基于电磁耦合的汽车TPMS无源系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车轮胎压力检测系统(TPMS)关乎行车的安全,已成为汽车不可缺少的组成部分。由于工作条件及方式的特殊性,传统有源TPMS可靠性及使用寿命都有一定的限制,所以无源TPMS的开发迫在眉睫。
     近几年来,国内外的许多组织和单位投入了大量的人力和物力从事无源TPMS的研究,分别在压电、声表面波及电磁耦合等多个方向做了很多工作,也有相应的产品被开发出来。
     本文在射频识别系统原理研究的基础上,针对目前轮胎压力监测系统(Tire Pressure Monitoring System,以下简称TPMS)的不足,设计了一种新型的无源TPMS,并通过试验及电路仿真,对系统方案的可行性进行了验证。
     本文分别从阅读器和应答器两部分介绍汽车轮胎传感器的组成及组件方案,通过对两部分组件的性能分析及比较对系统组件进行了选择。结合射频识别系统工作原理分析当前TPMS的工作原理,本文对系统的磁场产生装置:信号发生器进行了硬件设计以及对耦合装置天线进行了参数的设计。通过试验选定储能元件超级电容的型号。最后,通过谐振回路等效电路模型,结合设计天线优选参数,构造模拟仿真试验台,进行仿真试验,验证电磁耦合实现无源的可行性。
Tires are the most important security components of the vehicle run system,and its performance has a direct impact on the performance of the vehicle and traffic safety.Keeping normal pressure ,a vehicle will run steadily,safely,using lesser fuel and so it will be a comfortable trip,at the same time ,a longer life-span tire,and lower cost.To achieve these,TPMS—automobile tire pressure monitoring system is the best tool beyond all doubt.
     Basically,lithium batteries supply energy to emitter of the sensor in current TPMS,which is setted inside of tires.It is complex inside tires:160 0 C temperature and 507~810KPa pressure as high-speed rotation.So TPMS is related to many factors like Centrifugal Acceleration,Dynamic Blance of tires,high temperature , life-span and capacitance of batteries and so on,that result in many abuse such as limited life-span of tires,decreased capacitance of batteries when temperature decreases,environment problems made by castoff of batteries.If the moudule inside tires have no batteries,all of above problems can work out.
     Of all the passing passive projects,electromagnetism coupling has nothing to do with the mysterious high-end technology and it has a low efficiency of energy transfer,but it very suit for passive TPMS development for its mature theory base, the cheap material and it has no impact on the object state that transferring energy by wave.Because of the above reasons,I had a systemic study about TPMS’s passive project by electromagnetism coupling.
     I analyse and compare coupling characteristics of every frequency band through learning from the theory of distant coupling IC card of the noncontact IC cards in the base of studying about RF reader and labels in the paper.At last,combining the complex electromagnetic environment .And the I designed the electromagnentism coupling TPMS passive system being dead against low frequency.
     First power consumption of the existing module was analyzed,and lower power consumption system was weaved in the paper.And then the no battery part was designed emphasizely aim at the plan.Energy transfers of coupling antenna was designed and analyzed emphasizely aiming at finding the best coupling coefficient and the best quality submultiple that can improve the efficiency of energy transfers.Lastly simulation experiment of designed hardware system was done. Main contents listed below:
     1. The study of low power consumption TPMS
     The system project was fixed on through studying the existing module and comparing the performance and consumpation on emission,take-over and controlling department of a number of manufacturers and types.SP12 adding MCU adding TDK5100 is the tire module. MCU is PIC16F628A which come from Microsoft (SOIC encapsulation).
     2. The designing of hardware circuit of no battery part of TPMS
     Wheras the project is in its beginning,predigested designing method was chosed.Only design the signal generator which can have a magnetic field for the antenna to couple.I chosed the Function Generator ICL8038 to produce sine wave which is then magnified by magnifier of D and meet the resonpance loop in series.Looking like this ,it would have a strong current to emission the electromagnetic wave and produce the need magnetic field.The power part contains coupling antenna,Rectifier filter circuit,Limiting circuit and Supercapacitor.The antenna was designed more detailed in the paper.
     3. Simulation experiments
     Through creating equivalent circuit model of passive electromagnetic coupling circuit and combining selection parameters, simulation experiments table is built,and the simulation is done. Adjusting parameters of the hardware circuit by observing the wave that created in simulation experiments, would make it to be the best.
     4. Energy programme
     TPMS operation of the system by the time the calculation and tire rotation of the reported non-energy radio frequency system and the continuity of low efficiency of energy transfer restrictions , that must use the use of storage elements. By comparing the performance of the storage elements choose a new super-capacitor energy storage devices. Ultracapacitor then calculated the necessary capacity, the initial choice of super capacitor model, then the different models and super capacitor parallel super capacitor charging and discharging performance tests, to further define the use of the super capacitor models and methods.
     5. The realization of the structure
     By studying tire structure and the surrounding environment, and decided to the installation location of launch module and coupling module.Conmining with the installation position,I considered anti-jamming measures on hardware and software.
引文
[1]李威,尹术飞.TPMS的无源化发展方向研究. 《重型汽车》HEAVY TRUCK 2005.5.
    [2]胡春林.无电池轮胎气压监测系统.橡塑技术与装备.2004(4).
    [3]揭琳锋,王国林,周孔亢.智能轮胎传感器技术研究现状.汽车工程.2006(6).
    [4] 张元勇,吴中福,李华.汽车轮胎压力监视系统应用研究.压电与声光.2006(3).
    [5]王飞跃,王知学,单国玲,李力,王传铸.智能轮胎的研究进展和应用前景.《轮胎工业》.2003,第1期.
    [6]Wireless components. Product info. Target Specification,July2003.
    [7]Klaus Finkenzeller.射频识别(RFID)技术.第一版.北京:电子工业出版社,2001.
    [8]游战清,李苏剑.无线射频识别技术(RFID)理论与应用.电子工业出版社.2004.
    [9]沈广鸿.非接触 IC 卡系统研究及设计.安徽大学硕士学位论文.2002.5.
    [10]颜重光.汽车轮胎压力监视系统的设计思考.Alec.2005.10.8.
    [11]王现军,胥爱军,宋豫全,梁玲丽.汽车轮胎安全智能检测系统的设计.《仪表技术与传感器》.2004,第8期.
    [12]雷旖旎,卢益民.轮胎压力直接监测系统的设计.《计算机与数字工程》.2005,第5期.
    [13]Printed on recycled paper.4511F-RKE-07/04.
    [14]魏柠柠.TPMS汽车胎压监测系统的关键技术研究和工程实现.浙江大学硕士学位论文.指导老师:金向东.
    [15]SP12芯片技术手册.
    [16]DS40044A.Preliminary.2002 Microchip Technology inc.
    [17]金爱武.直接式TPMS轮胎压力监测系统设计.驶安特汽车电子有限公司.
    [18]颜重光:汽车胎压监视系统的设计方案思考[EB/OL].
    [19] Abrial AJacky B,A new contactless smart card IC using an orrchip and asynchronous ,(J).IEEE Journal of Solid_State Circuit.
    [20]陈抗生;应用电磁学[M],杭州:浙江大学出版社,2001.
    [21]李富玉,李浙昆(昆明理工大学机械电子工程学院).射频识别(RFID)系统的频段特 性 及 其 应 用 现 状 分 析 .Science and Technology Consulting Herald( 科 技 咨 询 导报).2007.NO.09.
    [22]希玉九.电子标签(RFID)技术及其实用的频率[J].中国无线电,2004(1).
    [23]童诗白.模拟电子技术[M].北京:高等教育出版社,1999.
    [24]姚行洲.ICL8038 原理及应用[J].北京广播电视大学报,1999,(1).
    [25]周云波.ICL8038 扫描信号发生器.陕西宝鸡.《现代电子技术》.
    [26]刘阳.精密波形发生器 ICL8038[J].国外电子元器件,1995,(11).
    [27]陈立定.由 ICL8038 制作的多波形信号发生器[J].国外电子元器件, 1999,(3).
    [28] Sinha B K.Elastic Wave in Crystals under a Bias[J].FerroeIectrics.1982,41(1-4).
    [29] TPMS Pressure Sensor Specification. GE Nova Sensor.Inc.2003.
    [30]C.Halfmann, M.Ayoubi,H.Holzmann. Supervision of Vehicles’Tire Pressures by Measurement of Body Accelerations.1997.
    [31] POST OFFICE BOX 655303,DALLAS.TEXAS 75265. μA 741, μA 741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS.Copyright@2000,Texas Instruments Incrporated.
    [32]张铁军:(射频识别)系统开发及应用研究.西安交通大学硕士学位论文.2004.4.1.
    [33] STEVE CHEN C Q , VAL ERIE THOMAS. Optimization of Inductive RFID Technology[A] . Proceedings of the 2001 IEEE International Symposium[C] . USA : Electronics and the Environment , 2001.
    [34] Youbok lee;RFID Coil Design AN678 Microchip Technology Inc.
    [35]高洁,徐克宝.基于 U2270B 的射频识别系统天线设计.山东科技大学,专题论述.
    [36]菅新乐.基于压电陶瓷的汽车轮胎压力监测系统无源化研究.吉林大学硕士论文,指导老师:杨志刚.2007.
    [37]孙华明.充电电池基本知识及应用维护.电脑知识与技术,2004.34.
    [38]Gert Helles.可充电电池技术和充电方法.电子产品世界,2004.9.
    [39]庞静,卢世刚,刘莎.锂离子电池过充特性的研究.电化学,2005.11(9).
    [40]杨忠敏.现代车用镍-氢电池及其应用.大众用电,2006.4.
    [41]周磊,王元航.几种常见可充电电池简介.物理教师,2006.27(1).
    [42]唐平喜.可充电电池的选择和使用.实验教学与仪器,2003.13.
    [43]陈凯.如何认识镉镍电池的“记忆效应”.消费者之友,2003.56(2).
    [44]李相哲,王黎.碱性蓄电池的记忆效应.电池工业,2000.5(1).
    [45]王震坡,孙逢春.锂离子动力电池特性研究.北京理工大学学报,2004.24(12).
    [46] Yue CP,Wong SS,Physical modeling of spiral inductors on silicon,(J).IEEE Transactions on Electron Devices.
    [47] Hartje,Ronald L.Klaus Finkenzeller ,Tomorrows Toll Road RFID technology,Civil Engineering Vol. 61 Iss.2.
    [48] Dr.Adrian Schneuwly,Designing auto power systems with ultracapacitors.
    [49]尹忠东,彭军.超级电容储能的并联电能质量调节器.四川电力技术,2005,(1).
    [50]方伟新,吴森,宗杨.超级电容与蓄电池并联使用对混合动力公交车的改进.客车 技术与研究,2005,(5).
    [51]尹忠东,朱永强.基于超级电容储能的统一负荷质量调节器的研究.电工技术学报, 2006,21(5).
    [52]任炼文,熊佳.电动公交车用超级电容器的研究.电池工业,2006,11(4).
    [53]Dr. Adrian Schneuwly.Designing auto power systems with ultracapacitors.2006.
    [54] BUFF W, KLETT S, RUSKO M, et al. Passive Remote Sensing for Temperature and Pressure Using SAW Resonator Devices[J].IEEE Trans Ultrason,Ferroelectr Freq Contr.1998,45(5).
    [55][加]B.E.康维(B.E.Conway)著.陈艾,吴孟强,张绪礼,高能武等译.电化学超级电容器----科学原理及技术应用.化学工业出版社.北京.2005.9.
    [56]什么是超级电容-法拉电容-bitwellworld的博客-阿里巴巴博客.htm,必威尔科技产品.
    [57] Friedman D,Heinrich H,Duan D W , A low-power CMOSintegrated circuit for field-powered radio frequency identification tags [A],Solid-State Circuits Conference [C]1997.
    [58] Rinat M. Taziev, Evgeny A. Kolosovsky and Anatoliy S.Kozlov. Pressure-Sensitive Cuts for Surface Acoustic Waves inα -Quartz. Transactions on Ultrasonics, Ferroelectrics and Frequency Control.1995, Vol.42, No.5.
    [59]高丹:集成天线电子标签的设计及仿真.中国科学院上海微系统与信息技术研究所硕士学位论文.2004.2.1.
    [60]刘悦,“非接触IC卡及其读写模块的设计和ASIC实现”,硕士论文,复旦大学,2 003.
    [61] A.Pohl, et al, Measurement of Physical Parameter of Car Tires Using Passive SAW Sensors. Advanced Microsystems for Automotive. Applications Conference 98. Berlin, 1998.
    [62] 杜雪亮,戴华平,吴烈.无源电感耦合式射频识别系统天线的设计和优化.江南大学学报(自然科学版)2004.12.第 3 卷第 6 期.
    [63]单承赣 梁华东.电感耦合非接触 IC 卡系统的 EMI 问题. 电子设计应用.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700