基于自适应振动信号处理的旋转机械故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在旋转机械设备故障诊断研究中,故障特征提取和模式识别关系到故障诊断的可靠性和准确性,因此是旋转机械故障诊断研究中的关键问题。利用轴承和齿轮的振动信号对其工作状态进行监测和诊断是目前旋转机械故障监测和诊断研究中最常用的方法。本学位论文应用经验模态分解、总体平均经验模态分解和局部均值分解等信号处理方法进行故障特征提取,并应用支持向量机进行故障模式识别。其主要内容如下:
     1、基于经验模态分解的轴承和齿轮故障诊断研究。
     针对旋转机械设备的工作环境恶劣难以提取故障频率的实际情况,应用奇异值差分谱理论对经验模态分解得到的本征模式分量进行消噪,更好地得到了轴承故障频率;通过计算经验模态分解所得到的本征模式分量的能量熵,在能量域角度找到了齿轮的故障特征,并进一步应用支持向量机对其进行模式识别,通过实例验证此方法的可行性;通过计算经验模态分解所得到的本征模式分量的奇异值熵,找到了齿轮的故障特征,并进一步应用支持向量机对其进行模式识别,通过实例验证此方法的有效性和在小样本情况下的可行性。
     2、基于总体平均经验模态分解的齿轮故障诊断研究。
     针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出了基于总体平均经验模态分解和支持向量机的齿轮故障诊断方法。首先通过总体平均经验模态分解方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量;齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可通过计算不同振动信号的能量熵判断是否发生故障;从包含有主要故障信息的本征模式分量中提取出来的能量特征作为输入建立支持向量机,判断齿轮的工作状态和故障类型。实验结果表明,文中提出的方法能有效地应用于齿轮的故障诊断。
     提出了一种基于总体平均经验模态分解奇异值熵和支持向量机的齿轮故障诊断方法。首先通过总体平均经验模态分解方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征模式分量自动形成初始特征向量矩阵;然后对该矩阵进行奇异值分解,提取其奇异值作为故障特征向量,并对其进行归一化,求得奇异值熵,根据奇异值熵值大小可以判断齿轮的故障类型;将奇异值故障特征向量作为支持向量机的输入,判断齿轮的工作状态和故障类型。实验结果表明,即使在小样本情况下,基于奇异值分解和支持向量机的故障诊断方法仍能有效地识别齿轮的工作状态和故障类型。
     3、基于局部均值分解的轴承和齿轮故障诊断研究。
     首先对轴承的振动信号进行随机共振消噪,然后对降噪振动信号进行局部均值分解,成功地提取出了轴承故障特征;应用局部均值分解对齿轮振动信号进行分解得到若干个乘积分量,求取每一个乘积分量的近似熵,进而找到故障特征向量,最后应用支持向量机对其进行模式识别。通过一故障诊断实例对此方法的可行性和有效性进行了验证,并与神经网络在训练时间和分类准确性方面进行了对比;通过求取经过LMD分解所得乘积分量的Lempel-Ziv指标获得轴承故障特征向量,进行了有效准确的故障诊断。
     4、基于极值域均值模态分解的滚动轴承和转子系统故障诊断。
     针对滚动轴承损伤性故障的故障诊断问题,提出了基于极值域均值模态分解的故障诊断方法,进行了故障特征频率的提取。首先将原始信号分解成若干个本征模式分量,然后通过计算各个本征模式分量与原始信号的相关系数确定包含故障特征信息的主要成分,除去虚假分量。最后针对主要成分的本征模式分量进行Hilbert包络解调提取故障特征,即轴承的损伤性故障特征。通过工程实例信号的分析结果以及与经验模式分解方法的对比均表明,该方法能够较快地提取轴承的故障特征。
     针对转子不平衡故障和滚动轴承微弱损伤性故障的复合故障诊断问题,提出了基于第二代小波和极值域均值模态分解的故障诊断方法,进行了复合故障的耦合特征分离和故障特征频率的提取。该方法首先应用第二代小波对原始信号进行分解与重构;然后针对分解与重构出的低频信号进行频谱分析提取低频非调制故障特征;最后针对高频共振调制信号进行解调分析,以准确提取调制故障特征。通过工程实例信号的分析结果表明,该方法能够提取转子系统的复合故障特征。
     5、总结全文并提出了研究展望。
Fault feature extraction and pattern recognition is the most crucial problem for thereliability and accuracy in the fault diagnosis of rotating machineries. The vibration signals ofbearings and gears are employed in monitoring and diagnosing, which is the common usedmethod in the study of mechanical fault monitoring and diagnosis. Apply empirical modedecomposition, ensemble empirical mode decomposition and local mean decomposition, toextract the fault feature and to recognize the fault pattern using support vector machines inthis dissertation. The main research works can be described as follows:
     1. Fault diagnosis methods of bearings and gears based on empirical modedecomposition.
     In view of the strong background noise involved in the fault signals of rotatingmachineries and the difficulty to obtain fault frequencies in practice, a fault diagnosis scheme,which is based on empirical mode decomposition (EMD) and difference spectrum theory ofsingular value, is put forward in this dissertation. On the basis of difference spectrum theory,de-noising and reconstruction can be done to some intrinsic mode functions (IMFs) in order toget its frequency spectrum more accurate. To identify the fault pattern and condition, energyfeature extracted from a number of IMFs that contained the most dominant fault informationcould serve as input vectors of support vector machine. Practical examples show that thediagnosis approach put forward in this paper can identify gear fault patterns effectively.Singular value entropies extracted from a number of IMFs that contained the most dominantfault information could serve as input vectors of support vector machine. Practical examplesshow that the diagnosis approach put forward in this paper can identify gear fault patternseffectively even when the numbers of samples is small.
     2. Fault diagnosis methods of gears based on ensemble empirical mode decomposition.
     In view of the non-stationary features of vibration signals of gear and the difficulty toobtain a large number of fault samples in practice, a fault diagnosis scheme based onensemble empirical mode decomposition (EEMD) energy entropy and support vector machineis put forward in this paper. Firstly, original acceleration vibration signals are decomposedinto a finite number of stationary IMFs; the energy of vibration signal will change in differentfrequency bands when fault occurs. Therefore, to identify the fault pattern and condition,energy feature extracted from a number of IMFs that contained the most dominant faultinformation could serve as input vectors of support vector machine. Practical examples show that the diagnosis approach put forward in this paper can identify gear fault patternseffectively.
     A fault diagnosis scheme based on EEMD entropy of singular values and support vectormachine is put forward in this paper. Firstly, original acceleration vibration signals aredecomposed into a finite number of stationary IMFs, and the initial feature vector matrixes areformed automatically by the IMFs; secondly, to apply the singular value decomposition to theinitial feature vector matrixes, the singular values, as the fault characteristic vectors, areobtained. By normalizing the vectors and getting the entropies of singular values, faultpatterns and conditions of gear cases can be identified. Singular values extracted from anumber of IMFs that contained the most dominant fault information could serve as inputvectors of support vector machine. Practical examples show that the diagnosis approach putforward in this paper can identify gear fault patterns effectively even when the numbers ofsamples is small.
     3. Fault diagnosis methods of bearings and gears based on local mean decomposition.
     Firstly, do de-noising vibration signals of bearings by employing stochastic resonance.Secondly, the vibration signals are decomposed by local mean decomposition (LMD) toextract fault patterns successfully. By local mean decomposition, the original accelerationvibration signals can be decomposed into a finite number of product functions (PF). Tocalculate the approximate entropies of product functions, the fault feature vectors, whichcould serve as input vectors of support vector machine to identify fault patterns andconditions, can be found. Through a fault diagnosis example the feasibility and effectivenessof this method is verified. Aspects in the training time and classification accuracy werecompared with neural network. The bearing fault characteristic can be extracted successfullyby calculating the Lempel-Ziv indexes of PFs.
     4. Fault diagnosis methods of bearings and rotor systems based on extremum field meanmode decomposition.
     Aiming at the fault of rolling bearings, based on the extremum field mean modedecomposition, was proposed to separate the coupling features of the fault and to extract thefrequency of fault signals. Firstly original signals were decomposed to obtain several IMFs byextremum field mean mode decomposition (EMMD). Then main components are confirmedby calculating the correlation coefficient of every IMF and original signal, and falsecomponents were removed at the same time.Finally high-frequency modulate feature of therolling bearing was extracted by Hilbert envelope demodulation from the component of maincomponents. Research results of engineering signals and the contrasts to EMD, both indicate that the method can extract the fault feature of rolling bearings quickly.
     Aiming at the composite fault of the rotor failure and weak roller bearing fault, based onthe second generation wavelet and the extremism field mean mode decomposition, and wasproposed to separate the coupling features of the composite fault and to extract the frequencyof fault signals. Firstly original signals were decomposed and reconstructed by using thesecond generation wavelet. Then non-modulation low-frequency fault feature was extractedby using FFT to the low-frequency signals from the decomposition and restruction of originalsignals. At the last, the high-frequency modulated signals from the decomposition andrestruction of original were analyzed by envelop demodulation based on EMMD, by whichthe modulated fault feature was extracted. Research results of engineering signals indicate thatthe method can extract the composite fault feature of rotor system.
     5. Summing up and puts forward the research prospect.
引文
[1]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2005.
    [2]屈梁生,张西宁,沈玉娣.机械故障诊断理论与方法[M].西安:西安交通大学出版社,2009.
    [3]杨先勇.基于信号局部特征提取的机械故障诊断方法研究[D].浙江大学.2009.
    [4]徐敏等.设备故障诊断手册[M].西安:西安交通大学出版社,1998.
    [5]陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999.
    [6]王胜春.自适应时频分析技术及其在故障诊断中的应用研究[D].山东大学.2007.
    [7]施圣康.汽轮发电机组振动故障诊断技术的发展现状[J].动力工程,2001,21(4):1295-1298.
    [8]张君.小波分析技术在汽轮机故障诊断中的应用研究[D].华北电力大学.2005.
    [9]程道来,吴茜,吕庭彦等.国内电站故障诊断系统的现状及发展方向[J].动力工程,1999,19(1):53-57.
    [10]盛兆顺,尹琪岭.设备状态监测与故障诊断技术及应用[M].北京:化学工业出版社,2003.
    [11]陈大禧,朱铁光.大型回转机械诊断现场实用技术[M].北京:机械工业出版社,2002.
    [12]曹冲锋.基于EMD的机械振动分析与诊断方法研究[D].浙江大学.2009.
    [13]黄伟国.基于振动信号特征提取与表达的旋转机械状态监测与故障诊断研究[D].中国科学技术大学.2010.
    [14]杨宇.基于EMD和支持向量机的旋转机械故障诊断方法研究[D].湖南大学.2005.
    [15]陈克兴,李川奇.设备状态监测与故障诊断技术[M].北京:科学技术文献出版社,1991.
    [16]钟秉林,黄仁等.机械故障诊断学[M].北京:机械工业出版社,2002.
    [17]贾继德.往复机械非平稳信号的特征提取及诊断研究[D].中国科学技术大学.2004.
    [18]何清波.多元统计分析在设备状态监测诊断中的应用研究[D].中国科学技术大学.2007.
    [19] Sheng-Fa Yuan, Fei-Lei Chu. Support vector machines-based fault diagnosis for turbo-pump rotor[J]. Mechanical Systems and Signal Processing,2006,20(4):939-952.
    [20]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [21]孟庆丰,何正嘉,赵纪元.数字滤波在机械故障诊断方法中的应用技术[J].动态分析与测试技术,1994,12(4):5-10.
    [22]夏松波,张嘉钟,徐世昌.现代机械故障诊断技术的现状与展望[J].振动与冲击,1997,16(2):1-5.
    [23]韩捷,张瑞林,关惠玲等.旋转机械故障机理及诊断技术[M].北京:机械工业出版社,1997.
    [24] J S Bendat,A G Piersol.相关分析和谱分析的工程应用[M].凌福根译.北京:国防工业出版社,1983.
    [25]胡广书.数字信号处理[M].北京:清华大学出版社,1988.
    [26] Xing Qi, Jiang Genshiro, Kiagawa. A time varying coefficient vector AR modeling of nonstationarycovariance time series[J]. Signal Processing,1993,33(3):315-331.
    [27] Yuanjin Zheng, David B H Tay, Zhiping Lin. Modeling general distributed nonstationary process andidentifying time-varying autoregressive system by wavelets: theory and application[J]. SignalProcesing,2001,91(9):1823-1848.
    [28] Edgar F Velez, Richard Absher. Parametric modeling of the Wigner half-kernel and its application tospectral estimation[J]. Signal Processing,1992,26(2):161-175.
    [29] F Shen, M Zheng, D Feng Shi etc. Using the cross-correlation technique to extract modal parameterson response-only data[J]. Journal of Sound and Vibration,2003,259(5):1163-1179.
    [30] R J Martin. Auto-regression and irregular sampling: Spectral estimation [J]. Signal Processing,1999,77(2):139-157.
    [31]徐玉秀,原培新,邢钢.极大熵谱法及其在滚动轴承故障诊断中的应用[J].机械科学与技术,2001,20(4):571-574.
    [32]韩秋实,许宝杰,王红军等.旋转机械故障诊断监测专家系统中的时间序列模式识别技术研究[J].机械工程学报,2002,38(3):104-107.
    [33] M, K. S.现代谱估计原理及应用[M].北京:科学出版社,1994.
    [34]杨叔子,吴雅,轩建平等.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1991.
    [35] J Zou, J Chen. A comparative study on time-frequency feature of cracked rotor by Wigner-Villedistribution and wavelet transform[J]. Journal of Sound and Vibration,2004,276(1):1-11.
    [36] N Baydar, A Ball. A comparative study of acoustic and vibration signals in detection of grar failuresusing Wigner-Ville distribution[J]. Mechanical Systems and Signal Processing,2001,15(6):1091-1107.
    [37] Soo-Chang Pei, Ing-Ing Yang. High resolution Wigner distribution using chirp z-transformanalysis[J]. Signal Processing,1990,39(7):1699-1702.
    [38] Chandra Sekhar, S., T.V. Sreenivas. Adaptive spectrogram vs. adaptive pseudo-Wigner-Villedistribution for instantaneous frequency estimation [J]. Signal Processing,2003,83(7):1529-1543.
    [39] Z., C. On discrete short-time Fourier analysis[J]. IEEE Transactions on Signal Processing,2000,48(9):2628-2640.
    [40]纪跃波,秦树人,汤宝平.基于多分辨分析的时频分析[J].振动与冲击,2002.21(l):12-15.
    [41]林京,屈梁生.信号时频熵及其在齿轮裂纹识别中的应用[J].机械传动,1998,22(2):37-39.
    [42]何正嘉,赵纪元,孟庆丰等.时--频分析在大型电铲提升系统上的应用[J].中国机械工程,1994,5(6):12-15.
    [43]张绪省,孙金纬,赵新民.用时频分析方法分析非平稳信号[J].宇航计测技术,1995,15(5):34-41.
    [44] G Meltzer, Nguyen Phong Dien. Fault diagnosis in gears operating under non-stationary rotationalspeed using polar wavelet amplitude maps[J]. Mechanical Systems and Signal Processing,2004,18(5):985-992.
    [45] Wilson Q Wang, M Farid Golnaraghi. Prognosis of machine health condition using neuro-fuzzysystems[J]. Mechanical Systems and Signal Processing,2004,18(4):813-831.
    [46] Z K Peng, F L Chu. Application of the wavelet transforms in machine condition monitoring and faultdiagnostics:a review with bibliography[J]. Mechanical Systems and Signal Processing,2004,18(2):199-221.
    [47] Z Peng G, F Chu, Y He. Vibration signal analysis and feature extraction based on reassigned waveletscalogram[J]. Journal of Sound and Vibration,2002,253(5):1087-1100.
    [48]徐佩霞等.小波分析与应用实例[M].合肥:中国科学技术大学出版社,1996.
    [49]崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995.
    [50] Li-Chien Lin, Xiang-Gen Xia, C.-C. Jay Kuo. On the convergence of wavelet-based iterative signalextrapolation algorithms[J]. Signal Processing,1996,48(1):51-65.
    [51] Daubechies.I. The wavelet transform time-frequency localization and signal analysis[J]. IEEE Transon Information Theory,1990,36(5):961-1006.
    [52]陈志新,徐金梧,杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报,2007,43(6):200-204.
    [53]何正嘉,李富才等.小波技术在机械监测诊断领域的应用现状与进展[J].西安交通大学学报,2001,35(5):540-545.
    [54] LIN Jing, Q.L. Feature extraction based on morlet wavelet and its application for mechanical faultdiagnosis[J]. Journal of Sound and Vibration,2000,234(l):135-148.
    [55] N.G. Nikolaou, Antoniadis. Rolling element bearing fault diagnosis using wavelet packets[J]. NDT&E International,2002,35(3):197-205.
    [56]于德介,成琼,程军圣.基于复解析小波变换的瞬时频率分析方法[J].振动与冲击,2004,23(l):l08-109.
    [57] Newland, David.E. Harmonic wavelet analysis[J]. Mathematical and Physical Sciences,1993,443(1917):203-225.
    [58] Ye Hao,W. G, Ding Steven X. A new fault detection approach based on parity relation and stationarywavelet transform.[C]. American Control Conference, Denver.2003:2991-2996.
    [59] C J Li,J.M. Wavelet decomposition of vibrations for detection of bearing localized defects[J]. NDT&E International(UK),1997,30(3):143-149.
    [60] Jin Lin, A.Z. Fault feature separation using wavelet-ICA filter [J]. NDT&E International,2005,38(6):421-427.
    [61]张中民,卢文祥,杨叔子.基于小波系数包络谱的滚动轴承故障诊断[J].振动工程学报,1998,11(l):65-69.
    [62] Brenner, M.J. Non-stationary dynamics data analysis with wavelet-SVD filtering[J]. Mechanicalsystems and signal processing,2003,17(4):765-786.
    [63]王计生,黄惟公等.小波分析和神经网络技术在故障诊断中的应用[J].振动、测试与诊断,2004,24(l):46-49.
    [64] Abbasion, S., et al. Rolling element bearings multi-fault classification based on the waveletdenoising and support vector machine[J]. Mechanical systems and signal processing,2007,21(7):2933-2945.
    [65] Hu, Q., et al. Fault diagnosis of rotating machinery based on improved wavelet package transformand SVMs ensemble[J]. Mechanical Systems and Signal Processing,2007,21(2):685-705.
    [66]何学文,孙林等.基于小波分析和支持向量机的旋转机械故障诊断方法[J].中国工程机械学报,2007,5(l):86-90.
    [67] Avci, E., D.Avci. A novel approach for digital radio signal classification: Wavelet packetenergy-multiclass support vector machine (WPE-MSVM)[J]. Expert Systems with Applications,2008,34(3):2140-2147.
    [68]何正嘉.机械监测诊断中的小波应用技术[J].设备管理与维修,1998,8:19-24.
    [69]刘占生,刘成敏,刘数春.小波分析和分形几何在转子动静摩故障诊断中的应用[J].哈尔滨工业大学学报,1999,31(1):55-56.
    [70] Changzheng chen, chang tao Mo. A method for intelligent fault diagnosis of totating machinery[J].Digital Signal Processing,2004,14(3):203-217.
    [71]马建仓,吴启彬.小波-神经网络-模糊识别在旋转机械故障诊断中的应用研究[J].机械科学与技术,1999,18(3):459-462.
    [72]熊卫华.经验模态分解方法及其在变压器状态监测中的应用研究[D].浙江大学,2006.
    [73]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2007.
    [74] Cohen, L. Time-frequency distribution-a review [J]. Proceedings of the IEEE.1989,77(7):941-981.
    [75] Norden E.Huang, Zheng Shen, Steven R.Long. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time Series analysis[C]. Proceedings of the Royal SocietyLondon.1998. A454:903-995.
    [76] Yang J.N., Lei Y, Lin S. Hilbert-Huang based approach damage detection[J]. Journal of EngineeringMechanics(ASCE),2004,130(1):85-95.
    [77] Ruqiang Yan, Gao R.X. Hilbert-Huang Transform-Based Vibration Signal Analysis for MachineHealth Monitoring[J]. IEEE Transactions on Instrumentation and Measurement,2006,55:2320-2329.
    [78] D.pines, L.salvino. Health monitoring of one dimensional structure using empirical modedecomposition and the Hilbert-Huang transform[C]. Proceedings of SPIE,2002,4701:127-143.
    [79]张超,陈建军,郭迅.基于EMD能量熵和支持向量机的齿轮故障诊断方法[J].振动与冲击,2010,29(10):216-220.
    [80] Qiuhui Chen, Norden Huang, Sherman Riemenschneider, Yuesheng Xu. A. B-spline approach forempirical mode decomposition[J]. Advanced in Computational Mathematics.2006,24:171-195.
    [81]黄大吉,赵进平.希尔伯特-黄变换的端点延拓[J].海洋学报,2003,25(l):1-11.
    [82]邓拥军,王伟. EMD方法及Hilbert变换边界问题的处理[J].科学通报,2001,46(3):257-263.
    [83]刘慧婷,张星,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,2004,40(16):54-86.
    [84] Zhaohua Wu, Norden E. Huang. Ensemble Empirical Mode Decomposition: A Noise Assisted DataAnalysis Method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.
    [85] Jonathan S Smith. The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
    [86]程军圣,张亢,杨宇,于德介.局域均值分解与经验模态分解的对比研究[J].振动与冲击,2009,5(28):13-17.
    [87]宁宁,张俊,秦文娟.基于EMMD和AR奇异值熵的故障征提取方法研究[J].测控技术,2008,27(9):83-85.
    [88] Samira Ben Salem, Khmais Bacha, Abdelkader Chaari. Support vector machine based decision formechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.ISA Transactions2012,51(5):566-572.
    [89] Nikolaos Tsakalozos, Konstantinos Drakakis, Scott Rickard. A formal study of the nonlinearity andconsistency of the Empirical Mode Decomposition. Singal Processing.2012,92(9):1961-1969.
    [90] Xin Zhang, Xiuli Du, James Brownjohn. Frequency modulated empirical mode decompositionmethod for the identification of instantaneous modal parameters of aeroelastic systems. Journal ofWind Engineering and Industrial Aerodynamics,2012,101:43-52.
    [91] Yu Yang, Junsheng Cheng, Kang Zhang. An ensemble local means decomposition method and itsapplication to local rub-impact fault diagnosis of the rotor systems. Measurement,2012,45(3):561-570.
    [92] Wei Guo, Peter W. Tse, Alexandar Djordjevich. Faulty bearing signal recovery from large noiseusing a hybrid method based on spetral kurtosis and ensemble empirical mode decomposition.Measurement,2012,45(3):1308-1322.
    [93] Chuan Li, Ming Liang, Yi Zhang, Shumin Hou. Multi-scale autocorrelation via morphologicalwaveler slices for rolling element bearing fault diagnosis. Mechanical Systems and SignalProcessing,2012,31:428-446.
    [94] Junsheng Cheng, Yi Yang, Yu Yang. A rotating machinery fault diagnosis method based on localmean decomposition. Digital Signal Processing,2012,22(2):356-266.
    [95]张正松.旋转机械故障振动监测及故障诊断[M].北京:机械工业出版社,1991.
    [96]冯志鹏,宋希庚,薛冬新.旋转机械振动故障诊断理论与技术进展综述[J].振动与冲击,2004,20(4):36-39.
    [97] Frank. P.M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy:A survey and some new results[J]. Automatics,1990,26(3):459-474.
    [98]陈玉东,施颂椒,翁正新.动态系统的故障诊断方法综述[J].化工自动化及仪表,2001,28(3):l-14.
    [99] Wang H, D.S. Actuator fault diagnosis: an adaptive observer-based technique [J]. IEEE Transactionon automatic control,1996,41(7):1073-1078.
    [100] Polycarpou M.M., Vemuri A.T. Learning methodology for failure detection and accommodation[J].IEEE Control Systems Magazine,1995,15(3):16-24.
    [101]陈安华,钟掘.转子系统非线性振动的辨识建模[J].中国有色金属学报,1997,7(3):159-163.
    [102]黄文虎,夏松波,刘瑞岩等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996.
    [103]冯长建. HMM动态模识别理论、方法以及在旋转机械故障诊断中的应用[D].浙江大学,2002.
    [104]童进.隐Markov模型在旋转机械升降速过程故障诊断中的应用研究[D].浙江大学,2000.
    [105]吴今培.智能故障诊断技术的发展和展望[J].振动、测试与诊断,1999,19(2):79-86.
    [106]何勇,李增芳.智能化故障诊断技术的研究与应用[J].浙江大学学报(农业与生命科学版),2003,29(2):119-124.
    [107]吴今培,肖健华著.智能故障诊断与专家系统[M].北京:科学出版社,1997.
    [108] B S Yang, T.H., JL an. ART KOHONEN neural networks for fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing,2004,18(3):645-657.
    [109]杨伟东,李岭森,商同.改进BP算法及其在滚动轴承故障诊断中的应用[J].河北工业大学学报,1998,4:23-27.
    [110]肖健华,吴今培,熊焕庭.基于支持向量机的滚动轴承质量检测方法[J].计算机工程与应用,2004,(1):201-204.
    [111]张炜,张优云,战仁军等.旋转机械故障诊断中的神经网络改进算法研究[J].振动工程学报,1996,9(l):31-37.
    [112]杨世锡.基于神经网络的大型旋转机械故障诊断专家系统研究[D].浙江大学,1997.
    [113] Samanta, B. Artificial neural networks and genetic algorithms for gear fault detection[J]. MechanicalSystems and Signal Processing,2004,18(5):1273-1282.
    [114] Javier Sanza, R. P., Consuolo Huerta. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of sound and Vibration,2007,302(4/5):981-999.
    [115] Lai Wuxing, Peter W Yse, Zhang Guicai etc. Classification of gear faults using cumulants and theradial basis function network[J]. Mechanical Systems and Signal Processing,2004,18(2):381-389.
    [116] Phayung Meesad, Gray G Yen. Pattern classification by a neuron-fuzzy network: application tovibration monitoring[J]. Instrument Society of America Transactions,2000,39(3):293-308.
    [117]徐光华,屈粱生.基于概率神经网络的大机组组合故障识别[J].机械科学与技术,2000,19(1):85-87.
    [118]师汉民,陈吉红,阎兴等.人工神经网络及其在机械工程领域的应用[J].中国机械工程,1997,8(2):5-10.
    [119]赵纪元,何正嘉,孟庆丰等.基于小波包特征提取的模糊诊断网络建立及应用[J].振动与冲击,1997,16(3):30-34.
    [120]侯祥林,李永强,虞和济.非线性机械设备系统的分形神经网络诊断方法[J].振动工程学报,2001,14(2):220-223.
    [121]许飞云,贾民平,钟秉林.旋转机械振动故障诊断的一种模糊神经网络方法研究[J].振动工程学报,1996,9(3):213-219.
    [122]赵学智,陈文戈,林颖等.基于自适应小波神经网络的故障分类[J].振动、测试与诊断,2001,21(1):21-25.
    [123] Christopher J C Burges. A Tutorial on support vector machine for pattern recognition[J]. DataMining and Knowledge Discovery.1998,2:121-167.
    [124] Steve R Gunn. Support vector machines for classification and regressing[J]. Southampton:Department of Electronics and Computer Science of University of Southampton,1998:1-28.
    [125] Sanna Poyhonen, Marian Negrea, Antero Arkkio. Fault Diagnostics of an electrical machine withmultiple support vector classifiers[C]. Proceedings of2002IEEE international symposium onintelligent control, Vancouver-Canada, October27-30,2002.
    [126] K. K. Chin. Support vector machine applied to speech pattern classification[D], EngineeringDepartment, Cambridge University,1999.
    [127] Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag,1999.
    [128] Cherkassky V, Mulier F. Learning from data: concepts, theory, and methods[M]. New York: JohnWiley,1997.
    [129]翟永杰,王东风,韩璞.基于多类支持向量机的汽轮发电机组故障诊断[J].动力工程,2003,23(5):2694-2698.
    [130] B.Samanta, K. R. Al-Balushi S.A. Al-Araimi. Artificial neural networks and support vector machineswith genetic algorithm for bearing fault detection Engineering[J]. Applications of ArtificialIntelligence,2003,16:657-665.
    [131] Osuna E, Freund R. Training Support Vector Machines: an Application to Face Detection[J]. Proc. ofComputer Vision and Pattern Recognition,1997,130-136.
    [132]李岳,陶利民,温熙森.用于滚动轴承故障检测与分类的支持向量机方法[J].中国机械工程,2005,16(6):498-501.
    [133] Jack L B, Nandi A K. Fault Detection Using Support Vector Machines and Artificial NeuralNetworks, Augmented by Genetical Algorithms[J]. Mechanical Systems and Signal Processing,2002,16(2-3):373-390.
    [134] Norden E.Huang. A new view of nonlinear waves: The Hilbert spectrum[J]. Annual Review of FluidMechanics,1999,31:417-457.
    [135] Norden E. Huang, S. Z., Long SR, et al. A new method for nonlinear and nonstationary time seriesanalysis[C].4th international conference on stochastic structural dynamics,1999:59-564.
    [136] Norden E. Huang.A new method for nonlinear and nonstationary time series analysis: empiricalmode decomposition and Hilbert spectral analysis[C]. Proc. of SPIE,2000,4056:197-209.
    [137] Norden E.Huang. Review of Empirical Mode Decomposition[C]. Proc. of SPIE,2001,4391:71-79.
    [138] Blanco-Velasco, M., B.Weng, K. E. Barner. ECG signal denoising and baseline wander correctionbased on the empirical mode decomposition[J]. Computers in Biology and Medicine,2008,38(l):l-13.
    [139] Chen, C.-Z., Z.-S. Lin. Multiple timescale analysis and factor analysis of energy ecological footprintgrowth in China1953-2006[J]. Energy Policy,2008,36(5):1666-1678.
    [140] Jiang Rong, Hong Yan. Studies of spectral properties of short genes using the wavelet subspaceHilbert-Huang transform(WSHHT)[J]. Physica A: Statistical Mechanics and its Applications,2008,387(16/17):4223-4247.
    [141] Pines, D., L.Salvino. Structural health monitoring using empirical mode decomposition and theHilbert phase[J]. Journal of Sound and Vibration,2006,294(1-2):97-124.
    [142] Danjiangyu, W. R. EMD-based stochastic subspace identification of structures from operationalvibration measurements[J]. Engineering Structures,2005,27(12):1741-1751.
    [143] Norden E. Huang, S. H. H., Shen Z. The ages of large amplitude coastal seiches on the CaribbeanCoast of Puerto Rico[J]. Journal of Physical Oceanography,2000,30(8):2001-2012.
    [144]张立振.快速滤波本征模态信号分解及其在海洋数据分析中的应用[D].中国海洋大学,2006.
    [145] Li, H., X.Deng, H. Dai. Structural damage detection using the combination method of EMD andwavelet analysis[J]. Mechanical Systems and Signal Processing,2007,21(l):298-306.
    [146]全海燕,刘增力,吴庆畅. EMD模态混叠消除及其在语音基音提取中的应用研究.昆明理工大学学报(理工版),2006,31(4):43-45.
    [147] Senroy, N., Suryanarayanan S., Ribeiro P.F. An Improved Hilbert-Huang Method for Analysis ofTime-Varing Waveforms in Power Quality [J]. Power Systems,2007,22(4):1843-1850.
    [148] Zhihui, Zhu, Yunlian Sun, Huangqiang Li. Hybrid of EMD and SVMs for Short-Term LoadForecasting [C]. Control and Automation,2007. ICCA2007, Guangzhou:1044-1047.
    [149] Lu, Z., et al. Empirical Mode Decomposition for Power Quality Monitoring[C]. in transmission andDistribution[C]. Conference and Exhibition: Asia and Pacific,2005IEEE/PES,2005.
    [150] Yin feng, D., et al. Analysis of earthquake ground motions using an improved Hilbert-Huangtransform[J]. Soil Dynamics and Earthquake Engineering,2008,28(l):7-19.
    [151] Spanos, P. D., A.Giaralis,N. P. Politis. Time-frequency representation of earthquake accelerogramsand inelastic structural response records using the adaptive chirplet decomposition and empiricalmode decomposition[J]. Soil Dynamics and Earthquake Engineering,2007,27(7):675-689.
    [152] D Guo, Z. P. Vibration analysis of a cracked rotor using Hilbert-Huang transform[J]. Mechanicalsystems and signal processing,2007,21(8):3030-3041.
    [153]程军圣,于德介,杨宇. EMD方法在转子局部碰摩故障诊断中的应用[J].振动、测试与诊断,2006,26(l):24-27.
    [154] Du, Q., S. Yang. Application of the EMD method in the vibration analysis of ball bearings[J].Mechanical Systems and Signal Processing,2007,21(6):2634-2644.
    [155] Bin, W., F.Changjian, W.Minjie. A Fault Diagnosis Method of Rolling Bearings Using EmpiricalMode Decomposition and Hidden Markov Model[C]. In Intelligent Control and Automation,WCICA2006, The Sixth World Congress on2006.
    [156] Parey, A., et al. Dynamic modeling of spur gear pair and application of empirical modedecomposition-based statistical analysis for early detection of localized tooth defect[J]. Journal ofSound and Vibration,2006,294(3):547-561.
    [157] Parey, A., N.Tandon. Impact velocity modeling and signal processing of spur gear vibration for theestimation of defect size[J]. Mechanical Systems and Signal Processing,2007,21(l):234-243.
    [158]郝志华,林田,马孝江.基于经验模式分解的神经网络模型及其在转子系统故障诊断中的应用[J].中国电机工程学报,2006,26(20):149-153.
    [159]王伟,魏洪兴等.基于经验模分解和最小二乘支持矢量机的装载机载质量动态测量混合建模方法[J].机械工程学报,2008,44(2):87-93.
    [160]王太勇,何慧龙.基于经验模式分解和最小二乘支持矢量机的滚动轴承故障诊断[J].机械工程学报,2007,43(4):88-92.
    [161]于德介,陈森峰等.一种基于经验模式分解与支持向量机的转子故障诊断方法[J].中国电机工程学报,2006,26(6):162-167.
    [162]程军圣,于德介,杨宇.基于支持矢量回归机的Hilbert-Huang变换端点效应问题的处理方法[J].机械工程学报,2006,42(4):23-31.
    [163] P. W. Tse, Y. H. Peng, R. Yam, Wavelet analysis and its envelope detection for rolling elementbearing fault diagnosis-their affectivities and flexibilities[J]. Journal of Vibration and Acoustic.2001,123:303-310.
    [164]杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88.
    [165]陈略,訾艳阳,何正嘉,成玮.总体平均经验模式分解与1.5维谱方法的研究[J].西安交通大学学报,2009,43(5):94-98.
    [166] Randall R.B. Detection and diagnosis of incipient bearing failure in helicopter gearboxes[J]. EngFailure Anal,2004,11(2):177-190.
    [167]崔玲丽,高立新,殷海晨.基于第二代小波的复合故障诊断方法研究[J].中国机械工程,2009,20(4):442-446.
    [168] Peng Z K, Peter W T, Chu F L. A comparison study of improved Hilbert-Huang transform andwavelet transform: Application to fault diagnosis for rolling bearing[M]. Mechanical Systems andSignal Process,2005,19:974-985.
    [169]赵学智,叶邦彦,陈统坚.奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J].机械工程学报,2010,46(1):100-108.
    [170]吕志民,张武军,徐金梧.基于奇异谱的降噪方法及其在故障诊断技术中的应用[J].机械工程学报,1999,35(3):85-88.
    [171]杨文献,姜节胜.机械信号奇异熵研究[J].机械工程学报,2000,36(12):9-13.
    [172]何田,刘献栋,李其汉.噪声背景下检测突变信息的奇异值分解技术[J].振动工程学报,2006,19(3):399-403.
    [173]于德介,程军圣,成琼.基于复小波变换相位谱的齿轮故障诊断[J].振动、测试与诊断,2004,24(4):275-277.
    [174]鞠萍华,秦树人,秦毅,丁志宇.多分辨EMD方法与频域平均在齿轮早期故障诊断中的研究[J].振动与冲击,2009,28(5):97-101.
    [175]何威,江志农.时延自相关解调频原理及其在齿轮故障诊断中的应用[J].振动与冲击,2009,28(9):195-199.
    [176] C. J. Li, S. M. Wu, On-line detection of localized defects in bearings by pattern recognitionanalysis[J]. ASME Journal of Engineering for Industries,1989,111:331-336.
    [177] Yang Yu, Yu Dejie, Cheng Junsheng. A rolling fault diagnosis method based on EMD energy entropyand ANN[J]. Journal of sound and vibration,2006,294:269-277.
    [178] Zhang X G. Introduction to statistical learning theory and support vector machines[J]. ActaAutomatica Sinica,2000,26(1):32-42.
    [179]张超,陈建军,郭迅.基于EMD能量熵和支持向量机的齿轮故障诊断方法[J].振动与冲击,2010,29(10):216-220.
    [180]于德介,陈淼峰,程军圣,杨宇.基于EMD的奇异值熵在转子系统故障诊断中的应用[J].振动与冲击,2006,25(2):24-26.
    [181]艾玲梅,王珏.基于EMD奇异值分解诊断震颤的新方法[J].生物医学工程学杂志,2009,26(6):1335-1339.
    [182] Yang Yu,Yu Dejie,Cheng Junsheng. A rolling fault diagnosis method based on EMD energy entropyand ANN[J]. Journal of sound and vibration,2006,294:269-277.
    [183] WU Zhaohua, HUANG Norden E. A study of the characteristics of white noise using the empiricalmode decomposition method[J]. Proc R Soc Lond: A,2004,460:1579-1611.
    [184] WU Zhaohua, HUANG Norden E. Ensemble empirical mode decomposition: a noise-assisted dataanalysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.
    [185]时世晨,单佩韦.基于EEMD的信号处理方法分析和实现[J],现代电子技术,2011,34(1):88-91.
    [186]张超,陈建军. EEMD方法和EMD方法抗模态混叠对比研究[J],振动与冲击,2010,29(S):87-90.
    [187]齐天,裘焱,吴亚锋.利用聚合经验模态分解抑制振动信号中的模态混叠[J],噪声与振动控制,2010,4(2):103-106.
    [188]薛鳗.总体平均经验模式分解法的理论研究[D],哈尔滨工程大学,2007
    [189]于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报.2005,41(1):140-144.
    [190]程军圣,杨宇,于德介.局部均值分解方法及其在齿轮故障诊断中的应用[J],振动工程学报,2009,22(1):76-83.
    [191]程军圣,史美丽,杨宇.基于LMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2010,29(8):141-144.
    [192]任达千,杨世锡,吴昭同,严拱标.基于LMD的信号瞬时频率求取方法及实验[J],浙江大学学报,2009,43(3):523-528.
    [193]杨宇,杨丽湘,程军圣.基于LMD和AR模型的转子系统故障诊断方法[J],湖南大学学报,2010,37(9):24-28.
    [194]任达千.基于局域均值分解的旋转机械故障特征提取方法及系统研究[D],浙江大学,2008
    [195]程军圣,张亢,杨宇.局部均值分解方法在调制信号处理中的应用[J],振动、测试与诊断,2010,30(4):362-365.
    [196]鞠萍华,秦树人,赵玲.基于LMD的能量算子解调方法及其在故障特征信号提取中的应用[J],振动与冲击,2011,30(2):1-5.
    [197]程军圣,杨怡,张亢,杨宇.基于局部均值分解的循环频率和能量谱在齿轮故障诊断中的应用[J],振动工程学报,2011,24(1):78-83.
    [198]刘卫兵,李志农,蒋静.基于局域均值分解的滚动轴承故障诊断方法[J].轴承,2009,9:48-52.
    [199]陈保家,何正嘉,陈雪峰,訾艳阳.机车故障诊断的局域均值分解解调方法[J].西安交通大学学报,2010,44(5):40-44.
    [200]朱兵,潘宏侠.齿轮故障信号的线性插值局域均值分解方法[J].自动化仪表,2010,31(7):12-18.
    [201] Roberto Benzi, Giorgio Parisi, Alfonso Sutera, Angelo Vulpiani. A theory of stochastic resonance inclimatic change[J]. Applied Methematics,1983,43(3):565-578.
    [202]李志炜,傅毅.自适应消噪与轴承故障诊断[J],航空动力学报,1990,5(3):199-203.
    [203] David Rousseau, Francois Chapeau-Blondeau. Stochastic resonance and improvement by noise inoptimal detection strategies[J], Digital Signal Processing,2005,15(1):19-32.
    [204]李强.机械设备早期故障预示中的微弱信号检测技术研究[D],天津大学,2008.
    [205]冷永刚.大信号变尺度随机共振的机理分析及其工程应用研究[D],天津大学,2004.
    [206]范胜波,王太勇,冷永刚,汪文津.基于变尺度随机共振的弱周期性冲击信号的检测[J],中国机械工程,2006,17(4):387-390.
    [207]李楠,赵妍,李天云,王爱凤.基于随机共振理论的异步电动机转子断条检测新方法[J],电工技术学报,2006,21(5):99-103.
    [208]李强,王太勇,冷永刚,何改云,何慧龙.基于近似熵测度的自适应随机共振研究[J],物理学报,2007,56(12):6803-6808.
    [209] Pincus S. M. Approximate entropy as a measure of system complexity[J]. Proceedings of theNational Academy Sciences USA,1991,88(6):2297-2301.
    [210]祝志慧,孙云.基于EMD近似熵和SVM的电力线路故障类型识别[J].电力自动化设备,2008,28(7):81-84.
    [211]毕果,陈进,李富才等.谱相关密度分析在轴承点蚀故障诊断中的研究[J].振动工程学报,2006,19(3):388-393.
    [212]段晨东,何正嘉.一种基于提升小波的故障特征提取方法及其应用[J].振动与冲击,2007,26(2):10-13.
    [213]康海英,祁彦洁,王虹等.利用倒阶次谱和经验模态分解的轴承故障诊断[J].振动、测试与诊断,2009,29(1):275-277.
    [214] C. J. Li, S. M. Wu, On-line detection of localized defects in bearings by pattern recognitionanalysis[J]. ASME Journal of Engineering for Industries,1989,111:331-336.
    [215]窦东阳,赵英凯.基于EMD和Lempel-Ziv指标的滚动轴承损伤程度识别研究[J].振动与冲击,2010,29(3):5-8.
    [216] LempelA, Ziv J. On the comp lexity of finite sequences[J]. IEEE Transactions on InformationTheory,1976,22(1):75-81.
    [217] Hong Hoonbin, Liang Ming. Fault severity assessment for rolling element bearings using theLempel-Ziv complexity and continuous wavelet transform[J]. Journal of Sound and Vibration,2009,320:452-468.
    [218] Lei Y, et al. A new approach to intelligent fault diagnosis of rotating machinery[J]. Expert Systemswith Applications,2008,35(4):1593-1600.
    [219] Hong Hoonbin, Liang Ming. Fault severity assessment for rolling element bearings using theLempel-Ziv complexity and continuous wavelet transform[J]. Journal of Sound and Vibration,2009,320:452-468.
    [220]盖强.局域波时频分析方法的理论研究与应用[D].大连理工大学,2001.
    [221]彭玉华.小波变换与工程应用[M].北京:科学出版社,2002
    [222]杨洁明,田英.基于EMD和球结构SVM的滚动轴承故障诊断[J].振动、测试与诊断,2009,29(2):155-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700