N.Y. Acad. Sci.902:249-264.
    115 CROSS, M.J. et al.2003. VEGF-receptor signal transduction. Trends in Biochem. Sci.28:488-494.
    116TAKAHASHI, H.& M. SHIBUYA.2005. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci.109:227-241.
    117TAKAHASHI, T.,H.UENO&M. SHIBUYA.1999. VEGF activates protein kinase C-dependent, but ras-independent raf-MEK-MAP kinase pathway forDNA synthesis in primary endothelial cells. Oncogene 18:2221-2230.
    118BERGERS, G.& L. BENJAMIN.2003. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3:401-410.
    119LAMALICE, L. et al.2004. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of cdc42 upstream of SAPK2/p38. Oncogene 23:434-445.
    120MAKINEN, T. et al.2001. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20:4762-4773.
    121USHIO-FUKAI,M.2007. VEGF signaling throughNADPH oxidase-derived ROS. Antioxid. Redox Signal.9:731-739.
    122 FISCHER, S. et al.2007. Extracellular RNA mediates endothelial cell permeability via vascular endothelial growth factor. Blood 110:2457-2465.
    123 SCHMIDT, M. et al.2001. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat. Cell Biol.3:1020-1024.
    124 QIAO, J., F. HUANG & H. LUM.2003. PKA inhibits RhoA activation:a protection mechanism against endothelial barrier dysfunction. Am. J. Physiol. Lung CellMol. Physiol.284:L972-L980.
    125 LIU, F. et al.2001. Role of cAMP-dependent protein kinase A activity in endothelial cell cytoskeleton rearrangement. Am. J. Physiol. Lung Cell Mol. Physiol.280: L1309-L1317.
    126ROOIJ, J.D. et al.1998. Epac is a Rap1 guanine-nucleotideexchange factor directly activated by cyclic AMP. Nature 396:474-477.
    127KOOISTRA et al.2005. Epacl regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Letters 579:4966-4972.
    128CULLERE, X. et al.2005. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 105:1950-1955.
    129HLA, T.2003. Signaling and biological actions of sphingosine 1-phosphate. Pharmacol. Res.47:401-407.
    130MCVERRY, B.J.& J.G. GARCIA.2004. Endothelial cell barrier regulation by sphingosine 1-phosphate. J. Cell. Biochem.92:1075-1085.
    131MEHTA, D. et al.2005. Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+mediates Rac activation and adherens junction assembly in endothelial cells. J. Biol. Chem.280:17320-17328.
    132BIRUKOVA, A.A. et al.2007. Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA-and Epac1/Rap1-dependent Rac activation. Exp. Cell Res.313:2504-2520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700