在役预应力混凝土桥梁结构现状分析及剩余承载力评定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,伴随着高性能混凝土和高强度钢材的广泛使用,预应力混凝土桥梁不断向大跨、轻型、高性能方向发展,极大地推动了我国的桥梁建设事业的进步。目前,预应力混凝土桥梁已在国内外公路桥梁建设中占有主导性的地位。同时我们也应该看到,随着桥梁事业的持续快速发展以及桥梁服役时间的推移,桥梁结构性能退化、承载力不足等问题日益严峻,预应力混凝土桥梁结构现状分析及剩余承载力评定问题显得日渐紧迫。所以,对在役预应力混凝土桥梁结构进行深入的研究具有重要的意义。
     本文以青岛胶州湾高速公路(海域段)一座服役14年的预应力简支斜交空心板梁桥为研究背景,结合现场及室内试验数据,借助有限元分析程序,对该桥的耐久性现状和剩余承载力进行了相应评价,为此类桥梁的评估提供一定参考。对在役混凝土桥梁耐久性主要影响因素的发生机理、理论模型作了详细介绍,
     在此基础上,对现状结构的预应力混凝土梁体进行取芯,试验测试了碳化深度、氯离子含量及分布、混凝土抗压强度,并运用相应耐久性预测模型对服役期内碳化深度、抗压强度发展规律进行了预测。结果表明,结构在服役其内耐久性较好,但边梁支座处钝角位置氯离子含量较高,成为结构耐久性的薄弱点。
     基于应力释放法,现场对单梁构件梁底四分点及跨中位置进行应力释放试验,计算得到梁体在自重及预应力作用下,梁底混凝土的现存应力值。对单梁现状进行了实体模型有限元分析,以应力释放试验结果验证了模型的合理性;进一步考虑长期服役后材料的劣化,进行了单梁极限承载力非线性分析,最终反算并评定了单梁现状及长期服役后的承载力情况,分析发现,长期服役后,结构的极限承载力降低并不明显;以跨中梁底混凝土不出现拉应力为极限状态的单梁承载力值,不满足现行规范按承载力极限状态设计时基本组合的要求;以跨中梁底混凝土不出现受拉裂缝为极限状态的单梁承载力值可以满足基本组合的要求,但安全储备较小。
     对大地激励下的结构自振特性进行现场测试,采集结构自振频谱,运用自谱及互谱分析得到现状结构的一阶自振频率;用梁格法建立了全桥上部结构模型,结合试验所得一阶频率值,对结构刚度进行评定,结果表明,现状结构仍有一定刚度储备;以不同工况模拟结构铰缝损伤及材料劣化,分析了结构自振特性的变化规律。分析发现,相同程度下,跨中损伤对结构自振频率影响大于四分点位置,而且高阶频率的敏感性较高。考虑材料劣化的长期性,在短期内,混凝土强度的变化对结构自振特性的影响并不明显。
In nearly ten years,with the widely used of high-performance concrete and high strength steel, Prestressed concrete bridges have continuously developed towards the direction of long-span, light and high-performance which greatly promote China’s bridge construction. Prestressed concrete bridge today boasts its dominant position in highway bridge field in our country. At the same time, with its continued rapid development and the elapse of serviced time, we must see the increasingly serious situation in degeneration of bridge’s property, insufficient bearing force, etc. Therefore, it becomes increasingly urgent to analyze the present condition and assess the carrying capacity of prestressed concrete bridge structure. Thus, it has significant meaning to have an in-depth study of the prestressed concrete bridge structure in service.
     This paper aims at evaluating the present durability and over carrying capacity by using the finite element analysis program and the scene and indoor experimental data on the background of a simple-supported prestressed concrete core slab bridge which has serviced for 14 years in Jiao Zhou bay expressway of Qingdao, which would offer reference for future similar.
     There are introduced in detail about the mechanism and theoretical models of the main factors of the existing concrete bridge durability. On this basis, some samples obtained by the current structure of prestressed concrete beams. the carbonization depth, Chlorine ion content and distribution and compressive properties of these concrete samples be tested and the corresponding durability prediction model is used to forecasted the development rule during service period. The test results showed that the bridge bridge durability, but the weak point of the durability was chlorine ion content at the position of beam orer obtuse Angle.
     The stress was released at the quartile and middle of the beam. Based on the method of stress release,existing stress value of the concrete under the beam could be obtained under the gravity and prestressing. The physical model of monospar was analysed by finite element method, and the model was proved reasonable. Deterioration of the material after long-term service was taken into the account, and the ultimate bearing capacity was analysed by the nonlinear mothed. The bearing capacity of monospar at current situation and after long term service were obtained and assessed. The results indicated that the ultimate bearing capacity of the structure was not significantly reduced after long-term service. The ultimate bearing capacity of monospar where tensile stress does not appear to limit state did not meet the requirements according to the fundamental combination. There is no cracks formed by tensile stress, with which as the standard, the bearing capacity of monospar could meet requirements. However, safety reserve was small.
     The test of the structure self-oscillation characteristics was taking on the scene under the earth self-oscillation. It collects natural frequency of vibration and uses spectral analysis and cross-spectral analysis to get the first natural frequency of vibration; Established the superstructure model of the whole bridge in grillage method, combined with test value of first-order frequency, to assess structure stiffness. Results showed that, there is still a certain status structure stiffness reserves. Analyzes the variation law of structure vibration characteristics under different conditions simulation of damage and material degradation. Analysis found that, midspan damage on structure vibration frequency influence greater than four fold point of span in the same degree, and it has had the higher susceptibility of higher-order frequency. In the short term, the effect is not obvious of structure vibration characteristics as a result of strength of concrete changes of considering long-term of the material degradation.
引文
[1] T.Y.Lin and FKlulka. Fifty-year advancement in concrete bridge construction[J]. Journal of the Construction Division,1975, 101(3): 494-510.
    [2]谌润水,胡钊芳,帅长斌.公路旧桥加固技术与实例[M].第一版.北京:人民交通出版社,2001,2-4.
    [3] Russo, F.M., Wipf, TJ., Klaiber, F.W. Diagnostic load tests of a prestressed concrete bridge damage by over height vehicle impact[J]. Transportation Research Record, 2000, 2(1969): 103-110.
    [4] Karim Hariri, Alex Holst, Wichmann Hans-Joachim, et al. Assessment of the State of Condition of Prestressed Concrete Structures with Innovative Measurement Techniques. Structure Health Monitoring, 2003, 2(2): 179-185.
    [5]吕志涛.预应力混凝土在工程中的广泛应用及发展[M].建设部科技司主编中国建筑工程四十年重大科技成就,中国建筑工业出版社,1990
    [6]张德峰,吕志涛.现代预应力混凝土结构耐久性的研究现状及其特点[J].工业建筑,2001(11):1-4.
    [7] Schupack,M. A Survey of the Durability Performance of Post—Tensioning Tendons[J]. ACI Journal,1978,75(10):501-510.
    [8] Schupack,M.and Suarez M.C. Some Recent Corrosion Embrittlement Faiiures of Prestressing Systems in the United States[J].PCI Joumal,1982,27(2):38—55.
    [9]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-380.
    [10]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27 (5):1-4.
    [11]金伟良,赵羽习著.混凝土结构耐久性[M].北京:科学出版社,2002.
    [12]朱安民.混凝土碳化与钢筋锈蚀的试验研究[J].山东省建筑科学研究院,1989,98-101.
    [13]许丽萍,黄土元.预应力混凝土中碳化的数学模型[J].上海建材学院学报,1991,4(4).
    [14]邱小坛,周燕.混凝土碳化规律的研究[J].中国建研院结构所,1994,1,122-125.
    [15]赵宏延.一般大气条件下钢筋混凝土构件剩余寿命测[D].北京,清华大学,1993.
    [16]王晓田.一般大气条件下在用钢筋混凝土结构耐久性评估及剩余寿命预测[D].北京,清华大学,1995.
    [17]牛获涛,陈亦奇,于澎.混凝土结构的碳化模式与碳化寿命分析[J].西安建筑科技大学学报,1995,27,4.
    [18]中国土木工程学会第九届年会学术讨论论文集[C].杭州,2000.
    [19]混凝土结构耐久性及耐久性设计研讨会[C].北京,2002.
    [20] Kang Y J, Scordelis A C. Nonlinear analysis of prestressed concrete frames[J]. Journal of the Structural Division, ASCE, 1980, 106(2): 445-462.
    [21] Van Greunen J, Scordelis A C. Nonlinear analysis of prestressed concrete slabs [J]. Journal of Structural Engineering, ASCE, 1983, 109(7): 1742-1760.
    [22]苏小卒,朱伯龙.预应力混凝土框架的反复荷载试验及有限元全过程滞回分析[J].同济大学学报,1987,15(1):35-46.
    [23] Roca P, Mari A R. Numerical treatment of prestressing tendons in the nonlinear analysis of prestressed concrete structures [J]. Computers and Structures, 1993, 46(5): 905-916.
    [24]吴光宇.大跨P.C.桥梁非线性行为的分析理论及其极限承载力计算研究[D].浙江大学博士学位论文,2006: 7-8
    [25]吴晓涵.预应力混凝土结构非线性有限元分析[J].建筑结构学报,2007,28(4):83-89.
    [26]何雄君,陆爱民.预应力混凝土桥梁因钢束锈蚀的非线性分析[J].公路交通科技,2010,27(1):58-61.
    [27]高立堂,陈礼刚,李晓东等.无粘结预应力混凝土板火灾行为的非线性分析[J].应用力学学报,2007,24(3):490-493.
    [28]周勇,张峰,李术才等.开裂后预应力混凝土连续箱梁计算模型[J].长安大学学报(自然科学版),2008,28(3):53-58.
    [29]倪宝伟.公路桥梁承载力评估方法研究[D].上海.上海同济大学土木工程学院,2009:2-11.
    [30]王永平,张宝银,张树仁.桥梁使用性能模糊评估专家系统[J].中国公路学报,1996,9(2):62-68.
    [31]杨则英,黄承逵,曲建波.基于自适应神经—模糊推理系统和遗传算法的桥梁耐久性评估[J].土木工程学报,2006,39(2):16-20.
    [32]贺拴海,郭琦,宋一凡等.RC桥梁健康状况及承载能力的动力评估试验[J].长安大学学报(自然科学版),2003,23(6):36-39.
    [33]胡大琳,王克鸿,罗丁.钢筋混凝土梁桥破损模态分析及承载力评定[J].西安公路交通大学学报,1999,19(2):31-35.
    [34]宗周红,阮毅,任伟新.基于动力的预应力混凝土独塔斜拉桥承载力评估[J].铁道学报,2004,26(3):86-94.
    [35]孙晓燕,黄承逵,窦玉秋.考虑超载影响的混凝土简支梁结构动态评估[J].水力发电学报,2005,24(3):105-109.
    [36]邹兰林.基于实测数据库修正的板桥动力综合评定系统研究[D].陕西西安.长安大学博士论文,2008:7-8.
    [37]中华人民共和国国家标准(GB/T50283-1999)公路工程结构可靠度设计统一标准[S].北京:人民交通出版社,1999
    [38]张建仁,刘扬,许福友,郝海霞.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社,2003.
    [39] Schajer GS. Application of Finite Element Calculation to Residual Stress Measurement[J].Journal of Engineering Materals and Technology, 1981,103(5):157-163.
    [40]夏荣泉.预应力混凝土梁极限承载力非线性有限元分析[D].陕西西安.长安大学硕士论文,2005:4-5.
    [41] Belytschko T, Liu W K, Moran B. Nonlinear Finite Element for Continua and structures.[M].John Wiley & Sons Inc,2000.
    [42]董毓利.混凝土非线性力学基础[M].北京:中国建筑工业出版社,1997.
    [43]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [44] MICHAEL P E, DAN M F. Service-life prediction of deteriorating concrete bridges. [J]. J Struct Eng, 1998,124(3):309-317.
    [45]刘扬,张建仁.钢筋混凝土桥梁服役期间的可靠性评价[J].中国公路学报,2001(2):61-65.
    [46]赵尚传,赵国藩,贡金鑫.在役混凝土结构最优剩余使用寿命预测[J].大连理工大学学报,2002,42(1):83-88.
    [47]卫红蕊,吕颖钊.在役钢筋混凝土梁桥承载力可靠度预测[J].交通标准化,2007,1: 40-45.
    [48]范宏.混凝土结构中的氯离子侵入与寿命预测[D].陕西西安,西安建筑科技大学博士论文,2010.
    [49]刘杰.预应力混凝土构件耐久性试验[D].上海,同济大学,2008.
    [50]张巨松,曾尤.建筑混凝土工程历史、现状及发展趋势[J].建筑技术开发,2001,28(3):49-50.
    [51]冯乃谦.日本混凝土耐久性问题的历史发展及其对策[J].混凝土,2003,(7):14-17.
    [52]夏宁,孝民,任青文.混凝土结构耐久性研究现状[J].水利水电科技进展,2005,25(4):65-70.
    [53] Basheer L,Basheer P A M,Long A E.Influence of coarse aggregate on the Permeation,durability and the microstructure characteristics of ordinary Portland cement concrete[J].Construction and Building Materials,2005,19(9):682-690.
    [54]耿欧,袁广林.混凝土碳化及其应力-应变关系的试验研究[J].东南大学学报(自然科学版),2002,32 Sup:189-192.
    [55]龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990:65-70.
    [56]刘志勇,孙伟.多因素作用下混凝土碳化模型及寿命预测[J].混凝土,2003,(12):3-7.
    [57]牛荻涛,王庆霖.一般大气环境下混凝土强度经时变化模型[J].工业建筑,1995,25(6):36-38.
    [58]牛荻涛.海洋环境下混凝土强度经时变化模型[J].西安建筑科技大学学报,1995,27(1):49-53.
    [59]张建仁,刘扬.混凝土桥梁构件服役期的抗力概率模型[J].长沙理工大学报(自然科学版),2004,1(1):27-33.
    [60]牛荻涛.混凝土结构耐久性与寿命预测[M].科学出版社,2003.
    [61]张德思,成秀珍.混凝土在工业环境下的抗化学侵蚀性[J].工业建筑,1999,29(11):51-52,65.
    [62]王智,黄煜镔,王绍东.当前国外混凝土耐久性问题及其预防措施综述[J].混凝土,2000,(1):52-57,47.
    [63] J. Marchand, M. Pigeon, etc. Influence of Chloride Solution Concen-tration on Deicer Salt Scaling Deterioration of Concrete. ACI Materials Journal, July-August, 1999: 429-435.
    [64] Chatterji S.On the application of Fick’s Second Law to chloride migration through Portland cement concrete[J].Cement and Concrete Research,1995,25:299-303
    [65]董恩波,宛贺芹,王莉莉.用电位滴定法测定混凝土外加剂中氯离子含量[J]。混凝土,1991,(5):23-34.
    [66] Thomas M.D. A.and Bentz E.C. Life-365: Computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides. 2001,12:11-23.
    [67]洪定海,潘德强.华南海港钢筋混凝土码头锈蚀破坏情况的调查报告[J].北京:水运工程,1982,(6):47-54.
    [68]王胜年,黄君哲.华南海港码头混凝土腐蚀情况的调查与结构耐久性分析[J].北京:水运工程,2000,(2):134-149.
    [69]冯乃谦.高性能混凝土[M].中国建筑工业出版社,1996:237,245-246.
    [70]杨全兵,吴学礼,黄士元.去冰盐引起的混凝土的盐冻剥蚀破坏[J].混凝土,1995,(6):29-35.
    [71]毛洲明.基于钢筋工作性能劣化的既有RC桥梁剩余承载能力及耐久性研究[D].四川重庆,重庆交通大学,2009.
    [72]洪乃丰.混凝土中钢筋腐蚀与结构物的耐久性[J].公路,2001(2).
    [73]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998
    [74]孙彬,牛荻涛,王庆霖.锈蚀钢筋混凝土梁抗弯承载力计算方法[J].土木工程学报,2008,41(11):1-6.
    [75]郑亚明,欧阳平,安琳.锈蚀钢绞线力学性能的试验研究[J].现代交通技术,2005,2(6):33-36.
    [76]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报,2002,36(4):352-356.
    [77]范颖芳,黄振国,李建美等.受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能研究[J].工业建筑,1999,28(8):49-51.
    [78]袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的试验研究[J].工业建筑,1999,29(11):47-50.
    [79]赵羽习,金伟良.锈蚀箍筋混凝土梁的抗剪承载力分析[J].浙江大学学报(工学版),2008,42(1):19-24.
    [80] Shuenn-Chern Ting, Andrzej S. Nowak. Effect of reinforcing Steel Area Loss on Flexural behavior of reinforced concrete beams. ACI Structural Journal, 1991, 88(3):309~314.
    [81]惠卓,王庆霖.受损构件承载力的计算机模拟[J].西安建筑科技大学学报,1997.29(4):431-434.
    [82]袁迎曙,贾福萍等.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001,(3):47-52.
    [83]苏文浩.常规中小跨径砼公路梁板桥病害与管理[J].交通世界,2009,9:190-194.
    [84]王敏.从预应力损失角度对混凝土桥梁病害成因的研究[D].湖北,武汉理工大学,2005.
    [85]白鹏翔.大跨径PC桥梁病害成因分析及有效预应力测试方法研究[D].陕西,长安大学,2007.
    [86]邓志恒,罗志佳,林俊.预应力损失对箱梁腹板斜裂缝影响分析[J].中外公路,2008,28(3):71-74.
    [87]吴迅,李君凤,王艺桥.宽底板预应力混凝土桥梁横向应力分析[J].浙江大学学报(自然科学版),2010,38(4):481-485.
    [88]林益恭,王强,舒翔.严重超载下的高速公路桥梁结构承载力状况分析[J].中外公路,2008,29(4):96-100.
    [89]徐芝纶.弹性力学[M].第3版.北京:高等教育出版社,1990,97-103.
    [90] r. H.萨文.孔附近的应力集中.第一版.北京:科学出版社,1958,4-291.
    [91]徐颖强,李尊朝,余杨.浅盲孔测量残余应力的分析[J].西北工业大学学报,1998,16(3):382~386.
    [92]陆才善,陈明亮,侯德门.钻阶梯形孔测量深层平面残余应力[J].西安交通大学学报,1989,23(1):55—61
    [93] Nobre J P, Kornmeier M, Dias A M, Schol tes B.Use of the Hole-drilling Method for Measuring Residual Stresses in Highly Stressed Shot-peended Surfaces. Experimental Mechanics, 2000,40(3):289—297.
    [94]过镇海,时旭东编著.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [95]梁兴文,叶艳霞.混凝土结构非线性分析[M].北京:中国建筑工业出版社,2007.
    [96]蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1980.
    [97]江见鲸著.钢筋混凝土结构非线性有限元分析[M].陕西:陕西科学技术出版社,1994.
    [98]朱伯芳著.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.
    [99]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1996.
    [100]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700