磁悬浮列车悬浮间隙传感器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是以磁浮列车上的悬浮间隙测量传感器为研究对象,在借鉴国外先进技术的基础上进行的自主研发。
     悬浮间隙传感器是一种组合式、多功能传感器。它用于测量磁浮列车的各种运行参数,包括:间隙、速度、加速度、温度,并将测量结果发送给运行控制单元。整个传感器由壳体、涡流线圈及信号处理板组成。本传感器利用电涡流测距原理进行间隙及速度的测量,传感器的涡流线圈和导轨之间的相对位置发生变化时会导致电涡流的强弱、分布随之变化,通过检测这种变化就可以获得传感器相对导轨的位置变化。加速度测量则采用专门的加速度传感器来实现,具有速度快、精度高、安装方便、性能可靠的优点。温度敏感元件选用了高精度的金属铂热敏电阻,它作为环形振荡电路的可调参数,简化了电路设计和调试,方便地实现了温度测量。
     在信号处理方面,本文采用了当前流行的现场可编程逻辑阵列(FPGA)芯片。采用Verilog HDL编程语言实现FPGA软件的设计调试和芯片的功能验证。
The object of the research is the Suspension Sensor . On the basis of advanced foreign technology for reference, we developed the sensor independently, which makes significant practice for learning the advanced technology.
     Suspension Sensor is used for measuring the operating parameters, including gap, velocity, acceleration and temperature, and transmit the results to the control unit. The sensors are composed of body case, coil card and signal processing board. Gap and velocity are measured by utilizing electric eddy current effect. The alteration of the position between coil card and trail will result in the changes of the intensity and distribution of eddy current. The position will be decided by detecting the sort of changing. The measurement for acceleration is performed by the special accelerator that has the advantage of high speed, high precision, easily mounting and good reliability. We used the platinum thermal resistor as temperature sensitive element, which is used as a adjustable parameter for ring multivibrator. The method simplified the design and adjust of the circuit.
     As to the digital design, we used the prevailing device-Field Programmable Gate Array(FPGA). The software design and validation is performed by Verilog HDL, by which improved the developing efficiency.
引文
[1] 程建峰, 苏晓峰. 磁悬浮列车的发展及应用. 铁道车辆. 2003(11):14-17
    [2] 王靖满. 高速磁悬浮列车的有关问题初探. 电气化铁路. 2002(3):14-17
    [3] 王延安, 陈世元, 苏战排. EMS 式和 EDS 式磁悬浮列车系统的比较分析. 铁道车辆. 2001年第 10 期:17-20
    [4] 张金平, 张奕黄. 磁悬浮列车的原理及现状. 交通科技. 2002 年第 6 期:81-83
    [5] 张瑞华, 严陆光. 几种典型的高速磁悬浮列车方案比较. 电工电能新技术. 2004,23(4):46-50
    [6] 严陆光, 徐善纲, 孙广生, 等. 高速磁悬浮列车的战略我国的发展战略. 电工电能新技术. 2002, 21(4):1-12
    [7] 严陆光, 徐善纲,孙广生, 等. 高速磁悬浮列车的战略我国的发展战略下. 电工电能新技术. 2002, 22(1):1-8
    [8] 林妍. 磁悬浮列车当有一席之地-中科院两院士谈磁悬浮技术在我国轨道交通中的发展潜力. 中国经济导报. 2005 年 8 月 18 日第 C01 版
    [9] 张耀平. 引发运输革命的三种磁悬浮车技术. 综合运输, 2004(6)期:14-17
    [10] 常文森. 磁悬浮列车的发展与展望. 科学中国人. 1996(7):14-17
    [11] 徐安, 李永善. 磁悬浮技术在德国的发展. 城市轨道交通研究. 2001 年第 2 期:14-17
    [12] 李璐. 高速磁悬浮列车间隙传感器的设计与研究[硕士论文]. 长沙:国防科技大学. 2002
    [13] 吴祥明. 上海高速磁浮列车及磁浮技术发展刍议. 综合运输. 2005(1):28-31.
    [14] 任吉林, 吴礼平, 李林. 涡流检测. 北京:国防工业出版社.1985.
    [15] Darko Vyroubal and Drazen Zele, “Experimental Optimaization of the Probe for Eddy-Current Displacement Transducer,” IEEE Trans. Instrumentation And Measurement , vol42, no.6, 1993, pp. 995-1000.
    [16] 黄贤武, 郑筱霞. 传感器原理与应用. 成都:电子科技大学出版社. 1999.
    [17] 钟丽. 精密量杆检定中温度补偿技术的研究[硕士论文]. 哈尔滨:哈尔滨工业大学, 2002.
    [18] 邵文秀. 模糊 PID 控制在工业色谱仪温控系统中的应用[硕士论文]. 南京:南京工业大学. 2004.
    [19] 阎石. 数字电子技术(第四版). 北京:高等教育出版社. 1998.
    [20] 王诚, 薛小刚, 钟信潮. FPGA/CPLD 设计工具——Xilinx ISE 5.x 使用详解. 北京:人民邮电出版社. 2003
    [21] 胥京宇. FPGA:机遇与挑战并存. 世界电子元器件. 2005(4): 12-14.
    [22] Spartan-II 2.5V FPGA Family: Complete Data Sheet. USA. Xilinx,Inc. 2004.
    [23] EDACN 论坛 EDA 先锋工作室. EDACN 技术月刊-逻辑设计与集成电路. 2005,4. http://www.edacn.net
    [24]Kim Goldblatt, Power-On Requirements for the Spartan-II and Spartan-IIE Families, XAPP450(V1.0), USA, Xilinx,Inc. 2001,11
    [25] 夏宇闻. Verilog 数字系统设计教程. 北京:北京航空航天大学出版社. 2003
    [26] 王现军, 宋豫全, 杜保强. 电涡流传感器温度漂移的综合补偿. 传感器技术. 2004 年第 23卷第 2 期:53-55
    [27] Du, J.; Ohsaki, H. Numerical analysis of eddy current in the EMS-Maglev systemElectrical Machines and Systems, 2003. ICEMS 2003. Sixth International Conference on Volume 2, 9-11 Nov. 2003 Page(s):761 - 764 vol.2.
    [28] Davey, K.R., Dalian Zheng. Prediction and use of impedance matrices for eddy-current problems Magnetics, IEEE Transactions on Volume 33, Issue 4, July 1997 Page(s):2478 – 2485.
    [29] Vyroubal, D. Impedance of the eddy-current displacement probe: the transformer model Instrumentation and Measurement, IEEE Transactions on Volume 53, Issue 2, April 2004 Page(s):384 - 391
    [30] Li Xi'nan, Wang Fengxiang, Wang Baoguo. Application of eddy-current sensor for air gap detection in magnetic suspension motors Electrical Machines and Systems, 2001. ICEMS 2001. Proceedings of the Fifth International Conference on Volume 1, 18-20 Aug. 2001 Page(s):326 - 329 vol.1
    [31] Xiaoguang Wang, Yefa Hu, Zhengfeng Jiang, Zude Zhou. Influence of temperature rising on the control accuracy of a magnetic suspended spindle. Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on Volume 5, 15-19 June 2004 Page(s):3867 - 3870 Vol.5
    [32] Enoki, S., Asahi, T., Watanabe, S., Mizuno, T.; Takeshita, K.. Electromagnetic measurement of the rail displacement by the two triangle coils. Magnetics Conference, 2002. INTERMAG Europe 2002. Digest of Technical Papers. 2002 IEEE International 28 April-2 May 2002 Page(s):FV1
    [33] Mizuno, T., Mochizuki, D., Kawasaki, S., Watanabe, S., Enoki, S., Yamada, H. Measurement of singular joint gap of the rails by means of rail joint gap sensor with detecting coil which is crossed to the exciting coil. Magnetics Conference, 2002. INTERMAG Europe 2002. Digest of Technical Papers. 2002 IEEE International 28 April-2 May 2002 Page(s):FV2
    [34] Luguang Yan. Suggestion for selection of Maglev option for Beijing-Shanghai high-speed line. Applied Superconductivity, IEEE Transactions on Volume 14, Issue 2, June 2004 Page(s):936 - 939
    [35] Cassat, A., Jufer, M. MAGLEV projects technology aspects and choices. Applied Superconductivity, IEEE Transactions on Volume 12, Issue 1, March 2002 Page(s):915 – 925
    [36] 凌保明,诸葛向彬,凌云. 电涡流传感器的温度稳定性研究. 仪器仪表学报. 1994,Vol. 15(4):342-345.
    [37] 樊树江,李璐,吴峻 等. 新型电涡流传感器的动态相应分析. 传感器技术. 2004,Vol. 23(3):21-24.
    [38] 樊树江,吴峻,李璐,等. 基于调制/解调的动态响应测试方法. 国防科技大学学报. 2005,Vol. 27(3): 58-61.
    [39] 陈正一,谢维达,钱存元. 磁悬浮列车绝对定位系统. 电力机车与城轨车辆. 2005,Vol. 28(6): 8-10.
    [40] 陈棣湘,潘孟春,罗飞路 等. 高速磁悬浮列车气隙磁场的测量. 电工技术杂志. 2003(12): 69-71.
    [41] 丛华,安钢,张又明 等. 差动式电涡流位移传感器. 装甲兵工程学院学报. 1997,Vol.11(2):24-27.
    [42] 方秋华,田新启,茅佩. 涡流传感器温飘补偿. 东南大学学报. 1995,Vol25(5):47-81.
    [43] 衣承斌,龚艺,宋文晶. 关于 pt100 型铂热电阻温度变送器的研究. 自动化仪表. 1998,Vol19(9):9-10.
    [44] 吴峻,李璐,樊树江 等. 基于 DSP 的电涡流传感器设计. 自动化仪表. 2004,Vol25(10):9-11.
    [45] 吴峻,李璐,樊树江 等. 一种间隙传感器的线圈设计. 传感技术学报. 2004(3):512-515.
    [46] 吾布力. 自动温度补偿电路的一种实现电路. 新疆石油学院学报. 2002,Vol 14(1):58-70.
    [47] Andriollo M., Martinelli G., Morini A., Tortella A.. Electromagnetic optimization of EMS-MAGLEV systems. Magnetics, IEEE Transactions on Volume 34, Issue 4, Part 1, July 1998 Page(s):2090 – 2092
    [48] Andriollo M., Martinelli, G., Morini, A., Tortella, A.. Overall Electromagnetic Optimization of EMS-Maglev Systems. MMM-Intermag Conference, 1998. Abstracts., The 7th Joint 6-9 Jan. 1998 Page(s):223 - 223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700