用于电子冷却的平板热管均热器及其传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来电子技术迅速发展,电子元器件的高频、高速以及集成电路的密集和小型化,使得单位容积电子元器件的发热量越来越大,对散热提出了更高的要求。而平板热管因其较高的导热率、良好的均温、结构紧凑等优点,被认为是解决电子散热问题的的先进技术之一,具有广阔的应用前景。因此,对平板热管均热器及其传热特性进行开发和研究,探究相变换热机理,不仅具有重要的实际意义,也同时具有重大的理论与学术价值。本文对平板热管均热器进行了较为系统深入的理论与实验研究,研发了高性能平板热管均热器,主要工作包括:
     改进了热管均热器的结构,设计加工了具有深微槽道结构的平板热管,实验测试了其在不同充液率、热流密度以及倾斜角度下的工作性能,建立了平板热管微槽道内蒸汽及液相流动与传热数学模型。所设计加工的平板热管的主要结构特征使槽道肋顶部与冷凝面直接接触,从而使得从蒸发面到冷凝面的轴向导热不仅仅通过相变换热,还通过了微型肋柱的导热,增强了平板热管的轴向导热能力,使得热管在低热流条件下也能正常工作。实验结果显示深微槽道热管的工作性能良好,具有优良的轴向导热和均热性能,在各种倾斜条件包括垂直和反重力条件下正常工作。重力对热管内部工质循环的影响很小。建立了深微槽道式平板热管微槽道内流动和传热的数学模型,并对其进行求解,给出了不同宽度和长度截面处的温度场分布,并得到了蒸汽和液体的体积分数及混合物密度,并与实验结果进行了对比。
     对平板热管结构进行进一步改进,设计并加工了交错孔道式平板热管,并对其工作性能进行了实验研究和分析。它与深微槽道式热管有相同外部尺寸和材质,是在实心铜板内加工了纵横交错的孔道形成,不仅能使蒸发面与冷凝面直接连为一体,与深微槽道热管相比消除了蒸发面与冷凝面的接触热阻,既能保证蒸汽沿通道运动将热量分散到整个冷凝面,又能使的蒸发面和冷凝面之间有具有一定的连接面积,从而强化了蒸发面和冷凝面之间的导热作用。实验结果证明交错孔道还能增强热管的毛细力作用,从而强化了相变换热,因此不仅具有优良的均热性能,还能减小蒸发面和冷凝面之间的温差,有效地降低模拟芯片热源的温度。
     提出并加工了一种具有双微槽道吸液芯的平板热管,并对其在不同充液率和热流密度下传热性能进行了系统的实验研究。由于相变热阻是平板热管轴向的主要热阻,因此强化热管内部的沸腾-凝结相变换热可以减小热管的热阻,改善热管的工作性能。实验结果表明,热管在保持良好的径向均热能力的前提下还具有良好的轴向导热能力,其在最佳充液率下的热阻小于上述的两种热管。证明热管蒸发面和冷凝面上的微槽道结构有效强化了工质的相变换热,大幅度降低了相变热阻,使得双微槽道热管同时具有优良的均热性能和导热性能。
     对上述三种具有同样外形尺寸和不同毛细结构的热管以及纯铜板的传热性能进行对比研究,分别研究了它们的轴向导热和径向均热性能。结果证明纯铜板的热阻最大,然后依次为深微槽道热管、交错孔道式热管和双微槽道热管。在轴向导热能力方面,双微槽道热管的轴向导热能力最优,然后依次为交错孔道式热管和纯铜板,深微槽道式热管的轴向导热能力最差。在径向均热能力方面,双微槽道热管的均热能力最优,交错孔道式热管和深微槽道式热管的均热能力相近且次之,纯铜板的均热性能最差。与纯铜板均热器相比,三种热管的均热性能均优于纯铜板,而交错孔道式热管和双微槽道热管在轴向导热能力上也优于纯铜板,这正符合我们设计使用热管的初衷,即在保持热管良好的径向均热性能的前提下,尽量强化轴向传热,减小轴向导热热阻。
     实验研究了纳米流体对热管性能的影响,将碳纳米管悬浮液(CNT)应用于双微槽道式热管,实验研究了碳纳米管悬浮液对于其性能的影响,并与工质为水时的实验结果进行了比较,发现CNT悬浮液的确对双微槽道热管性能有强化作用,但强化效果并不明显。
Electronic technology is developing rapidly in recent years, higher frequency,speed and denseness has become the developmental direction of electroniccomponents, which puts forward a higher requirements on electronic cooling. Becauseof the miniature flat heat pipe has high thermal conductivity and perfect uniformity oftemperature distribution, it is considered to be one of promising potential technologiesto solve the cooling problem. In this study, experimental tests, theorectical analysisand numerical simulations were used to investigated the heat transport capability ofthe flat plate heat pipes. The main contents are as follows.
     A flat plate heat pipe (FPHP) with grooved evaporation surface is developedand manufactured. The temperature fields and overall thermal resistances of theheat pipes under different experimental conditions are studied. The effects of heatflux,filling amount and gravity on the performance of the spreader is studiedexperimentally. The best filling amount of the spreader is obtained. Because the topand bottom plates act as the condensation and the evaporation surface, and the topends of the pillars in the evaporation surface are directly contact with thecondensation surface after welding, the heat transfer from the evaporation to thecondensation surface is not only by phase change heat transfer but also through heatconduction of the rectangular copper micro-pillars. By use of this special design,boththe axial and radial heat transfer is enhanced and a very effective capillary loopbetween condensation and evaporation surfaces is established. The results confirmthat the FPHP has not only a good performance for temperature leveling but also anexcellent axial heat transfer ability which is very important for efficient cooling.Excellent thermal performance is also observed in unfavorable titled positionsincluding vertical and anti-gravity orientation. A three-dimensional model for heat andmass transfer inside the grooves of the grooved flat plat heat pipe is developed. Thetemperature and velocity field in vapor chamber are obtained.
     A flat plate heat pipe with interlaced channels is developed andmanufactured. The temperature fields and overall thermal resistances of the heatpipes under different experimental conditions are studied. This FPHP ismanufactured from an identical copper block which has the same size as theabove-mentioned FPHP with grooved evaporation surface. The capillary structure isinterlaced channels. The interlaced channels form the passageway for the workingfluid and the vapor. With this design, the evaporation surface and the condensationsurface of FPHP are jointed together and formed a whole. Experimental results showthat the FPHP possess both advantages of copper plate for heat conduction ability in axial direction and the FPHP for temperature leveling ability in radial direction.This isbecause that with the special structure of the FPHP, the heat transfer from theevaporation surface to the condensation surface inside it is not only byboiling-condensation process as in the conventional heat pipes, but also by the directheat conduction of solid copper. The special structure eliminates part of theevaporation and the condensation heat transfer resistances, and increases the directheat conduction effect through the highly-conductive copper between the evaporationand condensation surfaces, so the axial heat transfer is effectively enhanced. At thesame time, the phase changing heat transfer still takes place on both the surfaces,andso it also takes the temperature-leveling advantage of the conventional FPHP at thecooling surface.The comparative study disclose that the special design of FPHP withinterlaced channels can improve the heat conduction in axial direction and enhancethe capillary effect. Otherwise, the temperature leveling ability of both FPHPs oncooling surface is similar in radial direction.
     A novel new type of grooved FPHP is developed and manufactured. Theheat transfer characteristics of the heat pipe under different heat fluxes andworking fluid filling ratioes are studied. The capillary structure of this FPHP isintersected micro-grooves on both evaporation surface and condensation surface. Theheat pipe manufactured with copper and filled with de-ionized water, were testedagainst heat fluxes and working fluid filling ratios. The temperature fields and overallheat transfer resistances of the heat pipe under different experimental conditions areobtained. The measured temperature differences and the heat transfer resistancesbetween the evaporation and the condensation surface of the FPHP are small, whichproves that the micro-grooved structure greatly enhances the phase change heattransfer. The best performance of the FPHP is obtained at the FPHP working fluidfilling ratio of87%and the measured overall heat transfer resistance is0.0287K/Wunder the optimal conditions which is even smaller than the thermal resistance of thecopper plate of the same thickness.
     The effects of nano-fluid and surper-hydrophobic surface on the theramperformance of the novel grooved FPHP are studed. The performance of the flatplate heat pipe with different working fluids was measured for different heat fluxes.We invistagated the heat transfer characteristics of the FPHP with the CNT as theworking fluid, and compare it with the water. The experiments show that the CNT canactually improve the thermal performance and decrease the thermal resistance,however, the strengthening effect is not very obvious.
引文
[1]熊建国.小型重力型微槽道平板热管蒸发器内纳米流体沸腾换热特性的实验研究.硕士学位论文.上海:上海交通大学,2007
    [2]林梓荣.自激式震荡流热管热输送性能研究.博士学位论文.广州:华南理工大学,2012
    [3]庄骏,张红.热管技术及其工程应用.北京:化学工业出版社.2000
    [4] G. P. Peterson. An Introduction to Heat Pipes-Modeling Testing and Applications. JohnWiley&Sons Inc. New York,1994
    [5] M.Janicki, A.Napieralski. Modeling Electronic Circuit Radiation Cooling UsingAnalytical Thermal Model. Microelectronics Journal.2000,31(9-10):781-785
    [6] R. S. Gaugler. Heat Transfer Device. U. S. Patent2350348, Dec.21,1942;June6,1944
    [7] M. Grover, T. P. Cotter, G. F. Erikson. Structure of Very High Thermal Conductance.Journal of Applied Physics.1964,35(6):1990
    [8] T. P. Cotter. Theory of Heat Pipe. Los Alamos Scientific Lab: Report No.LA-3246-MS,1965
    [9] P. Dunn, D. A. Reay. Heat Pipes. Pergamon Press.1978
    [10] C. L. Tien, K. H. Sun. Minimum Meniscus Radius of Heat Pipe with a WickingMaterials. International Journal of Heat and Mass Transfer.1970,14(11):1853-1855
    [11] V. H. Gray. The Rotating Heat Pipe-A Wickless Hollow Shaft for Transferring HighHeat Fluxes. ASME Paper No.69-HT-19,1969
    [12] D. A. Littwin, J. Mccurley. Heat Pipe Waste Heat Recovery Boilers. Proceedings4thInternational Heat Pipes Conference, London, England, September1981,213-224
    [13] T. P. Cotter. Priciples and Prospects of Micro Heat Pipes, Proceedings5thInternationalHeat Pipe Conference, Tsukuba, Japan,1984,328-335
    [14]陶生桂,董东甫.热管散热器的特点及其在国内外的应用情况.机车电传动.1999,4:3-5
    [15] D. Sheppard, Heat Pipes and Their Thermal Control in Electronic Equipment,Proceedings of National Electronic Packaging and Production Conference, Anaheim,California, February1969:11-13
    [16] K. T. Feldman. Flat Plate Heat Pipe with Structure Wicks. U. S. Patent3613778, March3,1969; Pubulished October19,1971
    [17] F. Edelstein. Transverse Flat Heat Pipe Experiment. Proceedings of the ThirdInternational Heat Pipe Conference, Palo Alto, Canada,1978.
    [18] S. Maezawa, Y. Suzuki, A. Tsuchida. Heat Transfer Characteristics of Disk-ShapedRotating Wickless Heat Pipe. Proceedings4th International Heat Pipe Conference,Pergamon Press, Oxford, United Kindom,1981,725-733
    [19] H. V. Ooijen, C. J. Hoogendoorn. Vapor Flow Caculations in a Flat Plate Heat Pipe.AIAA Journal.1979,17(11):1251-1259
    [20] W. Qin, C. Y. Liu. Liquid Flow in the Anisotropic Wick Structure of a Flat Plate HeatPipe under Block Heating Condition. Applied Thermal Engineering.1997,17(4):339-349
    [21] M. J. Rightley, C. P. Tigges, R. C. Givler, C. V. Robino, J. J. Mulhall, P. M. Smith.Innovative Wick Design for Multi-Source Flat Plate Heat Pipes. MicroelectronicsJournal.2003,34(3):187-194
    [22] Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii. Numerical Analysis andExperimental Verification on Thermal Fluid Phenomena in A Vapor Chamber. AppliedThermal Engineering.2006,26(14-15):1669-1676
    [23]李时娟,曲伟.平板热管在毛细极限下的传热能力研究.工程热物理学报.2009,30(2):315-317
    [24] S. W. Kang, S. H. Tsai, M. H. Koa. Metallic Micro Heat Pipe Heat SpreaderFabrication. Applied Thermal Engineering.2004,24(2-3):299-309
    [25]林振玄,马琦,汪国山,刘振华.一种铜丝结构的新型微槽道平板热管.化工学报.2010,61(1):27-31
    [26] M. Kole, T. K. Dey. Thermal Performance of Screen Mesh Wick Heat Pipes UsingWater-Based Copper Nanofluids. Applied Thermal Engineering.2013,50(1):763-770
    [27]庞乐,刘振华.水基纳米流体在铜丝平板热管中的应用.热科学与技术.2012,11(1):89-94
    [28] L. H. Chien, C. C. Chang. Experimental Study of Evaporation Resistance on PorousSurfaces in Flat Heat Pipes. International Society Conference on Thermal Phenomena,2002,236-242
    [29] Y. Wang, K. Vafai. An Experimental investigation of the thermal performance of anasymmetrical flat plate heat pipe. International Journal of Heat and Mass Transfer.2000,43(15):2657-2668
    [30] Y. Wang, K. Vafai. Transient Characterization of Flat Plate Heat Pipes during Startupand Shutdown Operations. International Journal of Heat and Mass Transfer.2000,43(15):2641-2655
    [31] Y. Avenas, C. Gillot, A. Bricard, C.Schaeffer. On the Use of Flat Heat Pipe as ThermalSpreaders in Power Electronics Cooling. IEEE,2002,753-757
    [32] Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, J. L. Schanen. Thermal Analysis ofThermal Spreaders Used in Power Electronics Cooling. IEEE,2002
    [33] J. Wei. Measurement of Vapor Chamber Performance.19thIEEE Semi-ThewSymposium,2003,191-193
    [34] Y. M. Xuan, Y.P. Hong, Q. Li. Investigation on Transient Behaviors of Flat Plate HeatPipes. Experimental Thermal and Fluid Science.2004,28:249–255
    [35] Y. X. Wang, G. P. Peterson. Investigation of a Novel Flat Heat Pipe. InternationalJournal of Heat Transfer.2005,127:165-170
    [36] W. K. Jones, Y. Q. Liu, M. C. Gao. Micro Heat Pipes in Low Temperature CofireCeramic (LTCC) Substrates. IEEE Transactions on Components and PackagingTechnologies.2003,26(1):110-115
    [37] Y. S. Chen, K. H. Chien, C. C. Wang, T. C. Hung, B. S. Pei. A Simplified TransientThree-Dimensional Model for Estimating the Thermal Performance of the VaporChambers. Applied Thermal Engineering.2006,26(17-18):2087-2094
    [38] R. Boukhanouf, A. Haddad, M. T. North, C. Buffone. Experimental Investigation of aFlat Plate Heat Pipe Performance Using IR Thermal Imaging Camera. Applied ThermalEngineering.2006,26(17-18):2148-2156
    [39]李欢.双孔径毛细芯的研制及其在环路热管中的应用研究.硕士学位论文.湖北:华中科技大学,2011
    [40] L. Zhang, J.Y. Xu, H. Xu. Effect of Inventory on the Heat Performance ofCopper–Water Loop Heat Pipe. Experimental Thermal and Fluid Science.2013,44:875-882
    [41] K. T. Lin, S. C. Wong. Performance degradation of flattened heat pipes. AppliedThermal Engineering.2013,50(1):46-54
    [42] J. S. Park, J. H. Choi, H. C. Cho, S. S. Yang, J. S. Yoo. Flat Micro Heat Pipe Arrays forCooling and Thermal Management at the Package Level, Design, Test, Integration, andPackaging of MEMS/MOEMS, Bernard Courtois, Jean Michel Karam,2001,424-429
    [43] D. Khrustalev, A. Faghri. Estimation of the Maximum Heat Flux in the InvertedMeniscus Type Evaporator of a Flat Miniature Heat Pipe. International Journal of HeatMass Transfer.1996,39(9):1899-1909
    [44] K. Take, R. L. Webb. Thermal Performance of Integrated Plate Heat Pipe with a HeatSpreader. Journal of Electronic Packaging.2001,123:189-195
    [45] M. C. Tsai, C. S. Yu, S. W. Kang. Flat Plate Loop Heat Pipe with a Novel EvaporatorStructure.21st IEEE Semi-Therm Symposium,2005,187-190
    [46] A. Lai, C. Gillot, M. Ivanova, Y. Avenas, C. Louis, C. Schaeffer, E. Fournier. ThermalCharacterization of Flat Silicon Heat Pipes.20th IEEE Semi-Therm Symposium,2004,21-25
    [47]范春利,曲伟,孙丰瑞,杨立,马同泽.三种微槽结构的平板热管的传热性能实验研究.电子器件.2003,26(4):357-360
    [48] S. W. Kang, S. H. Tsai, H. C. Chen. Fabrication and Test of Radial Grooved MicroHeat Pipes. Applied Thermal Engineering.2002,22(14):1559–1568
    [49] C. Gillot, Y. Avenas, N. Cezac, G. Poupon, C. Schaeffer, E. Fournier. Silicon Heat PipesUsed as Thermal Spreaders. IEEE Transactions on Components and PackagingTechnologies.2003,26(2):332-339
    [50]张明,刘中良,马国远.新型槽道式平板热管的实验研究.工程热物理学报.2008,29(5):818-820
    [51] W. S. Chung, W. J. Da. Experiments on a Novel Vapor Chamber.11thIEEE IntersocietyConference on Thermal and Thermomechanical Phenomena in Electronic Systems,I-Therm Orlando, FL, United states,2008
    [52]刘一兵,丁洁.一种微小型多槽道平板热管传热特性的实验研究.红外技术.2009,31(1):44-46
    [53] S. Lips, F. Lefèvre, J. Bonjour. Nucleate Boiling in a Flat Grooved Heat Pipe.International Journal of Thermal Sciences.2009,48(7):1273–1278
    [54]白敏丽,寇志海,王昊,杨洪武.微槽群平板热管散热器传热性能的研究.热科学与技术.2010,9(1):17-22
    [55] S. Lips, F. Lefèvre, J. Bonjour. Physical Mechanisms Involved in Grooved Flat HeatPipes:Experimental and Numerical Analyses. International Journal of ThermalSciences.2011,50(7):1243-1252
    [56]夏侯国伟,杨彩芸,陈兰兰.双面三角形和矩形通道平板脉动热管的传热性能.中南大学学报(自然科学版).2012,43(5):1984-1989
    [57] U.Vadakkan, G. M. Chrysler, J. Mareety. A Novel Carbon Nano Tube Based WickStructure for Heat Pipes/Vapor Chamber. Semi-Therm Proceedings.2007,18(22):102-104
    [58] M. H. Lu, Morlarry, R. J. Bezama. A Graphite Foams Based Vapor Chamber for ChipHeat Spreading. Journal of Electronic Packaging.2006,128(4):427-431
    [59] J. S. Go. Quantitative Thermal Performance Evaluation of a Cost-Effective VaporChamber Heat Sink Containing a Metal-Etched Micro Wick Structure for AdvancedMicroprocessor Cooling. Sensors and Actuators A.2005,121(2):549–556
    [60]赵耀华,王宏燕,刁彦华,王欣悦,邓月超.平板微热管阵列及其传热特性.化工学报.2011,62(2):336-343
    [61] T. Shimura, H. Sho, Y. Nakamura. The Aluminum Flat Heat Pipe Using Cyclopentaneas Working Fluid.2002International Society Conference on Thermal Phenomena,2002,224-229
    [62]熊建国,刘振华.平板热管微槽道传热面上纳米流体沸腾换热特性.中国电机工程学报.2007,27(23):105-109
    [63]陈兰兰,夏侯国伟,蒋朝勇,杨彩云.双面矩形平板脉动热管的传热性能.长沙理工大学学报(自然科学版).2011,8(1):61-64
    [64] K. H. Do, S. P. Jang. Effect of Nanofluids on the Thermal Performance of a Flat MicroHeat Pipe With a Rectangular Grooved Wick. International Journal of Heat and MassTransfer.2010,53(9-10):2183–2192
    [65] Y. H. Hung, T. P. Teng, B. G. Lin. Evaluation of the Thermal Performance of a HeatPipe Using Alumina Nanofluids. Experimental Thermal and Fluid Science.2013,44:504-511
    [66]赵杰,熊建国,刘振华.碳纳米管悬浮液强化重力型平板热管性能的实验.航空动力学报.2008,23(8):1409-1412
    [67]张明,刘中良.磁流体平板热管热性能的实验研究.工程热物理学报.2009,30(5):824-826
    [68]杨彬,曲伟.角管平板脉动热管的流动和传热特性研究.第十一届全国热管会议,中国威海,9.1,2008
    [69]覃超,刘振华.碳纳米管悬浮液在微槽道热管中的应用.上海交通大学学报.2010,44(4):566-570
    [70] M. Shafahi, V. Bianco, K. Vafai, O. Manca. Thermal Performance of Flat-Shaped HeatPipes Using Nanofluids. International Journal of Heat and Mass Transfer.2010,53(7-8):1438-1455
    [71]黄定寅.电力晶闸管热管散热器的新结构与传热实验.电力电子技术.1993,4:55-57
    [72]林唯耕,陈绍文.微小化毛细泵吸环路(miniature CPL)应用于笔记本计算机传热之研究.工程热物理学报.2002,23(5):602-604
    [73] H. T. Chien, D. S. Lee, P. P. Ding, S. L. Chiu, P. H. Chen. Disk-Shaped Miniature HeatPipe(DMHP) With Radiating Micro Grooves for a to Can Laser Diode Package. IEEETransactions on Components and Packaging Technologies, September2003,26(3):569-574
    [74]张明,刘中良,马国远.平板热管相变传热特性的实验研究.工程热物理学报.2007,28(5):823-825
    [75] Mariya Ivanova, Christian Schaeffer,Yvan Avenas. Realization and Thermal Analysisof Silicon Thermal Spreader Used in Power Electronics Cooling. ICIT Maribor,Slovenia2003,1124-1129
    [76] S.Tzanova, M.Ivanova, Y.Avenas, Ch.Schaeffer. Analytical Investigation of Flat SiliconMicro Heat Spreaders. IAS, IEEE,2004,296-2302
    [77]张亚平,徐小玲,周恩民,冯全科.新型径向平板热管传热性能的实验研究.西安交通大学学报.2007,41(7):780-783
    [78] U. Vadakkan, G. M. Chrysler, S. Sane. Silicon/Water Vapor Chamber as Heat Spreadersfor Microelectronic Packages.21st IEEE SEMI-THERM Symposium,2005
    [79] B. K. Tan, T. N. Wong, K. T. Ooi. Analytical Effective Length Study of a Flat PlateHeat Pipe Using Point Source Approach. Applied Thermal Engineering.2005,25(14-15):2272–2284
    [80]刘晓为,韩天.一种微型平板热管的封装方法.中国,101349517A[P].2008
    [81]陈彬彬,刘伟,刘志春,杨金国,李欢.平板式小型环路热管的实验研究.宇航学报.2011,32(4):953-958
    [82] J. Clement, X. Wang. Experimental Investigation of Pulsating Heat Pipe PerformanceWith Regard to Fuel Cell Cooling Application. Applied Thermal Engineering.2013,50(1):268-274
    [83] B. Du, E. Hu, M. Kolhe. An Experimental Platform for Heat Pipe Solar CollectorTesting. Renewable and Sustainable Energy Reviews.2013,17:119-125
    [84] Z. H. Rao, S. F. Wang, M. C. Wu, Z. R. Lin, F. H. Li. Experimental Investigation onThermal Management of Electric Vehicle Battery With Heat Pipe. Energy Conversionand Management.2013,65:92-97
    [85] T Y. LEE. Design Optimization of an Integrated Liquid2Cooled IGBT Power ModuleUsing CFD Technique. IEEE Transactions on Components and PackagingTechnologies,2000,23(1):55-60
    [86] G. Carbajal, C. B. Sobhan, G. P. Peterson. A Quasi-3D Analysis of the ThermalPerformance of a Flat Heat Pipe. International Journal of Heat and Mass Transfer.2007,50(21-22):4286–4296
    [87] U. Vadakkan, S. V. Garimella, J. Y. Murthy. Transport in Flat Heat Pipes at High HeatFluxes from Multiple Discrete Sources. Journal of Heat Transfer.2004,126:347-354
    [88] S. Kalahasti, Y. K. Joshi. Performance Characterization of a Novel Flat Plate MicroHeat Pipe Spreader. IEEE Transactions on Components and Packaging Technologies,December2002,25(4):554-560
    [89] I. Sauciuc, G. Chrysler, R. Mahajan, R. Prasher. Spreading in the Heat Sink Base:Phase Change Systems or Solid Metals. IEEE Transaction on Components andPackaging Technologies, December2002,25(4):621-628
    [90] Y. S. Chen, K. H. Chien, C. C. Wang, T. C. Hung, B. S. Pei. A Simplified TransientThree-Dimensional Model for Estimating the Thermal Performance of the VaporChambers. Applied Thermal Engineering.2006,26(17-18):2087-2094
    [91] S. S. Hsieh, R. Y. Lee, J. C. Shyu, S. W. Chen. Analytical Solution of ThermalResistance of Vapor Chamber Heat Sink With and Without Pillar. Energy Conversionand Management.2007,48(10):2708-2717
    [92] Y. S. Chen, K. H. Chien, T. C. Hung, C. C. Wang, Y. M. Ferng, B. S. Pei. NumericalSimulation of a Heat Sink Embedded With a Vapor Chamber and Calculation ofEffective Thermal Conductivity of a Vapor Chamber. Applied Thermal Engineering.2009,29(13):2655-2664
    [93]刘一兵.一种微矩形槽平板热管的数值模拟和有限元热分析.低温工程.2010,3:35-38
    [94] M. Aghvami, A. Faghri. Analysis of Flat Heat Pipes with Various Heating and CoolingConfigurations. Applied Thermal Engineering.2011,31(14-15):2645-2655.
    [95]李祺,孙铁,张素香,王贤明.热管倾斜波纹翅片强化传热三维数值模拟与分析.当代化工.2011,40(8):862-865
    [96]李嘉琪,刁彦华,赵耀华.新型平板热管蓄热装置固一液相变过程数值模拟.建筑科学.2011,27(10):88-92
    [97]张宏刚,方贤德,霍莎莎.平板蒸发器环路热管的性能研究.航天器环境工程.2012,29(2):197-200
    [98] S. Harmand, R. Sonan, M. Fakès, H. Hassan. Transient Cooling of ElectronicComponents by Flat Heat Pipes. Applied Thermal Engineering.2011,31(11-12):1877-1885
    [99]张明.高性能平板热管均热器的研发及其传热特性的研究.博士学位论文.北京:北京工业大学,2009
    [100] Amir Faghri. Heat Pipe Seienee and Teehnology. Washington:Taylor&Franeis,1995
    [101]单英杰.新型微小平板热管的制备与传热特性研究.硕士学位论文.南京:南京理工大学,2012
    [102]张红,杨峻,庄骏.热管节能技术.北京:化学工业出版社,2006
    [103]吴金星,韩东方,曹海亮等.高效换热器及其节能应用.北京:化学工业出版社,2009
    [104]余建祖,高红霞,谢永奇.电子设备热设计及分析技术.北京:北京航空航天大学出版社,2008
    [105]肖宏志,刘一兵.微矩形槽平板热管的设计制造及性能分析.低温与超导,2009,37(3):63-66
    [106]马同泽,候增祺等.热管.北京:科学出版社,1983
    [107]王健石.电子散热器技术手册.北京:中国电力出版社,2011
    [108]刘光启,马连湘.化学化工物性数据手册.北京:化学工业出版社,2002
    [109]洪宇平,李强,宣益民.小型平板热管传热实验研究.南京理工大学学报.2001,25(1):32-35
    [110]赵耀华,鹤田隆治,胡学功.毛细微槽内的相变传热的实验研究.工程热物理学报.2004,25(5):816-818
    [111]范春利,曲伟,孙丰瑞,马同泽.重力对微槽平板热管传热性能的影响.热能动力工程.2004,19(1):33-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700