TiO_2-SnO_2复合半导体催化剂对气相污染物的光催化降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Studies of Photocatalytic Degradation of Pollutants in Gas Phase on TiO_2-SnO_2 Compound Semiconductor Catalyst
  • 作者:薛宝永
  • 论文级别:硕士
  • 学科专业名称:环境科学
  • 学位年度:2004
  • 导师:徐自力
  • 学科代码:083001
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-06-01
摘要
本文以TiO2和SnO2为大气中半导体的代表,对大气中复合半导体的光催化氧化进行初步研究。分别采用共沉淀工艺和溶胶-凝胶工艺制备了TiO2-SnO2复合半导体,并以庚烷为代表,在C7H16(0.1%)-O2(20%)-N2- TiO2-SnO2体系中考察了利用不同工艺、不同制备条件、不同前驱体制备的复合半导体的光催化活性,优化了复合半导体的制备条件。大量实验的结果表明,采用溶胶-凝胶法制备的样品活性优于共沉淀工艺;在溶胶-凝胶工艺中最佳的制备条件是:以SnCl2·2H2O为引入Sn的前驱体,水解抑制剂HCl的 用量为5.28mL,n(Sn):n(Ti)=0.06,溶胶陈化时间为132h,直接将干凝胶在300℃下焙烧2h。
    根据制备优化实验确定的溶胶-凝胶工艺的条件,按照大气中Sn和Ti 元素的实际含量范围,制备了一系列不同Sn、Ti比值的TiO2-SnO2复合半导体,并运用TG-DTA、UV-vis、XRD、XPS和红外光谱等手段对它们进行了表征。
    实验发现,当Sn和Ti比例为0.53以上时,复合半导体获得最佳活性的焙烧温度升高为400℃,这是因为复合SnO2的增多抑制了TiO2的晶型转变。在C7H16(0.1%)-O2(20%)-N2- TiO2-SnO2体系中对同一样品进行多次重复测试,发现其光催化活性没有明显变化。
    分别探讨了此系列复合半导体对庚烷、甲苯、SO2的光催化降解情况,比较它们的反应速率;并以生成的CO2浓度变化情况为指标,分析了它们对有机物的光催化降解时的矿化情况;最后还对这些反应的动力
    
    
    学进行了初步探讨。对三种污染物的降解研究都表明:不同Sn和Ti比例的复合半导体的光催化活性变化很大,当n(Sn):n(Ti)=0.06时样品活性最好;随着SnO2的复合量的提高,反应活性越来越低,高复合量的比低含量的复合半导体差很多。这是因为一方面,称取催化剂的量保持0.1g不变,造成样品中具有光催化活性的TiO2量随着SnO2的复合量的提高在减少;另一方面,SnO2增多,对样品的光催化活性起到了负面影响也逐渐增强。另外,动力学研究表明,大多数样品催化反应符合一级反应动力学规律,而且活性越好的样品,反应的表观速率常数越大,个别活性非常差的样品催化反应符合零级反应动力学规律。
In this paper, we chose TiO2 and SnO2 as the representative semiconductor oxides to study the photocatalytic reactions in the atmosphere. TiO2-SnO2 compound semiconductor was prepared by co-precipitation method and Sol-Gel method. We investigated the photocatalytic activities of samples prepared by different methods and different conditions and different predecessors in the system of C7H16 (0.1%)-O2(20%)-N2-TiO2 by the photocatalytic degradation of heptane. From the repeated experiments, we concluded that activities of samples prepared by Sol-Gel method are better than those of co-precipitation method and the optimal conditions to prepare TiO2-SnO2 compound semiconductor by Sol-Gel method:Use SnCl2·2H2O as the predecessor of Sn; The level of HCl is 5.28mL; n(Sn):n(Ti)=0.06; The aging stage of sol is 132h; Calcinate the dry gel powders at 300℃ for 2h directly.
    According to the conditions of above and the actual concentration range of Sn and Ti element in the atmosphere, compound semiconductor samples of different Sn/Ti specific values were prepared and they were characterized by XRD 、TG-DTA、UV-vis spectrum、XPS and IR spectrum.
    Experiment results indicate that when the value of n(Sn)/n(Ti) is higher than 0.53, the best calcination temperature of samples should be 400℃ . This is because excessive SnO2 in the samples can inhibit the transition of TiO2 from undefined structure to anatase phase. In the system of
    
    
    C7H16(0.1%)-O2(20%)-N2- TiO2-SnO2 , the same sample was used for many times and we found the photocatalytic activity of the sample has no change.
    We studied the photocatalytic degradation of heptane and methylbenzene and SO2 separately, checked the reaction rates; Use the increased concentration of CO2 as the index to assessment the nineralization of heptane and methylbenzene. We also studied the kinetic indexes of those reactions preliminarily. All the degradation reactions of the three pollutants showed that the photocatalytic activities of different samples vary within a large range, the sample of n(Sn):n(Ti)=0.06 has the highest photocatalytic activity and the more SnO2 in compound semiconductor, the lower photocatalytic activity it would be. One reason is the catalyst use level was fixed to 0.1g, so the value of TiO2 will be decreased as the value of SnO2 increased; the other is as SnO2 increased in sample the negative effect for photocatalytic activity increased correspondingly. The results of kinetic analyses showed that most of the reactions match the first-order reaction and the value of the apparent rate constant increased as the photocatalytic activity got higher, a few reactions of samples with low activities match the zero order reaction.
引文
[1] Fujishima A.,Honda K.,Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature,1972, 238(5358): 37-38
    [2] 黄汉生,日本二氧化钛光催化剂环境净化技术开发动向,现代化工,1998(12):39-42
    [3] 冯良荣,TiO2光催化氧化十二烷基苯磺酸钠,环境污染治理与技术,2001,2(2):14-20
    [4] Lingsebigler A L,Lu G.Q,Yates J.T,Photocatalysis on TiO2 Surface:Principles, Mechanisms and selected Results, Chem.Rev, 1995 (3): 735-758
    [5] 胡春,王怡中,汤鸿宵,多相光催化氧化的理论与实践发展,环境科学进展, 1995,3(1):55-64
    [6] Tomoaki M., Sadataka M., Yoshiyuki N.,Manufacture of mul-functinal building materials with photacatalysis-containing paint layers, Jph..Kokai Tokyo Koho JP 2000 ,72-570
    [7] Gratzel M.,Heterogeneous Photochemical Electron Transfer,CRC Press,Baton Rouge,FL,1998
    [8] 于向阳,梁文,杜永娟等,二氧化钛光催化材料的应用,材料导报,2000,14(2):38-40
    [9] 豆俊峰,邹振扬,郑泽根,纳米TiO2的光化学特性及其在环境科学中的应用,材料导报,2000,14(6):35-37
    [10] Schwitzgebel J.,Ekerdt J.G., Gerischer H.,et al.,Role of the Oxygen Molecule and of Photogenerated Electron in TiO2
    
    
    Photocatalyzed Air Oxidation Reactions, J.Phys.Chem.,1995,99(15): 5633-5638
    [11] 叶锡生,焦正宽,张立德等,板钛基TiO2纳米晶的结构相变和热稳定性,材料研究学报,1999,13(5):487-491
    [12] 沈伟韧,赵文宽,贺飞等,TiO2光催化反应及其在废水中的应用,化学进展,1998,10(4):349-361
    [13] Salvador P.Gonzalez Garcia M.L.,Munoz F.,Catalytic Role of Lattice Defacts in the Photoassisted Oxidation of Water at(001)n-TiO2 Rutile,J.Phys. Chem.,1992,96(25): 10349-10353
    [14] Yamashita H.,Kamada N.,He H.et al.,Reduction of CO2 with H2O on TiO2 (110) Single Crystals under UV-irradiation, Chem.Lett.,1994,(5): 855-858
    [15] 刘秀华,TiO2纳米粒子薄膜对气相有机物的光催化降解研究,硕士论文,2001
    [16] 井立强,ZnO超微粒子的制备、改性、表征及其在SO2与烃的气相光催化反应中催化作用的研究,硕士论文,1997
    [17] Linsebigler A.L.Guangquan L.,John T.Y.,et al.,Photocatalysis on TiO2 Surfaces:Principles,Mechanisms and Selected Results,Chem.Revi., 1995,95(3): 735-758
    [18] Martern S.T., Lee A.T.,Hoffmann M.R.,Chemical Mechanism of Inorganic Oxidants in the TiO2/UV Process:Increased Rates of Degradation of Chlorinated Hydrocarbons, Environ.Sci.Technol., 1995, 29(10): 2567-2573
    [19]王训,祖庸,李晓娥,纳米TiO2表面改性,化工进展,2000,(1): 67-69
    
    [20] 白玉兰,孔德良,叶庆国,纳米TiO2光催化剂固定化技术及其改性的研究进展, 青岛化工学院学报[J] 2001, 22 (4): 326~333
    [21] 万海保,曹立新,王丽颖等,染料敏化的TiO2纳米晶多孔膜的性质及其光电转换,化学通报,1999,(6):30-34
    [22] 沈伟韧,赵文宽,贺飞等,TiO2光催化反应及其在废水中的应用,化学进展,1998,10(4):349-361
    [23] Lwasaki M, Hare M, Cobalt Ion-Doped TiO2 photocatalyst reponse to visiblelight,J Colloid Interface Sci, 2000,224(1): 202-204
    [24] Taleuchi M, YamashitaH,Matsuoka M,etal,Photo-catalytic decomposition of NO under visible light irradition on the Cr-ion-implanted TiO2 thin film photocatalyst, Catalletters,2000, 67(2-4): 135-137
    [25] Kata K,Tsuzki A,Torll Y,etal,Morphology of thin anatasecoatings prepared for malk oxide solutions containing organic polymer affecting the photocatalytic decomposition of aqueousacetic acid,JmaterSci,1995,30(3):837-841
    [26] 张峰,李庆霖,杨建军等,TiO2光催化剂的可见光敏化研究,催化学报,1999,20(3):329-332
    [27] Zhe Y,Zhang L,etal,The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol-gel method with TiC14 as a precusor,Appl Surf Sci ,2000,158(12):32-37
    [28] Askokkumar M, Maruthamuthu P,Preparation and characterizatiuon of doped WO3 photocatalyst powders,J Mater
    
    
    Sci,1989,24(6): 2135-2139
    [29] Choi W.,Termin A.,Hoffmann M.,The Role of Metal Ion Dopants in Quantum-SizedTiO2:Correlation between Photoreactivity and Charge-carrier Recombination Dynamics,J.Phys.Chem.,1994,98(51): 13669-13679
    [30] 水淼,岳林海,徐铸德,稀土元素掺杂TiO2的光催化特性,物理化学学报,2000,16(5):459-46
    [31] 于向阳,程继健,杨阳等,稀土元素掺杂对TiO2光催化性能的影响,华东理工大学学报,2000,26(3):287-28
    [32] 王承遇,钟萍,姜妍彦,掺杂铈对玻璃表面TiO2薄膜上油酸的光催化降解的影响,催化学报,2000,21(5):443-446
    [33] 朱永法,张利,姚文清等,溶胶-凝胶法制备薄膜型TiO2光催化剂,催化学报,1999,20(3):362-364
    [34] Vogel R.,Hoyer P.,Weller H.,Quantun-sized PbS,CdS,Ag2S,Sb2B3 and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-band Gap Semiconductors,J.Phys.Chem., 1994,98(12):3183-3188
    [35] Liu D.,Kamat P.V.,J.Electroanal. Chem. Interfacial Electrochem., 1993,347:451-456
    [36] 袁志好,张立德,掺锌的TiO2纳米粉的结构相变及发光性质,高等学校化学学报,1999,20(7):1007-1011
    [37] 施利毅,李春忠、古宏晨等,SnO2-TiO2复合颗粒的形态结构及光催化活性,化学物理学报,2000,13(3):336-341
    [38] Do Y.R.,Lee W.,Dwight K. et al.,the Effect of WO3 on the Photocatalytic Activity of TiO2,J.Solid State Chem., 1994,
    
    
    108(1):198-201
    [39] 施利毅,古宏晨,李春忠等,SnO2-TiO2复合光催化剂的制备和性能,催化学报,1999,20(3):338-342
    [40] 冷文华,成少安,刘鸿等,负载型TiO2光催化降解苯胺,环境科学学报,2000,20(4):449-503
    [41] BedjaI,Kamat PV,etal, Capped Semiconductor Colloids Synthesis and Photoelectro chemical Behavior of TiO2-Capped SnO2 Nanocrystallites, J Phys Chem, 1995,99(22):9182-9188
    [42] Elder SH, Cot FM. The discovery and study of nanocrystalline TiO2-MoO3 Core-Shel Materials,AM Chem Soc,2000,122(21):5138-5146
    [43] 张长拴,李志勋,张乐等,超细纳米TiO2/Al2O3复合体的制备及其组成分布的研究,化学研究与应用,2000,12(4):379-381
    [44] Luan Z.H.,Estelle M.Maes,Paul A.W.,et al.,Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15, Chem. Mater.,1999, 11:3680-3686
    [45] 赵敬哲,杨少凤,王子忱等,制备高比表面多孔Ti-Si复合氧化物材料的新方法,高等学校化学学报,2000,21(2):292-294
    [46] Hadjiivanov K.,Reddy B.M.,Kn?zinger H.,FTIR Study of Low-temperature Adsorption and CO Adsorption of 12CO and 13CO on a TiO2-SiO2 Mixed Oxide,Applied Catalysis A:General,1999,188:355-360
    [47] Vogel R.,Hoyer P.,Weller H.,Quantun-sized PbS,CdS,Ag2S,Sb2B3 and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-band Gap
    
    
    Semiconductors,J.Phys.Chem., 1994,98(12):3183-318
    [48] Bokhimi X.,BoldúJ.L.,Mu?oz E., etc.,Structure and Composition of the Nanocrystalline Phases in a MgO-TiO2 System Prepared via Sol-Gel Technique, Chem.Mater.,1999,11:2716-2721
    [49] Becker W.G.,Truong M.M.,Ai C.C.,et al.,Interfacial Factors that Affect the Photoefficiency of Semiconductor Sensitized Oxidations in Nonaqueous Media,J.Phys.Chem., 1989,93 (12): 4882-4886
    [50] Yoneyama H., Haga S., Yamanaka S., Photocatalytic Activities of Microcrystalline TiO2 Incorporated in Sheet Silicates of Clay, J. Phys. Chem., 1989, 93 (12): 4833-4837
    [51] Fox M A, Dulay M T, Heterogeneous photocatalysis, Chem Rev, 1993:341-350
    [52] 蒲敏,王海霞,吉宏伟等,TiO2-SnO2复合凝胶的结构表征及其吸附与光催化性能研究, 燃料化学学报,2001, 29(增刊):174-176
    [53] 高春华,黄新友,纳米TiO2半导体催化活性的研究进展, 电子元件与材料,2002,21(11): 30-33
    [54] 菅盘铭,夏亚穆,李德宏等, 掺杂TiO2纳米粉的合成、表征及催化性能研究,催化学报, 2001,22(2):161-164
    [55] 张怡, 施利毅, 张仲燕,纳米SnO2/TiO2复合光催化材料的制备, 上海大学学报(自然科学版), 2000, 6(4):333-337
    [56] 李燕, 段国荣,TiO2- SnO2纳米粉末的制备及表征, 材料科学与工艺, 2000, 8(2):92-93
    
    [57] 刘成林,李远光,钟菊花等, TiO2/SnO2超微粒及其复合LB膜的紫外-可见光吸收光谱的研究, 功能材料, 1999,30(2):223-224
    [58] 颜秀茹,李晓红,霍明亮等, 纳米SnO2@ TiO2的制备及其光催化性能, 物理化学学报, 2001, 17 (1) : 23 - 28
    [59] 李晓红,颜秀茹, 张月萍等, TiO2/ SnO2复合光催化剂的制备及光催化降解敌敌畏,2001,18(1):32-35
    [60] 余家国,赵修建,赵青南, 掺锡TiO2复合薄膜的制备和光催化性能研究, 复合材料学报,2000, 18(1):79-82
    [61] 彭峰,任艳群, TiO2-SnO2复合纳米膜的制备及其光催化降解甲苯的活性,催化学报,2003,24(4):243-247
    [62] Akihiko H, Yoshifumi T, Hiroaki T, et al. Patterning Effect of a Sol-Gel Overlayer on the Photocatalytic Activity of a TiO2/SnO2 Bilayer-Type Photocatalyst, Journal of Sol-Gel Science and Technology, 2001,22:53-61
    [63] 董俊, 杨宏昀, 李春忠等, 气相燃烧合成纳米复合粒子的形态与结构,无机化学学报, 2003,19(2):142-146
    [64] 李玉林,几种重要的大气污染物的危害及其治理,内蒙古石油化工,2001,27(1):28~30
    [65] 尚静,徐自力,杜尧国, TiO2纳米粒子气-固复相光催化氧化VOCs作用的研究进展, 环境污染治理技术与设备,2000,3:67-76
    [66] 王琳,张峰,CS2在大气颗粒物表面上的催化氧化反应研究,宁夏大学学报(自然科学版),2001,22(2):169-171
    [67] Baltensperger U, Ammann M, KalbererM, etal.
    
    
    Chemicalreactionson aerosol particle surfaces: concept and methods,J Aerosol Sci,1996,27:S651
    [68] 林仁伦,曹继英,南充市城区大气颗粒物分布规律的探讨,四川师范学院学报(自然科学版),1997,18(3):216-220
    [69] Parmon VN, Zakharenko VS. Photocatalysis and photosorption in the Earth's atmosphere.CATTECH, 2001 , 5 (2): 96-115
    [70] Parmon VN, Abiogenic Catalysis in Nature.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001 , 151: 351-365
    [71] V.N.Parmon,Colloids and surfaces A: physicochem. Eng.Aspects, 151(1999):351
    [72] K.I.Zamaraev,M.I.Khramov,and V.N.Parmon,Catal, Rev.-Sci. Eng.,36(1994): 617
    [73] 陶跃武,赵梦月,空气中有害物质的光催化去除,催化学报,1997,18(4):345-347
    [74] N.Serpone and E.Pelizzetti (Eds.),Photocatalysis. Fundamentals and Applications,Wiley,New York,1989
    [75] D.F.Ollis and H.Al-Ekabi (Eds.),Photocatalytic Purification and Treatment of Water and Air,Elsevier,Amsterdam,1993
    [76] V.N.Parmon (Ed.),Photocatalysis and Solar Energy Conversion. Catalysis Today,39,,No.3 (1997)
    [77] M.Rodriguez,J.B.Galvez,and J.-M.Herrmann (Eds.),Solar Catalysis for Water Decontamination, Catalysis Today,54,Nos.2 –3,(1999)
    [78] V.N.Parmon (Ed.),Photocatalysis and Its Application,Catalysis
    
    
    Today,58, Nos.2 –3 (2000)
    [79] 康锡惠,刘梅清 编著,光化学原理与应用,天津大学出版社,1998,110
    [80] 石中玉 编著,紫外线光源及其应用,轻工业出版社出版,1984,130
    [81] 徐华蕊,李凤生,陈舒林等, 沉淀法制备纳米级粒子的研究,化工进展, 1996(5):29-31
    [82] 施利毅,戴清,郭妍等,纳米SnO2/TiO2复合颗粒形态结构表征,功能材料,2001,32(5):532-533
    [83] 赵旭,王子忱,赵敬哲等,球形二氧化钛的制备,功能材料,2000,31(3):303~304
    [84] Geffcken W,Berger E. Dtsch Rei Chspatent . J enaer Galswerk Sohool and Gen. J ena . GDR. 1939 ,736 :411
    [85] 尹荔松,周歧发,唐新桂,等. 溶胶- 凝胶法制备纳米TiO2 的胶凝过程机理研究,功能材料,1999 ,30 (4):407-409
    [86] 刘平,周廷云,林华香等,TiO2/SnO2复合光催化剂的耦合效应, 物理化学学报, 2001,17(3):265-269
    [87] 李来风,潘晓晴,纳米SnO2粉末的制备,材料研究学报,2000,14(1): 37-41
    [88] 程银兵,马建华,吴广明等,热处理对溶胶-凝胶TiO2薄膜的晶相转变和性能影响,功能材料,2003, 34(1): 73
    [89] Vinodgopal K, Kamat P V.Enhenced rates of photocatalytic degration of an azo dye using SnO2/ TiO2coupled semiconductor thin films [J]. Environ Sci Technol, 1995,29: 841–845
    [90] 刘河洲,陈鸿雁,张豪,纳米TiO2的相变及锐钛矿晶粒生长,
    
    
    上海交通大学学报,2001,35(5):680–683
    [91] 贺蕴普,李亚栋,李龙泉等, 纳米SnO2的制备,应用化学,1998,15(6): 92–93
    [92] 余家国,赵修建,多孔TiO2光催化纳米薄膜的制备和微观结构研究,无机材料学报,2000,15(2):347–355
    [93] 董国利,王建国, 高荫本等,CeO2-TiO2复合氧化物的制备及其表征, 无机材料学报,1999,14(6):873-880
    [94] 杜尧国,徐自力,郭海忱,GC及GC/MS分析大气中气相有机污染物,环境化学,1991,10:69-71
    [95] 尚静,纳米氧化物粒子的光催化性质研究,博士学位论文,2001
    [96] Djeghri N., Formenti M., Juillet F., Techner S. J., Photointeraction on the Surface of Titanium Dioxide between Oxygen and Alkanes,Faraday. Discuss. Chem. Soc., 1974, 58: 185-193
    [97] Blake N. R., Griffin G. L., Selectivity Control during the Photoassisted Oxidation of 1-Butanol on Titanium Dioxide,J. Phys. Chem., 1988, 92 (20): 5697-5701
    [98] Sato S., Photo-Kolbe Reaction at Gas-Solid Interfaces, J. Phys. Chem., 1983, 87: 3531-3536
    [99] Augugliaro V.,Coluccia S.,Loddo V.,et al.,Photocatalytic Oxidation of Gaseous on Anatase TiO2 Catalyst:Mechanistic Aspects and FT-IR Investigation, Appli Catal.B:Environ.,1999,20(1):15-27
    [100]赫吉明,马广大. 大气污染控制工程. 北京:高等教育出版社,1991,3
    [101]王丽艳, 郭军, 乌鲁木齐市SO2 污染现状调查与成因分析,新疆 环境保护,1999,21(2):27-30
    
    [102] Alberici R.M., Jardim W.F., Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, Appli. Catal. B: Environ., 1997, 14 (1): 55-68
    [103] Dibble L. A., Raupp G. B., Kinetics of the Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near UV Illuminated Titanium Dioxide, Catal. Lett., 1990, 4: 345-354
    [104] Peral J., Ollis D. F., Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation, J. Catal., 1992, 136 (2): 554-565

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700