刚性网格—桩加筋路基分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刚性网格-桩加筋路基类似于桩承式加筋路堤,是一种由路堤填土、加筋垫层、软土层、持力层、刚性网格和预制或现浇混凝土桩即刚性桩组成的复合地基。该复合地基是基于厚路堤工况下路堤边缘处毁桩破坏而设置的一种更新型复合地基形式,其设计目的是通过筋材的抗拉模量增强桩体荷载分担比和利用刚性网格减小边桩弯矩和剪力;其内部结构形式的不同,为研究提供了新的内容。基于该复合地基的结构特点,利用数值分析方法研究了桩身和软基的受力变形特征;根据土拱理论,推导了在考虑基土反力的情况下筋材力学及变形的解析表达式;并研究了布桩形式和土堤加固方法。主要工作如下:
     (1)根据Midas/GTS前处理中产生的桩-土单元节点分离,研究桩端处几何瞬变的形成过程;通过桩端边界条件改造,建立有持力层工况下不同类型刚性桩加固路堤的基本模型,比较分析中桩、边桩和网织物的受力变形特点,分析各对象的优缺点,阐明提出刚性网格-桩加筋路基的原因。
     (2)针对刚性桩加筋路基和桩承式路堤在有持力层刺入工况下的薄弱部位,分析刚性网格–桩加筋路基中筋材、刚性网格和附加桩对薄弱处的加固作用,研究有、无持力层刺入2种工况下刚性网格–桩加筋路基受力和变形在不同桩长影响下的变化特征,对刚性网格–桩加筋路基是否适用于无持力层工况进行可行性探讨。
     (3)基于Hewlett和Randolph的空间半球拱模型假设刚性网格-桩加筋路基路堤荷载传递途径、虎克定律和平衡条件,获得了筋材受力变形的解析表达式,并利用该方法分析了桩距和软土层弹性模量及深度对筋材的影响,揭示土拱、筋材拉力及桩体荷载分担比的受力机理。
     (4)提出单向布置混凝土梁下刚性桩加筋路基的混凝土梁和筋材的布置方式;根据“Hewlett&Randolph”和“LOW”的平面土拱理论,求解在考虑了筋材下土体屈服、单向布置混凝土梁下刚性桩加筋路基筋材上下应力差、土拱所占的桩体荷载分担比和筋材所占的桩体荷载分担比,并对两种理论所得结果进行比较,探讨产生差异的原因。
     (5)探讨了刚性网格-桩加筋路基在有无持力层刺入工况下的布桩优化方式。
     (6)论证刚性网格-桩加筋路基土堤的主要破坏形式;根据土堤破坏形式,建立草被、土工网、护坡以及支护桩加固状态下土堤受力平衡方程,分析不同土堤坡角下土堤内摩擦角对加固材料厚度的影响。
     本文主要成果如下:(1)有无持力层两种工况下桩身受力分布规律;(2)薄弱部位的确定;(3)考虑筋材下地基反力的筋材受力及变形、土拱部分所占的桩体荷载分担比和筋材部分所占的桩体荷载分担比的解析解;(4)布桩方式;(5)土堤加固的分析方法。
     基于上述工作和成果,本文所取得主要结论如下:
     (1)桩帽或刚性网格的加固减小褥垫层刺入量和筋材的拉力,刚性网格的设置减小了边桩弯矩和剪力。
     (2)无持力层工况下的刚性网格-桩加筋路基,桩长的增加能增大中桩桩体荷载比,减小边桩上部弯矩及剪力、体系的最大沉降和路堤外侧竖向位移变异,并使体系竖向变形由竖向剪切型部分地向水平扩散型转化;应通过增加桩长,利用预制薄壁混凝土管桩(PTC管桩)放宽中桩截面,减小附加桩桩径实现优化。
     (3)刚性网格的设置为土拱构架提供一定的厚度,承担一部分桩体荷载分担比;路堤填土内摩擦角的增加有利于增强土拱部分产生的桩体荷载分担比;筋材的增强设置,承担另一部分桩体荷载分担比,并减小筋材与刚性网格的不均匀沉降;地质条件越差越有利于发挥筋材的作用。
     (4)在有持力层工况下采取‘中桩疏边桩密’的布桩方式;在无持力层刺入工况下,应采用‘中心稍疏其余密’的布桩方式。
     (5)应结合坡角的大小,可分别利用草被、土工格栅的拉力和护坡的自重对土堤进行加固,堤坡角度越大,加固物厚度越大。
A rigid grid-pile reinforced subgrade is similar to a piled embankment comprising athick embankment fill layer, a granular layer with geosynthetic, a soft foundation soil layer, afirm bearing stratum, rigid grids and prefabricated or cast-in-situ concrete piles termed rigidpiles. The composite foundation is an update form based on the pile destruction close to theembankment border in thick embankment. The design purpose is to foreground the tensilestiffness of the geosynthetic to increase the pile efficacy with the intent of making use of therigid grid to decrease the shearing force and bending moment distributing at the side piles.The difference in the interior structural form of this composite foundation from the availablepiled embankments provides a new research direction. Based on the structural characteristicof this composite foundation, the force-deformation behavior of the pile and soft soilfoundation is investigated by numerical analysis. According to the soil arching theories, theanalytical solutions for the load-deflection of the geosynthetic considering subsoil support arederived. The pile arrangement and the reinforced method for the embankment slope areinvestigated. The main work includes of six parts:
     (1) In terms of the node separation between the pile element and the soil element inMidas/GTS preprocessing, the geometric transient of the pile bottom is investigated. Usingthe improvements to the boundary conditions at the pile bottoms, different types of models ofrigid pile reinforced subgrade with bearing stratum penetration are built, the embankmentforce-deformation bahavior for the middle pile, side pile and geosynthetic are examined by acomparative analysis, the merit and demerit of each type of the embakment is investigated,and the reasons why the rigid grid-pile reinforced subgrade is proposed.
     (2) According to weak parts of rigid pile reinforced subgrade and piled embankmentswith bearing stratum penetration,the reinforcement for the weak parts by geosynthetic,rigidgrid and additional pile in the rigid gird-pile reinforced subgrade is analyzed. Thecharacteristics of force and deformation of rigid grid-pile reinforced subgrade with andwithout bearing stratum penetration are investigated at different pile lengths;and thefeasibility whether the rigid grid-pile reinforced subgrade is applicable to the case withoutbearing stratum penetration is evaluated.
     (3) Based on the load-transferring path of the hemispherical soil arching model proposedby Hewlett&Randolph, Hooke’s law and the equilibrium condition, the load-deflection ofthe the geosynthetic is derived. Employing the method, the effect of pile spacing, elasticmodulus and depth of the soft soil foundation on the geosynthetic is investigated, which reveals the mechanism of the soil arching, tesile force of the geosynthetic and pile efficacy.
     (4) The concrete beam and transverse geosynthetic placement in a rigid pile compositefoundation reinforced by the unidirectional concrete beams, is proposed. Based on the planesoil arching theory proposed by Hewlett and Randolph and modified by Low et al., the loadcarried by the geosynthetic, the pile efficacy due to soil arching, and the pile efficacy due tothe geosynthetic are derived considering subsoil yield. The results between Hewlett andRandolph and Low et al. are compared with each other, and their difference is discussed.
     (5) The optimized arrangement of the pile is investigated and discussed.
     (6) The failure mode of the embankment slope in the rigid grid-pile reinforced subgradeis demonstrated. According to the failure mode of the embankment slope, the equilibriumequation of the slope reinforced by grass, geogrid and revetment are built. The influence ofthe internal friction angle of the embankment fill on the thickness of the reinforced at differentslope angles are investigated.
     The main achievements of this paper are (1) the force laws of the pile with and withoutbearing stratum penetration,(2) the determination of the weak positions,(3)the analyticalsolution for the force-deformation behavior, the pile efficacy due to soil arching and the pileefficacy due to geosynthetic considering the subsoil support,(4) the pile arrangement, and (5)the analytical method for the slope reinforcement.
     The main conclusions, drawn based on the above work and achievements, are as follows:
     (1) the pile cap or rigid grid reinforcements decrease the penetration into granular layerand the geosynthetic tension, and the setting of the rigid grid decreases the bending momentand shearing force distributing at the side pile.
     (2) In a rigid grid-pile reinforced subgrade without bearing stratum penetration, anincrease in pile length increases the pile efficacy of the middle pile, and decreases the bendingmoment and shearing force distributing at the upper-side pile, the maximum settlement in thesystem and the variation in the lateral deformation, which make the vertical deformation inthe system partly converted into lateral diffusion. The optimization can be obtained byincreasing the pile length,applying PTC pile to enlarging the cross-section of central pile, anddecreasing the additional pile’s diameter.
     (3) The setting of the rigid grid-pile provides the soil arching with a certain thickness tobear a portion of the pile efficacy. An increase in the intenal friction angle can increase thepile efficacy due to soil arching. The geosynthetic reinforcements can regulate the verticalstress below the geosynthetic and bear another portion of the pile efficacy and decrease the differential settlement between the rigid grid and the geosynthetic.The weaker the geologicalcondition, the greater the role of the geosynthetic.
     (4) The pile arrangement can be ‘sparse in middle pile and dense in side pile’ witbearing stratum penetration, and ‘sparse close to the center and dense in the residual’without bearing stratum penetration.
     (5) The embankment slope can be reinforced by apllying the tensile force of the grassand geogrid and the revetment weight. The larger the slope angle, the larger the thickness ofthe reinforced thickness.
引文
[1]宋二祥,武思宇,刘华北.刚性桩复合地基地震反应的拟静力计算方法[J].岩土工程学报,2009,31(11):1723-1728.
    [2] Chen Yun-min, Cao Wei-ping, Chen Ren-peng. An experimental investigation of soilarching within basal reinforced and unreinforced piled embankments. Geotextiles andGeomembranes,2008,26(2):164-174.
    [3]莫海鸿,黄文锋,房营光.不同桩长对无持力层工况下刚性网格-桩加固路基的影响[J],岩石力学与工程学报,2013,32(S1):2944-2950.
    [4]宰金珉.复合桩基设计的新方法[C].第七届全国土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1994.
    [5]饶为国,赵成刚.桩-网复合地基应力比分析与计算[J].土木工程学报,2002,35(12)74~80.
    [6]龚晓南,广义复合地基理论及工程应用[J].岩土工程学报,2007,29(1):1-13.
    [7] HEWLETT W J,RANDOLPH M F.,1988. Analysis of piled embankments. GroundEngineering[J],21(3):12–18.
    [8] LOW,B.K, YANG,S.K., CHoa,V.,1994. Arching in piled embankments. Journal ofGeotechnical Engineering[J],120(11):1917–1938.
    [9]雷金波,张少钦,雷呈凤等.带帽刚性桩复合地基荷载传递特性研究[J],岩土力学,2006,27(8):1322-1326.
    [10] Han, J., Gabr, M.A.. Numerical analysis of geosynthetic-reinforced and pile-supportedearth platforms over soft soil. ASCE Journal of Geotechnical and GeoenvironmentalEngineering[J],2002,128(1):44-53.
    [11] BS8006,1995. Code of Practice for Strengthened/Reinforced Soils and Other Fills.British Standards Institution, London.
    [12] Hans Rathmayer. Piled Embankment Supported by Single Pile Caps[C]. Proc. Conf. onSoil Mechanics and Foundation Engeering, Istanbul,1975:282-90.
    [13] Broms,B.B.,Wong,I.H. Embankment piles. Third International Geotechnical SeminarSoil Improvement Methods, SingaPore,1985,27-29.
    [14]杭網(パイルネット)工法設計.工法设计·施工の手引き[M].東京:日本国有鉄道構造物設計事務所,1987.(In Japanese)
    [15] JONES C. J., LAWSON C. R.,AYRES D. J.. Geotextile reinforced piled mbankment[C]//Geotextile,Gemem-branes and Related Products.Rotterdam:Balkema,1990:155-159.
    [16] Reid,W.M., Buehanan,N.W..Bridge approach support piling, Piling and GroundTreatment, Thomas Telford Ltd, London,1984:267-274.
    [17] G. B. Card,G. R. Carter.Case history of a piled embankment in London's Docklands[J].Geological Society, London, Engineering Geology Special Publications,1995,10:79-84.
    [18] Young, L.W., Milton, M.N., Collin, J.G., and Drooff, E.. Vibro-concrete columns andgeosynthetic reinforced load transfer platform solve difficult foundationproblem[C],Proceedings for the22nd World Road Congress,2003, South Africa.
    [19] Alexiew,D. Piled Embankment Design: Methods and Case Studies.Proc.XV ItalianConference on Geosynlhelics, Bologna.Oetober2002.In:L’ingegnere el ‘architetto,Special Issue l-12/2002:32-39.
    [20]房营光,莫海鸿,潘卫东等.刚性网格与桩复合地基:中国,200820204302.0[P].2009-11-11.
    [21]阎明礼,张东刚. CFG桩复合地基技术及工程实践[M].北京:中国水利水电出版社,2001:60-102.
    [22]李海芳,温晓贵,龚晓南.路堤荷载下刚性桩复合地基的现场试验研究[J].岩土工程学报,2004,26(3):419-421.
    [23]陈云敏,贾宁,陈仁朋.桩承式路堤土拱效应分析[J].中国公路学报,2004,17(4):1-6.
    [24]王斌,徐泽中,预应力管桩在高速公路软基处理中的设计方法[J],公路,2004,2.
    [25]芮瑞,夏元友.桩-网复合地基与桩承式路堤的对比数值模拟[J].岩土工程学报,2007,29(5):669-772.
    [26]曹卫平,陈云敏,陈仁朋.考虑路堤填筑过程与地基土固结相耦合的桩承式路堤土拱效应分析[J].岩石力学与工程学报,2008,27(8):1610-1617.
    [27]连峰,龚晓南,崔诗才,等.桩-网复合地基承载性状现场试验研究[J].岩土力学,2009,30(4):1057-1062.
    [28]梁兵.CFG桩在高速公路软基路段加宽处理中的应用[J],水运工程,2003(8):59-61.
    [29]马时冬.土工格栅加筋垫层的效果检验[J],岩石力学与工程学报,2005,24(3):490-495.
    [30] Wenfeng Huang, Haihong Mo, Yingguang Fang. Comparative Analysis of DifferentTypes of Rigid-Pile-Reinforced Embankments[J], Advanced Materials Research,712-715:845-849.
    [31] Burland, J. B., Borms, B.B.&de Mello, V.F.B. Behanvior of foundation and structure.Proc.9thInc. Conf on soil Mesh Tokyo,1977,2:495-546.
    [32]余闯,刘松玉,杜广印等.桩承式路堤土拱效应的三维数值分析[J].东南大学学报(自然科学版),2009,39(1):58-62.
    [33] Sari W. Abusharar, Jun-Jie Zheng, Bao-Guo Chen,et al., A simplified method foranalysis of a piled embankment reinforced with geosynthetics[J]. Geotextiles andGeomembranes,2009,27(1):39-52.
    [34] Goodman.R.F.,Taylor.R.L,Brekke.T.L.. A Model for the Mechanics of Jointed Rock[J],Journ. SoHMech.&Found. Div., ASCEQ968,94, SM3,637-660.
    [35] Desai, C.S., Zaman H.H., Lighter, J.G., Siriwardane, H.J.. Thin-layer element forinterfaces and joints[J]. International Journal for Numerical and AnalyticalMethods inGeomechanics,1984,8,19-43.
    [36]殷宗泽,朱泓,许国华.土与结构材料的接触面的变形及数学模型[J],岩土工程学报,1994,16(3):14~22.
    [37] Swedish Road Board. Bankp lning Embankment piles[R],1974, Report No. TV121:49.
    [38] S.J.M. van Eekelen, A. Bezuijen, A.F. van Tol. An analytical model for arching in piledembankments[J], Geotextiles and Geomembranes,2013,39,78–102.
    [39] Marston, A., Anderson, A.O.. The theory of loads on pipes in ditches and tests of cementand clay drain tile and sewer pipe [M]. Bulletin No.31.,1913, Engineering ExperimentStation. Iowa State College of Agriculture and Mechanic Arts, Ames.
    [40] BS8006-1. Code of Practice for Strengthened/Reinforced Soils and Other Fills[S]. BritishStandards Institution,2010, London.
    [41] Deutsche Gesellschaft fur Geotechnike. E V entwurf derempfeblung, bewehrte erdkorperauf punkf-order linienfomigen traggliendern[S]. Emst and sohn,2004, Berlin.(inGerman)
    [42] Zaeske, D.. Zur Wirkungsweise von unbewehrten und bewehrten mineralischenTragschichten über pfahlartigen Gründungselementen. In: Schriftenreihe Geotechnik,Heft10. Universit t Kassel, Kassel, Germany,2001.(in German)
    [43] EBGEO. Empfehlung für den Entwurf und die Berechnung von Erdk rper mitBewehrungen als Geokunststoffen[S]. In: Bewehrte Erdk rper auf punkt-oderlinienf rmigen Traggliedern. Deutsche Gesellschaft für Geotechnik e.V.,(GermanGeotechnical Society), Ernst&Sohn, Berlin,2010.(in German)
    [44] CUR226. Ontwerprichtlijn paalmatrassystemen[S].(Design guideline of piledembankments)., The Netherlands,2010.(in Dutch).
    [45] Dutch CUR design guideline for piled embankments[S]. CUR2262010, ISBN978-90-376-0518-1.
    [46] IREX. Recommandations pour la conception, le dimensionnement, l’exécution et lecontr le de l’amélioration: Projet national ASIRI-Recommendations for the design,construction and control of rigid inclusion ground improvements: ASIRI NationalProject[S]. Presses des Ponts, Paris,2012.(in French)
    [47]广东省建设厅. DBJ15-38-2005建筑地基处理技术规范[S],北京:中国建筑工业出版社,2005.
    [48] Hain, S.J., Lee, I.K..The analysis of flexible raft-pile systems,[J], Geotechnique,1978,26(1):65-83.
    [49] J.A Hooper. Observations on the Behaviour of a pile-raft foundation on London clay ICEProceeding,1973,55(4):855-877.
    [50] R. W. Cooke, Piled raft foundations on stiff clays-a contribution to design philosophy,1986,36(2):169-203.
    [51] Poulos H.G.&Davis, E.H..Pile Foundation Analysis and Design[M]. New York: Wiley,1980.
    [52] M. Alamgir, N. Miura, H. B. Poorooshasb et al. Deformation Analysis of Soft GroundReinforced by Columnar Inclusions[J], Computers and Geotechnics,1996,18(4):261-290.
    [53]黄绍铭,王迪民,裴捷,等.按沉降量控制的复合桩基设计方法(上篇)[J].工业建筑,1992,(7):35~36.
    [54]黄绍铭,王迪民,裴捷,等.按沉降量控制的复合桩基设计方法(下篇)[J].工业建筑,1992,(8):41~44.
    [55]赵锡宏,董建国,袁聚云.桩基减少桩数与沉降问题的研究[J].土木工程学报,2000,33(3):71—74.
    [56]管自立.疏桩基础分析方法的探讨[C],桩基技术新进展学术讨论会论文集(上),宁波,1991.
    [57]黄广军,张千里,俞锡健,等.加筋垫层对地基沉降控制效果的多方案比较[J].岩土工程学报,2001,23(5):598-601.
    [58]蒋刚,宰金珉,陈国兴,等.复合桩基设计与沉降分析[J],岩土力学,2003,3:405-409.
    [59]李韬,黄建华,高大钊.弹性承台下沉降控制复合桩基的变分法研究[J],福州工程学院学报,2004,2(1):61-64.
    [60]蒋青青,孟庆玲,胡毅,等.沉降控制复合桩基的工程应用[J],岩石力学与工程学报,2008,27(S1):3153-3158.
    [61]饶为国,杜文锋,罗卫东.用三点法推算桩一网复合路基工后沉降量[J].公路,2001(8):92–95.
    [62]周健,曾庆有,王浩.沉降控制复合桩基在桥头跳车问题中的应用〔J〕.土木工程学报,2006,39(1):83-86.
    [63]郭亮,周峰,刘壮志,等.自适应位移调节下摩擦桩系列模型试验研究[J],岩石力学与工程学报,2011,30(9):1896-1903.
    [64] Terzaghi, K.. Theoretical Soil Mechanics, New York: Wiley,1943.
    [65] McNulty, J.W.. An Experimental study of arching in sand[R], Technical Report No.I-674, U.S. Army Engineer Waterways Experiment Station, Corps of Engineers,Vicksburg, Mississippi,1965:170.
    [66] HANDY R L. The arch in soil arching [J]. Journal of Geotechnical Engineering,1985,111(3):302–318.
    [67] Giroud, J.P., Bonaparte, R., Beech, J.F., et.al.. Design of soil layer-geosynthetic systemsoverlying voids, Geotextiles and Geomembrane,1990,9(1):11-50.
    [68] McKelvey III, J.A.. The anatomy of soil arching[J], Geotextiles and Geomembranes,1994,13:317-329.
    [69] Jones,C.J.F.P., Lawson, C.R. Ayres, D.J. Geotextile reinforced piled embankments[C].Proc.4th Int. Conf. on Geotextiles: Geomembranes and related products, DenHoede(ed),1990, Rtterdam: Balkema,155-160.
    [70] Guido, V.A., Kneuppel, J.D., Sweeny, M.A.. Plate loading tests on geogrid-reinforcedearth slabs. Proceedings of the Geosynthetics’87. IFAI, St Paul,1987,216-225.
    [71] Russell, D., Pierpont, N.. An assessment of design methods for piled embankments[J],Ground Eng.,,1997,30(11):39–44.
    [72] Russell, D., Naughton, P.J., Kempton, G.,2003. A new design procedure for piledembankments[C], Proceedings of the56th Canadian Geotechnical Conference andNAGS Conference, Canadian Geotechnical Society, Alliston, Ont,2003:858–865.
    [73] Kempfert, H.G., Gobel, C., Alexiew, D., Heitz, C.. German recommendations forreinforced embankments on pile-similar elements[C], EuroGeo3–Third EuropeanGeosynthetics Conference, Geotechnical Engineering with Geosynthetics. Publisher,,2004:279–284.
    [74] Sadrekarimi, J., Abbasnejad, A.. Arching effect in fine sand due to base yielding, Can.Geotech. J.,2010,47(3):366-374.
    [75]刘吉福.路堤下复合地基桩、土应力比分析[J].岩石力学与工程学报,2003,22(4):674–677.
    [76]芮瑞,夏元友.桩承式路堤荷载传递计算方法研究〔J〕.武汉理工大学学报,2009,31(13):73-77.
    [77]曹卫平,陈云敏,陈仁朋.考虑路堤填筑过程与地基土固结相耦合的桩承式路堤土拱效应分析[J].岩石力学与工程学报,2008,27(8):1610-1617.
    [78] JAMES A.The anatomy of soil arching[J]. Geotextiles and Geomembranes,1994,13(5):317-329.
    [79]杨明,姚令侃,王广军.桩间土拱效应离心模型试验及数值模拟研究[J],岩土力学,2008,29(3):817-822.
    [80]费康,王军军,陈毅.桩承式路堤土拱效应的试验和数值研究[J].岩土力学,2011,32(7):1975-1983.
    [81]贺翀,楼晓明,熊巨华.桩承式路堤土拱效应有限元研究[J],岩土力学,2008,29(6):1466-1470
    [82]娄炎,何宁,娄斌.长短桩复合地基中的土拱效应及分析[J],岩土工程学报,2011,33(1):77-80.
    [83]周龙翔,王梦恕,张顶立.复合地基土拱效应与桩土应力比研究[J].土木工程学报,2011,44(1):93-99.
    [84]路德春,曹胜涛,杜修力,张佩.平面应变条件下的土拱效应[J].岩土工程学报,2011,33(S1):454-458.
    [85] Fluet, J.E., Christopher, B.R., Slaters, A.R.. Geosynthetic stress-strain response underembankment loading conditions[C], Proc.3rd Int. Conf. on Geotextiles, Vienna,1986,1:175-180.
    [86] Schmertmann, J.H.. A new, empirically based, arching theory and method for the designloading of a geogrid supporting overburden and spanning a void[C], Schmertmann&Crapps, Inc.,1991, October.
    [87] GIROUD J P, BONAPQRTE R, BEECH J F,et al. Design of soil layer-geosyntheticsystems overlying voids[J]. Geotextiles and Geomembranes,1990,9(1):11–50.
    [88] Gabr, M.A.,Hunter, T.J.. Stress-strain analysis of geogrid-supported liners oversubsurface cavities[J], Journal of Geological and Geotechnical Engineering,1994,12(2):65-86.
    [89] Han, J., Gabr, M.A.. A numerical study of load transfer mechanisms in geosyntheticreinforced and pile supported embankments over soft soil[J], Journal of Geotechnicaland Geoenvironmental Engineering,2002,128(1):44-53.
    [90] Jie Huang, Jie Han.3D coupled mechanical and hydraulic modeling of ageosynthetic-reinforced deep mixed column-supported embankment [J],Geotextiles andGeomembranes,2009,27(4):272–280.
    [91] Sean D. Hinchberger, R.Kerry Rowe.Geosynthetic reinforced embankments on soft clayfoundations: predicting reinforcement strains at failure[J], Geotextiles andGeomembranes,2003,21(3):151–175.
    [92] R.David Espinoza. Soil-geotextile interaction: Evaluation of membrane support [J],Geotextiles and Geomembranes,1994,13(5):281–293.
    [93] VILLARD P, BRIANCON L. Design of geosynthetic reinforcements for platformssubjected to localized sinkholes[J]. Canadian Geotechnical Journal,2008,45(2):196–209.
    [94] R. P. Chen, Y. M. Chen, J. Han, et al. A theoretical solution for pile-supportedembankments on soft soils under one-dimensional compression[J]. CanadianGeotechnical Journal,2008,45(5):611-623.
    [95] B. M. Jones, R. H. Plaut,G. M. Filz. Analysis of geosynthetic reinforcement inpile-supported embankments. Part I:3D plate model[J]. Geosynthetics International,2010,17(2):59-67.
    [96] McGuire, M.P., Filz, G.M.. Quantitative comparison of theories for geosyntheticreinforcement of column-supported embankments. Proceedings of the First PanAmerican Geosynthetics Conference and Exhibition. IFAI, St Paul,2008:10.
    [97] Halvordson, K.A., Plaut, R.H., Filz, G.M.,2010. Analysis of geosynthetic reinforcementin pile-supported embankments. Part II:3D cable-net model. Geosynthetics Int.17(2),68–76.
    [98] Plaut, R.H., Filz, G.M.,2010. Analysis of geosynthetic reinforcement in pile-supportedembankments. Part III: axisymmetric model. Geosynthetics Int.17(2),77–85.
    [99] Kousik Deb, Sunil Ranjan Mohapatra.Analysis of stone column-supportedgeosynthetic-reinforced embankments[J], Applied Mathematical Modelling,2013,37(5):2943–2960.
    [100] S.J.M. van Eekelen, A. Bezuijen, A.F.van Tol. Analysis and modification of theBritishStandard BS8006for the design of piled embankments[J], Geotext.Geomembranes,2011,29(3),345–359.
    [101] S.J.M. van Eekelen, A. Bezuijen, H.J. Lodder, et al. Model experiments on piledembankments. Part I [J], Geotextiles and Geomembranes,2012,32:69-81.
    [102] S.J.M. van Eekelen, A. Bezuijen, H.J. Lodder, et al. Model experiments on piledembankments. Part II [J], Geotextiles and Geomembranes,2012,32:82-94.
    [103] Keith Jennings, Patrick J. Naughton.. Similitude Conditions ModelingGeosynthetic-Reinforced Piled Embankments Using FEM and FDM Techniques[J], CivilEngineering,2012.
    [104] Eski ar, T., Otani, J., Hironaka, J.. Visualization of soil arching on reinforcedembankment with rigid pile foundation using X-ray CT[J], Geotext. Geomembranes,2012,32:44-54.
    [105] Ellis, E.A., Aslam, R.,. Arching in piled embankments: comparison of centrifuge testsand predictive methods, part1of2[J]. Ground Eng.,2009,42,34-38.
    [106] Ellis, E.A., Aslam, R.. Arching in piled embankments: comparison of centrifuge testsand predictive methods, part2of2[J], Ground Eng.,2009,42,28-31.
    [107] Ellis, E.A., Zhuang, Y., Aslam, R., Yu, H.S.. Discussion of ‘A simplified method foranalysis of a piled embankment reinforced with geosynthetics’, by Abusharar, Zheng,Chen and Yin, Geotext. Geomembranes27(2009)39–52[J],Geotext. Geomembranes,2010,28(1):133-134.
    [108] B. Le Hello,P. Villard. Embankments reinforced by piles and geosynthetics—Numericaland experimental studies dealing with the transfer of load on the soil embankment[J],Engineering Geology,106(1–2):78–91.
    [109] H. L. Liu, Charles W. W., Ng, M., et al. J. Geotech. Geoenviron. Eng.[J],2007,133:1483-1493.
    [110] J. J. Zheng; B. G. Chen; Y. E. Lu. The performance of an embankment on soft groundreinforced with geosynthetics and pile walls[J]. Geosynthetics International,2009,16(3):173-182.
    [111] Orianne Jenck, Daniel Dias, Richard Kastner. Three-Dimensional Numerical Modelingof a Piled Embankment[J], International Journal of Geomechanics,2009,9(3):102-112.
    [112]张良,罗强,裴富营等.基于离心模型试验的桩帽网结构路基桩端持力层效应研究[J],岩土工程学报,2009,31(8):1192-1199.
    [113]张良,罗强,陈虎等.基于离心模型试验的软基路堤基底压力和垫层筋带拉力分析[J],岩土力学,2010,31(9):2772-2779.
    [114]黄仙枝,白晓红.土工带加筋垫层地基承载力的实用计算方法[J],岩土工程学报,2005,27(7):804-807.
    [115]董彦莉,白晓红.土工合成材料加筋垫层承载力计算[J],岩土工程学报,2010,32(S2):171-174.
    [116]曾革,周志刚.桩承式加筋垫层路堤地基承载力计算方法[J],中南大学学报(自然科学版),2010,41(3):1158-1164.
    [117]林晓玲,周连明,吴建东.土工织物加筋垫层的应用研究[J].2000,21(3):252-255.
    [118]唐洪祥,王海清.土工织物补强软基的作用机理与整体稳定性分析[J],岩土力学,2005,26(12):1879-1884.
    [119]晏莉,阳军生,韩杰.桩承土工合成材料加筋垫层复合地基作用原理及应用[J],岩土力学,2005,26(5):821-826.
    [120]刘飞禹,张乐,余炜,等.交通荷载作用下桩承式加筋路堤性能分析[J],土木工程学报,2011,44(sup):50-54.
    [121]郑俊杰,张军,马强,等.路桥过渡段桩承式加筋路堤现场试验研究[J],岩土工程学报,2012,34(2):355-361.
    [122]王非,缪林昌.落水洞上覆路堤土工加筋设计新方法[J].东南大学学报:自然科学版,2009,39(6):1217–1221.
    [123]吕伟华,缪林昌,王非.基于不完全土拱效应的土工格栅加固机制与设计方法[J]岩石力学与工程学报,2012,31(3):632-639.
    [124]李波,黄茂松,叶观宝.加筋桩承式路堤的三维土拱效应分析与试验验证[J],中国公路学报,2012,25(1):13-20.
    [125]蔡德钩,闫宏业,叶阳升等.桩网支承路基结构中土拱效应及网垫受力的模型试验研究[J].2011,33(11):85-92.
    [126]佐藤悟.桩基础の支持力机构(Ⅰ)、(Ⅱ)、(Ⅲ)、(Ⅳ)[J];土木技术(日本),1965,20:1-5.(in Japanese)
    [127]同济大学工程地质教研室.静力触探侧壁摩阻力与桩侧摩阻力的试验研究[R],同济大学科技情报站,1979.
    [128]曹汉志.桩的轴向荷载传递及荷载沉降曲线的数值计算方法[J],岩土工程学报,1986,8(6):37-48.
    [129]袁建新,钟晓雄.桩荷载与变位的数值模拟分析[J]岩土力学1991,12(1):1-8.
    [130]Brandt J.R.T..Behavior of soil-concrete interfaces[R],Alberta:The University of Alberta,1985年5月.
    [131]陈慧远,摩擦接触单元和及其分析,水利学报,1985,4:44-99.
    [132]殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟[J]。岩土工程学报,1994,16(3):14-22.
    [133]朱伯里,沈珠江,计算土力学[M],上海:上海科学技术出版社,1994.
    [134] Clough,G.W., Duncan,J.M.,Finite element analysis of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundation,1971,97(SM12):1657-1673.
    [135]于丙子;陈连礼;叶伟泉.三维空间的节理单元[J].岩土工程学报,1983,5(3):1-11.
    [136] Katona M G.Asimple contact-friction interface element with applications to buriedculverts [J]. International Journal of Numerical Analysis Methods in Geomechanics,1983,7:371-384.
    [137] FELLENIUS W. Calculation of the stability of earth dams[J]. Trans2nd Cong LargeDams,1936,4:445.
    [138] BISHOP A W. The use of the slip circle in the stabi-lity analysis of slopes[J].Geotechnique,1955,5(1):7-17.
    [139] JANBU N. Slope stability computations, embankment dam engineering[M]. New York:John Wileyand Sons,1973:47-86.
    [140] SAMA S K. Stability analysis of embankments and slopes[J]. Geotechnique,1973,23(3):423-433.
    [141] MORGERSTEM N R, PRICE V E. The analysis ofthe stability of general slip circles[J].Geotechnique,1965,15(1):79-93.
    [142] SPENCER E. A method of analysis of the stability of embankments using parallelinterslice forces [J].Geotechnique,1967,17(1):11-22.
    [143]陈祖煜.土坡稳定分析通用条分法及其改进[J].岩土工程学报,1983,5(4):11-27.
    [144]戴自航,沈蒲生.土坡稳定分析简化Bishop法的数值解[J].岩土力学,2002,23(6):760-764.
    [145]张鲁渝郑颖人.简化Bishop法的扩展及其在非圆弧滑面中的应用[J],岩土力学2004,25(6):927–929.
    [146]朱大勇、邓建辉、台佳佳.简化Bishop法严格性的论证[J],岩石力学与工程学报,2007,26(3):455-458.
    [147]郑榕明,朱禄娟,谷兆祺.非对称旋转破坏的三维Bishop边坡稳定算法[J],岩土工程学报,2002,24(6):706-709.
    [148]曹平,张科,汪亦显,等.复杂边坡滑动面确定的联合搜索法[J].岩石力学与工程学报,,2010,29(4):814~821.
    [149]凌道盛,戚顺超,陈锋,等一种基于Morgenstern-Price法假定的三维边坡稳定性分析法[J],岩石力学与工程学报,2013,32(1):107-116.
    [150]邓东平,李亮.两种滑动面型式下边坡稳定性计算方法的研究[J].岩土力学,2013,34(2):372-380.
    [151]张均锋.三维简化Janbu法分析边坡稳定性的扩展[J].岩石力学与工程学报,2004,23(17):2876–2881.
    [152]张均锋,丁桦.边坡稳定性分析的三维极限平衡法及应用[J].岩石力学与工程学报,2005,24(3):365–370.
    [153]张均锋,王思莹,祈涛.边坡稳定分析的三维Spencer法[J].岩石力学与工程学报,2005,24(19):3434–3439.
    [154] HUANG C C,TSAI C C. New method for3D and asymmetrical slopestabilityanalysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(10):917–927.
    [155]李同录,王艳霞,邓宏科.一种改进的三维边坡稳定性分析方法[J].岩土工程学报,2003,25(5):611–614.
    [156]朱大勇,钱七虎.三维边坡严格与准严格极限平衡解答及工程应用[J].岩石力学与工程学报,2007,26(8):1513–1528.
    [157]郑宏.严格三维极限平衡法[J].岩石力学与工程学报,2007,26(8):1529–1537.
    [158] Yaoru Liu, ChuanqiWang, Qiang Yang. Stability analysis of soil slope based ondeformation reinforcement theory[J], Finite Elements in Analysis and Design, FiniteElements in Analysis and Design,2012,58,10-19.
    [159] Chia-Cheng Fan, Chih-Chung Hsieh. The mechanical behaviour and design concernsfor a hybrid reinforced earth embankment built in limited width adjacent to a slope[J],Computers and Geotechnics,2011,38(2):233-247.
    [160] Yongmin Kim, Sungjune Lee, Sangseom Jeong et al. The effect of pressure-grouted soilnails on the stability of weathered soil Slopes[J], Computers and Geotechnics,2013,49:253-263.
    [161] Han, J., Leshchinsky, D.. Limit equilibrium and continuum mechanics-based numericalmethods for analyzing stability of MSE walls[C]. Proceedings of the17th EngineeringMechanics Conference, University of Delaware, Newark, Delaware, USA,2004:13–16.
    [162] Sari W. Abusharar, Jie Han. Two-dimensional deep-seated slope stability analysis ofembankments over stone column-improved soft clay[J], EngineeringGeology,2011,120(1–4):103-110.
    [163] E. Blanco-Fernandez, D. Castro-Fresno, J.J. Del Coz Díaz et al.. Flexible systemsanchored to the ground for slope stabilisation: Critical review of existing designmethods[J], Engineering Geology, Engineering Geology,2011,122(3–4):129-145.
    [164] E. Blanco-Fernandez, D. Castro-Fresno, J.J. Del Coz Díaz et al.. Field measurements ofanchored flexible systems for slope stabilisation:Evidence of passive behaviour[J],Engineering Geology,2013,153:95–104
    [165] Young-Suk Song, Won-Pyo Hong, Kyu-Seok Woo。Behavior and analysis of stabilizingpiles installed in a cut slope during heavy rainfall [J], Engineering Geology,2012,129–130:56-67.
    [166] D.V. Raisinghani, B.V.S. Viswanadham. Centrifuge model study on low permeableslope reinforced by hybrid geosynthetics[J], Geotextiles andGeomembranes,2011,29(6):1567-580.
    [167] Chia-Nan Liu, Kuo-Hsin Yang, Yu-Hsien Ho, et al. Lessons learned from three failureson a high steep geogrid-reinforced slope[J], Geotextiles and Geomembranes,2012,34:131-143.
    [168] Iman Mehdipour, Mahmoud Ghazavi, Reza Ziaie Moayed. Numerical study on stabilityanalysis of geocell reinforced slopes by considering the bending effect[J], Geotextilesand Geomembranes,2013,37:23-34.
    [169]黄文锋,张轶,林继生.桩承式路堤关键部位分析[J],山西建筑,2012,38(15):125-127.
    [170] Y. Zhuang, E. A. Ellis, H. S. Yu. Plane strain FE analysis of arching in a piledembankment[J]. Proceedings of the ICE-Ground Improvement,2010,163(4):207–215.
    [171]徐正中,陈仁朋,陈云敏.软土层未打穿的桩承式路堤现场实测研究[J].岩石力学与工程学报,2009,28(11):2336-2341.
    [172] Wenfeng Huang, Haihong Mo, Yingguang Fang. Comparative Analysis of DifferentTypes of Rigid-Pile-Reinforced Embankments[J], Advantage Material Research,712-715:845-849.
    [173]Wenfeng Huang, Haihong Mo, Yingguang Fang. A Pile-Soil Contact ElementModification for Analysis of a Middle Pile in a Piled Embankment with Geosynthetic[J],Electronic Journal of Geotechnical Engineering,2013,18R:3933-42.
    [174]中华人民共和国行业标准编写组. JGJ94-2008建筑桩基技术规范[S],北京:中国建筑工业出版社,2008.
    [175] Wenfeng Huang, Haihong Mo, Yingguang Fang. Analysis of a Rigid Grid-PileComposite Foundation[J], Electronic Journal of Geotechnical Engineering,2013,18V:5545-63.
    [176] Wenfeng Huang, Haihong Mo, Yingguang Fang. Simplified Analysis of Different Typesof Slope Reinforcements in a Rigid Grid-Pile Composite Foundation [J], AppliedMechanics and Materials,2013,387:100-4.
    [177]中华人民共和国行业标准. JTJ017-96公路软土地基路堤设计与施工技术规范[S],北京:人民交通出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700