相干信号的高分辨率测向技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着阵列信号处理理论及其实际应用的快速发展,波达方向估计(DOA:direction of arrival)理论与技术也已经日益成熟。在实际环境中,由于云层、山峰和建筑物等的自然反射影响,以及人为的有意或无意的干扰,相干信号大量存在,对含有不相关信号和相干信号的混合信号进行DOA估计具有重要的现实意义。与不相关信号相比,使用空间谱方法对相干信号进行DOA估计时会直接导致相关矩阵产生秩损,从而使的传统的适用于不相关信号的高分辨率子空间类DOA估计算法失效。目前该领域有许多国内外学者进行研究,试图找到精度更高、计算更简便、阵元利用率更高并且鲁棒性更好的相干信号DOA估计算法。本文对相干信号的DOA估计方法进行了研究,基于矩阵重构法和扩展阵列提出了一些性能优越的有效算法。
     1.提出了一种基于额外辅助参考阵元的协方差矩阵重构算法(ABMR:Additional-reference-sensor Based Matrix reconstruction method)。该算法由参考阵元的输出和阵列输出的互协方差构成新的Toeplitz矩阵,阵列中不含有阵元的自相关噪声,适用于非均匀的高斯白噪声环境,同时继承了矩阵重构类算法和传播算子算法计算量小的优点。理论证明了在一维DOA估计中,使用均匀线形阵列(ULA:uniform linear array)时只要入射信号波数小于阵元个数的一半,无论信号是否相干,该算法就可以成功解相干并得到信号波的DOA估计。然后该方法被扩展到二维DOA估计中,分别结合L形阵列(LSA:L-shaped array)和双平行均匀线阵(2PULA:two parallel uniform linear arrays)实现了基于ABMR算法的相干信号DOA估计。
     2.分析了阵元间距对测向模糊的影响,结合ABMR算法和扩展阵列,提出了一维线形扩展孔径阵列和二维L形扩展孔径阵列,用相应的低精度DOA估计对周期性模糊的高精度DOA估计的模糊,从而获得高精度无模糊DOA估计,提高了信号入射角估计的精度,并通过了仿真实验结果验证了方法的有效性。
     3.提出了一种二维扩展阵型及基于该阵型的解相干算法。该阵型是对传统子阵划分的该进,由标准子阵在迹阵上扩展而成,并将过去没有关注过的迹阵纳入到DOA估计中,提高了二维DOA估计的精度;同时基于二维扩展阵列对传统的矩阵重构法进行改进,使其应用于相干信号的二维DOA估计时具有更大的有效阵列孔径。
     4.在传统前向矩阵重构法的基础上引入了后向重构矩阵,联合前向重构矩阵和后向重构矩阵可以构成新的前后向重构矩阵,该矩阵的秩仅与入射信号数目有关,与信号之间的相关度无关。使用前后向重构矩阵获得的有效孔径大于单独使用前向重构矩阵,与前后向平滑方法的阵元利用率相同,但不需要计算整个阵元的协方差矩阵,也不需要平均操作。尽管本章的DOA估计算法是以ULA和URA作为的基础进行推导的,实际上只要可以划分成重叠的中心对称子阵列的阵列都可以运用本章提到的算法。结合ABMR方法可以减少去除噪声的计算量,适用于非均匀白噪声环境的DOA估计。
As the array signal processing theory and the practical application get rapid develop-ment, the theory and technology of direction of arrival(DOA) estimation also have becomemore sophisticated. In the actual environment, because of natural reflections of clouds,mountains and buildings, or the effect of artificial intentionally or unintentionally interfer-ence, there are coherent signal abounding. DOA estimation of mixed signals, which containsnon-corrected signals and coherent signals, has become an important problem. Comparedwith non-coherent signals, coherent signals will cause rank deficiency of the noiseless cor-relation matrix of received signals. Those high-resolution sub-space algorithms for non-coherent signals will fail in this condition. At present, there are many domestic and foreignscholars studying in this field, trying to find a DOA estimation algorithm for coherent sig-nals, which has higher precision, low-complexity calculation, higher sensor utilization andbetter robustness. In this dissertation, the DOA estimation method for coherent signals wasstudied, the basic idea is to rearrange the correlation matrix and expand the array configura-tion.
     1. A new covariance matrix reconstruction algorithm based on additional reference sen-sor was proposed. The algorithm constitutes a new Toeplitz matrix with cross covarianceof output of the additional reference sensor and all the other sensors. The reconstructedmatrix does not contain autocorrelation noise, so it is suitable for non-uniform Gaussianwhite noise environment. At the same time, the proposed method has advantages of matrixreconstruction algorithm and the propagator matrix algorithm. It is proven that in the1-Dcondition, the effective array aperture is M/2in an M-dimension ULA. Then we general-ized the proposed method to2-D estimation problems, using the L-shaped array and doubleparallel uniform linear array. The algorithm can successfully estimate the DOA of coherentsignals
     2. The dissertation analyze the impact of elements spacing to find angle ambigui-ty. Combining with the ABMR algorithm and extended array, this dissertation proposedone-dimensional linear expanded aperture array and two-dimensional L-shaped expanded aperture array. Low accuracy unambiguous estimation and high accuracy cyclically am-biguous estimation of DOA are obtained from eigenvalue and eigenvector, respectively. Theproposed method uses the low accuracy unambiguous estimation to resolve the ambiguityof the high accuracy cyclically ambiguous estimation. Then high accuracy unambiguous es-timation can be achieved. The simulation results verify the validity of the proposed method.
     3. A new method to classify the two-dimensional(2-D) directions of arrival(DOA) es-timation of signals in a coherent environment is proposed. By using the dual-size spreadingarray, which is formed by spreading a sub-array along a trail-array, the correlation matrixcan be rearranged to form a new matrix, whose rank depends on only the number of in-coming waves. This new method can both enlarge the effective aperture and reduce thecomputational complexity of DOA estimation.
     4. Besides the traditional forward matrix reconstruction method, backward reconstruc-tion matrix was introduced. By combining the forward rearranged correlation matrix withits conjugated backward form together, it is always possible to estimate any2M/31-DDOAs using M-element ULA and any2(32√2)MN2-D DOAs using M×N-elementURA. The effective aperture is the same as the forward/backward spatial smoothingmethod, which is greater than the traditional reconstruction matrix. The proposed methodcould both enlarge the effective aperture and reduce the computational complexity.
引文
[1]王永良.空间谱估计理论与算法.第一版.北京:清华大学出版社,2004,1-54.
    [2]肖先赐.现代谱估计.第一版.哈尔滨:哈尔滨工业大学出版社,1992.
    [3]张贤达,保铮.通信信号处理.第一版.北京:国防工业出版社,2000,310-344.
    [4]张贤达.现代信号处理.第二版.北京:清华大学,2002,140-201.
    [5]周陬.基于空间谱估计的无源测向技术研究:[博士论文].武汉:华中科技大学图书馆,2007.
    [6]郭跃.超分辨率波达方向估计技术的研究:[博士论文].武汉:华中科技大学图书馆,2007.
    [7]张裕峰.多径传播条件下波达方向估计算法:[博士论文].合肥:中国科技大学图书馆,2010.
    [8]顾陈.高分辨率阵列信号处理方法研究:[博士论文].南京:南京理工大学图书馆,2010.
    [9]唐建红.被动雷达导引头高精度超分辨测向技术研究:[博士论文].哈尔滨工程大学图书馆,2009.
    [10] J. Yu, H. Y. Li and Z. S. He. A novel method of DOA estimation based on subarray beam-forming for uniform circular arrays. IEEE International Conference on Signal Acquisition andProcessing. Bangalore, India,2010.80-84.
    [11] Y. Zhang and B. P. Ng. MUSIC-like DOA estimation without estimating the number of sources.IEEE Transactions on Signal Processing,2010.58(3):1668-1676.
    [12] J. L. Liang Joint azimuth and elevation direction finding using cumulant. IEEE Sensors Journal,2009.9(4):390-398.
    [13] K. Shinho and Y. E. Wang. Two-dimensional planar array for digital beamformingand direction-of-arrival estimations. IEEE Transactions on Vehicular Technology,2009.58(7):3137-3144.
    [14] M. L. McCloud, L. L. Scharf. A new subspace identification algorithm for high resolution DOAestimation. IEEE Transactions on Antennas and Propagation,2002.50(10):1382-1390.
    [15] S. Vigneshwaran, N. Sundararajan and P. Saratchandran. Direction of arrival (DOA) estimationunder array sensor failures using a minimal resource allocation neural network. IEEE Transac-tions on Antennas and Propagation,2007.55(2):334-343.
    [16] J. Dmochowski, J. Benesty and S. Affes. Direction of Arrival Estimation Using the Parameter-ized Spatial Correlation Matrix. IEEE Transactions on Audio, Speech, and Language Process-ing,2007.15(4):1327-1339.
    [17] L. Bai, C.Y. Peng and S. Biswas. Association of DOA estimation from two ULAs. IEEE Trans-actions on Instrumentation and Measurement,2007.57(6):1094-1101.
    [18] Ferreira, T., Netto, S. L., and Diniz, P. S. R. Low complexity covariance-based DOA estimationalgorithm. In Proceedings of the15th European Signal Processing Conference. Poznan, Poland,2007.100-104.
    [19] Athley, F., Engdahl, C., and Sunnergren, P. On radar detection and direction finding usingsparse arrays. IEEE Transactions on Aerospace and Electronics Systems,2007.43(4):1319-1333.
    [20] Tadeu N. Ferreira,Sergio L. Netto,Paulo S. R.Diniz. Direction-of-Arrival Estimation using aDirect-Data Approach. IEEE Trans. on Aerospace&Electronic Systems,2011.47(1):728-733.
    [21]焦亚萌,黄建国,韩晶.基于连续蚁群优化算法的小快拍加权子空间拟合快速算法.电子信息学报.2011,33(4):972-976.
    [22] M.F.Khan, M. Tufail. Comparative Analysis of Various Matrix Pencil Methods for Direction ofArrival Estimation. International Conference on Image Analysis and Signal Processing (IASP).2010.496-501.
    [23] Tadeu N. Ferreira,Sergio L. Netto,Paulo S. R. Diniz. Computationally Efficient Subspace-Based Method for Two-Dimensional Direction Estimation With L-Shaped Array. IEEE Trans.On Signal Processing,2011.59(7):3197-3212.
    [24] B. Cai, Y.M. Li and H.Y. Wang. Forward/backword spatial reconstruction method for direc-tions of arrival estimation of uncorrelated and coherent signals. IET Microwaves,Antennas&Propagation,2012.6(13):1498-1505.
    [25] Krim H,Viberg M. Two decades of array signal processing research. IEEE Signal ProcessingMagazine,1996.13(4):67-94.
    [26] J. P. Burg. Maximum entropy spectral analysis. Proc.37th meeting of society of explorationGeophysicists. Oklahoma City,OK.1967.
    [27] J.Capon. High resolution frequency wavenumber spectrum analysis. Proc. of IEEE,1969.57(8):1408-1418.
    [28] J. X. Wu, T. Wang, Z. Y. Suo and Z. Bao. DOA estimation for ULA by spectral Capon rootingmethod. Electronics Letters,2009.45(1):84-85.
    [29]张涛麟刘颖廖桂生.一种未知信源数的高分辨DOA估计算法.电子与信息学报,2008.30(2):375-378.
    [30]陈小龙,关键,黄勇. DOA估计算法性能分析及仿真.海军航空工程学院学报,2009.24(2):191-194.
    [31] R.O.Schmidt. Mutiple emitter location and signal parameter estimation. IEEE Trans. on An-tennas&Propagation,1997.34(3):276-280.
    [32] A. J. Barabell. Improving the resolution performance of eigenstrucure based direction findingalgorithms. Proc. IEEE ICASSP,1983.336-339.
    [33] Q. S. Ren and A. J. Willis. Fast Root-MUSIC algorithm. Electronics Letters,1997.40(7):1687-1696.
    [34] Kung S Y, Arun K S, Rao D V B. State space and SVD based approximation method for theharmonic retrieval problem. Soc.Amer,1983.73(12):1799-1811.
    [35] Roy R, Paulraj A, Kailath T. ESPRIT-A subspace rotation approach to estimation of parameterof cisoids in noise. IEEE Trans. Acoust.,Speech,Signal Processing,1986.34:1340-1342.
    [36] Roy R, Kailath T. ESPRIT-Estimation of signal parameters via rotaitional invariance tech-niques. IEEE Trans. Acoust.,Speech,Signal Processing,1989.37:984-995.
    [37] Zoltowski, M. Novel techniques for estimation of array signal parameters based on matrixpencils, subspace rotations and total least-squares. In Proceedings of the IEEE ICASSP. Seattle,WA,1998.2861-2864
    [38] N. Tayem and H. M. Kwon. Conjugate ESPRIT. IEEE Transactions on Antennas and Propaga-tion,2004.52(10):2618-2624.
    [39]殷勤业,邹理,Newcomb R.一种高分辨率二维信号参数估计方法―波达方向矩阵法.通信学报,1991.12(4):1-7.
    [40]金梁,殷勤业.时空DOA矩阵方法.电子学报,2000.28(6):8-12.
    [41]金梁,殷勤业.时空DOA矩阵方法的分析与推广.电子学报,2001.29(3):300-303.
    [42] A. G. Jaffer.Maximum likelihood direction finding of stochastic sources: a separable solution.ICASSP,1988.5:172-175.
    [43] J. A. Cadzow. A high resolution direction-of-arrival algorithm for narrow band coherent andincoherent sources. IEEE Trans. on ASSP,1988.36(7):965-979.
    [44] B. Friedlander.Sensitivity analysis of the maximum likelihood direction finding algorithm.IEEE Trans. on AE,1990.26(6):953-968.
    [45] M. Cedervall and R. L. Moses. Efficient maximum likelihood DOA estimation for signals withknown waveforms in the presence of multipath. IEEE Transactions on Signal Processing,1997.45(3):808-811.
    [46] J. X. Li and Z. Bao. Maximum likelihood DOA estimation in cyclic cumulant domains. Pro-ceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics,1999.336-339.
    [47] Salz J, Winters J H. Effect of fading correlation on adaptive arrays in digital wireless commu-nications. Proc. ICC’93,1993.3:1768-1774.
    [48]曲志昱,司锡才,谢纪岭.相干源诱偏下比相被动雷达导引头测角性能分析.系统工程与电子技术,2008.30(5):824-827.
    [49]杨建,冯帆,艾名舜. ARM抗有源诱偏中的DOA估计算法.电子信息对抗技术,2011.26(1):42-46.
    [50]袁孝康.相位干涉仪测向定位研究.电子信息对抗技术,1999.3:1-7.
    [51] Y-M. Chen. On spatial smoothing for DOA estimation of coherent signals. IEEE Transactionon Acoustics, Speech and Signal Processing,1985.33(4):806-811
    [52] T. J. Shan, M. Wax, T. Kailath. Spatial smoothing approach for location estimation of coherentsignals. IEEE Trans. ASSP,1985.33(8):876-881.
    [53] S. U. Pillai and B. H. Kwon. Forward/backward smoothing techniques for coherent signalidentification. IEEE Transaction on Acoustics, Speech and Signal Processing,1989.37(1):8-15.
    [54] W. Du and R. L. Kirlin. Improved spatial smoothing techniques for DOA estimation of coherentsignals. IEEE Transactions on Signal Processing,1991.39(5):1208-1210.
    [55]高世伟,保铮.利用数据矩阵分解实现对空间相关信号源的超分辨处理.通信学报,1988.
    [56]高世伟,保铮.一种用于相干和不相干窄带信号源高分辨的广义信号子空间估计方法.电子学报,1990.
    [57]叶中付.空间平滑差分方法.通信学报,1997.18(9):1-7.
    [58] X. Xu,Z.F. Ye,C.Q. Chang. A deflation approach to direction of arrival estimation for symmet-ric uniform linear array. IEEE Antennas and Wireless Propagation Letters,2006.5(1):486-489.
    [59] Z.F. Ye and X. Xu. Direction of arrival estimation by exploiting the symmetric configurationof uniform linear array. IEEE Trans. Antennas&Propagation,2007.55(12):3716-3720.
    [60] Z.F. Ye and X. Xu. DOA Estimation for Mixed Signals in the Presence of Mutual Coupling.IEEE Trans. Signal Processing,2009.57(9):3523-3532.
    [61] Yufeng Zhang and Zhongfu Ye. Efficient method of DOA estimation for uncorrelated and co-herent signals. IEEE Antennas and Wireless Propagation Letters,2008.7:799-802.
    [62] Yufeng Zhang, Zhongfu Ye and Chao Liu. An Efficient DOA Estimation Method in MultipathEnvironment. Signal Processing,2010.90(2):707-713.
    [63] Y. H. Choi. Subspace-based coherent source localization with forward/backward covariancematrices. IEE Proceedings Radar, Sonar&Navigation,2002.149(3):145-151.
    [64] F-M. Han and X-D. Zhang. An ESPRIT-like algorithm for coherent DOA estimation. IEEEAntenna and Wireless Propagation Letters,2005.4(12):443-446.
    [65] Y-H. Choi. ESPRIT-Based Coherent Source Localization With Foreward and Backward Vector.IEEE Transaction on Signal Processing,2010.58(12):6416-6420.
    [66] C-C. Yeh, J-H. Lee. Estimating2-D angles of arrival in coherent source environment. IEEETransaction on Acoustics, Speech and Signal Processing,1989.37(1):153-155.
    [67] Y-M. Chen. On spatial smoothing for2-D DOA estimation of coherent signals. IEEE Transac-tion on Signal Processing,1997.45(7):1689-1696.
    [68] H. Y.Wang and K. J. R. Liu.2-D spatial smoothing for multipath coherent signal separation.IEEE Transactions on Aerospace and Electronic Systems,1998.34(2):391-405.
    [69] H. Y. Yi and X. L. Zhou. On2D forward-backward spatial smoothing for azimuth and ele-vation estimation of coherent signals. IEEE Antennas and Propagation Society InternationalSymposium,2005.2(B):80-83.
    [70] F-J. Chen, S. Kwong and C-H Kok. ESPRIT-like2-D DOA Estimation for Coherent Signals.IEEE Transaction on Aerospace and Electronic Systems,2010.46(3):1477-1483.
    [71] T. H. Liu and J. M. Mendel. Azimuth and elevation direction finding using arbitrary arraygeometries. IEEE Transactions on Signal Processing,1998.46(7):2061-2065.
    [72]丁卫安,马远良.相干信号DOA估计改进ESPRIT算法研究.指挥控制与仿真,2007.29(4).
    [73] T. Filik, T. E. Tuncer and T. K. Yasar. Uniform and non-uniform V-shaped arrays for2-D DOAestimation. IEEE16th Signal Processing, Communication and Applications Conference,2008.
    [74] W. M. G. Diab and H. M. Elkamchouchi. A novel approach for2D-DOA estimation usingcross-shaped arrays. IEEE Antennas and Propagation Society International Symposium,2008.
    [75]刁鸣,陈超,杨丽丽.二维传播算子DOA估计的改进算法.哈尔滨工程大学学报,2011.32(1):98-102.
    [76] J. E. Fernandez del Rio and M. F. Catedra-Perez. The matrix pencil method for twodimensionaldirection of arrival estimation employing an L-Shaped array. IEEE Transactions on Antennasand Propagation,1997.45(11):1693-1694.
    [77] S. Kikuchi, H. Tsuji and A. Sano. Pair-matching method for estimating2-D angle of ar-rival with a cross-correlation matrix. IEEE Antennas and Wireless Propagation Letters,2006.5(1):35-40.
    [78] C. Jian, S.Wang and L. Lin.2-D DOA estimation by MEMP based on L-shape array. IEEE8thInternational Conference on Signal Processing,2008.
    [79] J. Liang and D. Liu. Joint elevation and azimuth direction finding using L-shaped array. IEEETransactions on Antennas and Propagation,2010.58(6):2136-2141.
    [80] Q. Y. Yin, R. W. Newcomb and L. H. Zou. Estimating2-D angles of arrival via two parallel lin-ear arrays. IEEE International Conference on Acoustics, Speech and Signal Processing,1989.4:2803-2806.
    [81] T. Q. Xia, Y. Zheng, Q. Wan, X. G. Wang and W. L. Yang.2-D angle-of-arrival estimation withtwo parallel uniforn linear arrays. IEEE International Conference on Radar,2006.1-4.
    [82] T. Q. Xia, Y. Zheng, Q. Wan and X. G. Wang. Decoupled estimation of2-D angles of arrivalusing two parallel uniform linear arrays. IEEE Transactions on Antennas and Propagation,2007.55(9):3716-3720.
    [83] Liao Bin,Liao Guishen.一种高性能的二维波达方向估计算法.计算机工程与应用,2011.47(6):135-137.
    [84] M. D. Zoltowski, M. Haardt and C. P. Mathews. Close-form2-D angle estimation with rectan-gular arrays in element space or beamspace via unitary ESPRIT. IEEE Transaction on SignalProcessing,1996.44(2):316-328.
    [85] K. T. Wong, M. D. Zoltowski. Direction-finding with sparse rectangle dual-size spatial invari-ance array. IEEE Transaction on Aerospace and Electronic Systems,1998.34(4):1320-1335.
    [86] Wong K T, Zoltowski M D. Sparse array aperture extension with dual-size spatial invariancesfor ESPRIT-based direction finding. Proc IEEE39th Midwest Symposium on Circuits andSystems, Ames, USA,1996.691-694
    [87] Wong K T, Zoltowski M D. Direction finding with sparse rectangular dual-size spatial invari-ance array. IEEE Trans Aerospace Electr Syst,1998.34:1320-1335.
    [88] Vasylyshyn V I. Unitary ESPRIT-based DOA estimation using sparse linear dual size spatialinvariance array. Proc European Radar Conference, Amsterdam, Netherlands,2005.157-160
    [89] J. He and Z. Liu. Extended Aperture2-D Direction Finding With a Two-Parallel-Shape-ArrayUsing Propagator Method. IEEE Antennas and Wireless Propagation Letters,2009.8:323-327.
    [90] Yang X.Y., CHen B.X.,Chen Y.H.. An eigenstructure-based2D DOA estimation method usingdual-size spatial invariance array. Science China,2011.54(1):163-171.
    [91]斯德谊,乐强,沈士团.利用Toeplitz特性改善来波方向估计性能.北京航空航天大学学报,1998.24(3):267―269.
    [92] Liao Bin,Liao Guishen. A method for DOA estimation in the presence of unknown nonuni-form noise. Journal of Electromagnetic Waves and Applications,2007.22(14-15):2113-2123.
    [93] Chambers C,Tozer T C,Sharman K C,Durrani T S. Temporal and Spatial Sampling Infiuenceon the Estimations of Superimposed Narrowband Signals:When Less Can Mean More. IEEETrans. on Signal Processing,1996.44(12):3085-3098.
    [94] B. Friedlander and A. J.Weiss. Direction finding in the presence of mutual coupling. IEEETransactions on Antennas and Propagation,1991.39(3):273-284.
    [95] X. Mestre and M. A. Lagunas. Modified subspace algorithms for DOA estimation with largearrays. IEEE Transactions on Signal Processing,2008.56(2):598-614.
    [96] A. Salameh and J. Bagby. Angle of arrival estimation without EVD for coherent sources. IEEEInternational Conference on Telecommunications,2008.1-4.
    [97] W. J. Zeng, X. L. Li and X. D. Zhang Direction-of-arrival estimation based on the joint diago-nalization structure of multiple fourth-order cumulant matrices. IEEE Signal Processing,2009.16(3):164-167.
    [98]郭跃,王宏远,周陬.阵元间距对MUSIC算法的影响.电子学报,2007.35(9):1675-1679.
    [99] C. Proukakis, A. Manikas. Study of ambiguities of linear arrays. IEEE Proc.ICASSP,1994.549-552.
    [100] J. T. H. Lo, S. L. Marple. Observability condition for multiple signal direction finding andarray sensor localization. IEEE Trans. on SP,1992.40(11):2641-2650.
    [101] K. C. Tan, S. S. Goh, E. C. Tan. A study of the rank-ambiguity issues in direction-of-arrivalestimation. IEEE Trans. on SP,1996.44(4):880-887.
    [102] K. C. Tan, Z. Goh. A detailed derivation of arrays free of higher rank ambiguities. IEEE Trans.on SP,1996.44(2):351-359.
    [103] M. Gavish, A. J. Weiss. Array geometry for ambiguity resolution in direction finding. IEEETrans. on SP,1996.44(6):889-895.
    [104] A. Manikas, C. Proukakis. Modeling and estimation of ambiguities in linear arrays. IEEETrans. on SP,1998.46(8):2166-2179.
    [105] P. Stoica and K. C. Sharman. Maximum likelihood methods for direction-of-arrival estima-tion. IEEE Transactions on Acoustics, Speech and Signal Processing,1990.38(7):1132-1143.
    [106] M. Viberg and B. Ottersten. Sensor array processing based on subspace fitting. IEEE Trans-actions on Signal Processing,1991.39(5):1110-1121.
    [107] J. X. Wu, T. Wang, Z. Y. Suo and Z. Bao. DOA estimation for ULA by spectral Capon rootingmethod. Electronics Letters,2009.45(1):84-85.
    [108] W. J. Zeng, X. L. Li and X. D. Zhang. Direction-of-arrival estimation based on the jointdiagonalization structure of multiple fourth-order cumulant matrices. IEEE Signal ProcessingLetters,2009.16(3):164-167.
    [109] Y. Zhang and B. P. Ng. MUSIC-like DOA estimation without estimating the number ofsources. IEEE Transactions on Signal Processing,2010.58(3):1668-1676.
    [110] Yifeng Wu, Yuliang Cong, Chunhe Li. DOA estimation of coherent signals based on matrixreconstruction. Computer, Mechatronics, Control and Electronic Engineering (CMCE).2010International Conference on,2010.6:280-283.
    [111] Ichige Koiehi, Hanyang Li, Hiroyuki Arai. Performance analysis of SURE method for DOAestimation of coherent sources by Uniform Linear Array. Antennas and Propagation (ISAP),2012International Symposium on,2012.1156-1159.
    [112] Bin Liao, Sliing Chow Chan. DOA estimation of coherent signals for uniform linear arrayswith mutual coupling. IEEE International Symposium on Circuits and Systems (ISCAS),2011.377-380.
    [113] Fulai Liu, J.K. K. Wang, C.Y. Y. Sun, Ruiyan Du. Spatial Differencing Method for DOA Esti-mation Under the Coexistence of Both Uncorrelated and Coherent Signals. IEEE Transactionson Antennas and Propagation,2012.60(4):2052-2062.
    [114] Jianbin Zou, Kai Gao, Er-Yang Zhang.2-dimentional DOA estimation using ESPRIT algo-rithm in ARM confronting coherent decoy. Future Information Technology and ManagementEngineering (FITME). International Conference on,2010.2:238-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700