6H-SiC肖特基势垒源漏MOSFET理论和实验的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)由于其有热导率高、电子的饱和速度大、击穿电压高等优点而成为制作高温、高频、大功率和抗辐射器件的极具潜力的宽带隙半导体材料。本文提出了一种新型SiC金属氧化物半导体场效应晶体管(MOSFET)结构——SiC肖特基势垒源漏MOSFET。该结构能有效地抑制在器件尺寸大幅度降低时困扰常规MOSFET的短沟效应,避免了离子注入和高温退火工艺对SiC常规MOSFET性能的严重影响。目前国内外在此方面的研究还处于空白,本文从以下方面开展了研究工作:
     (1)SiC肖特基接触模型研究。本文通过精确求解一维定态薛定谔方程得到电子通过三角形势垒的隧穿几率,该方法比WKB近似更精确。利用本文计算隧穿几率的方法,采用费米分布代替常用的玻尔兹曼分布优化了SiC肖特基结的电流输运模型。该模型具有更大的普适性、更适合工作在高场条件下的SiC材料,并且能够连续的计算热电子发射电流和隧穿电流。
     (2)SiC肖特基势垒源漏MOSFET的理论模型研究。在深入研究肖特基源漏MOSFET工作机理的基础上,对SiC肖特基源漏N沟MOSFET建立了数值-解析模型。模型中引入了有效沟道厚度的概念来描述电流流过的等效截面,正确地计入了隧道电流和势垒降低的影响,能够正确地反映器件的特性。模拟结果显示源极肖特基接触的势垒高度是影响器件特性的主要因素,随着温度升高,器件的特性将变得更好。对SiC肖特基势垒源漏MOSFET的阈值电压给出物理描述:在表面进入强反型后,当源极载流子主要以场发射方式进入沟道时器件进入线性区,此时的栅电压就是器件的阈值电压。
     (3)SiC肖特基势垒源漏MOSFET器件结构的研究。初步的实验结果说明侧墙是影响器件特性的主要因素。采用二维模拟软件模拟了侧墙对器件特性的影响。模拟结果说明侧墙厚度在0.1μm以下时对器件特性的负面影响较小。0.1μm以上沟道要在较大的源漏电压下才能开启,饱和电流急剧减小。本文首次提出和论证了具有场致源漏扩展效应的SiC肖特基势垒源漏MOSFET。这种结构通过覆盖在钝化层上的金属场板实现场致源漏扩展,肖特基势垒的宽度被这个金属场板控制。该结构能有效地消除侧墙的影响,提高器件的开态电流。而且该器件的特性对侧墙的厚度不敏感,使得工艺过程更容易控制。
     (4)6H-SiC多晶硅源漏-MOSFET的实验研究。高频CV测试中采用了正面接地的新的测试结构,克服了常规测试结构的缺点。通过实验说明了该结构是可行的。本文首次提出采用多晶硅做源漏接触,设计和制备了6H-SiC多晶硅源漏-MOSFET。对测试结果的分析说明:由于刻蚀对SiC造成的表面损伤严重影响了栅氧化层的质量,导致栅电压的控制能力很弱。在此基础上提出了工艺改进措施以及进一步的设想。
Silicon carbide is an attractive wide band semiconductor material in high-temperature, high-frequency, high-power and radiation resistant applications due to its excellent physical properties such as high breakdown voltage, high thermal conductivity and high saturation electron drift velocity. A novel SiC Schottky Barrier Source/Drain Metal-Oxide-Semiconductor Field-Effect Transistor (SiC SBSD-MOSFET) is proposed in this dissertation. This kind device can effectively suppress short channel effects for the scaling down of conventional MOSFETs, avoiding the serious effect of the steps of ion implantation and annealing at high temperature on the conventional SiC MOSFET. There are few papers about this device so far. The main studies and contributions of this dissertation are as follows.
     (1) The study on the model of SiC schottky contacts. The electron tunneling probabilities through triangular barrier to be accurately solved by the one-dimensional time-independent Schro|¨dinger equation is calculated. The presented method is more accurate than the usually used method with WKB approximation. The model of SiC schottky contacts is optimized in which Femi distribution is adopted instead of Boltzmann distribution based on the tunneling probabilities calculated with the presented method. The proposed model has the advantages of more universality, more suitability for SiC in high-field application and seamless calculation of thermionic emission and tunneling current.
     (2) The study on the theoretical model of SiC SBSD-MOSFET. A numerical-analytical model for SiC SBSD-NMOSFET is presented based on the analysis of the operational mechanism of this device. The device performance is correctly described by presented model including the effect of tunneling current and the barrier lowering in which an equivalent channel thickness is proposed for describing equivalent cross-section of current. The simulated results show that the barrier height at source contact greatly affects on the device performance and its feature will have more improvement as operational temperature rises. Threshold voltage of SiC SBSD-MOSFETs is analyzed. The threshold voltage of the device is defined as the gate voltage at which carriers from the source contact enter the channel by field emission mode while the channel is strongly inverted.
     (3) The study on the structure of SiC SBSD-MOSFET. The width of sidewall strongly affects on the device performance from the first experiment. The effect of sidewall on the performance of this kind device is simulated with 2-D simulator. The simulated results show that sidewall with the width less than 0.1μm slightly affects on the device performance. However when the width of sidewall exceeds 0.1μm, the conduction does not occur until the drain voltage is high enough and saturation current is pretty low. A novel SiC SBSD-NMOSFET with field-induced source/drain extension is proposed and demonstrated for the first time. In the new device the FISD extension is induced by a metal field-plate lying on the top of the passivation oxide and the width of Schottky barrier is controlled by the metal field-plate. The new structure not only eliminates the effect of the sidewalls but also significantly improves the on-state current. Moreover the performance of the presented device exhibits very weak dependence on the widths of sidewalls, so process control becomes easier and more reliable.
     (4) The study on the experiment of 6H-SiC MOSFET with polysilicon as source/drain contacts. A new front-to-front measurement structure is used for High-frequency C-V measurement. Experiment results show this structure is feasible with advantages over conventional test structure. The scheme of polysilicon as source/drain contacts is proposed for the first time. 6H-SiC MOSFETs with polysilicon as source/drain contacts are designed and fabricated. Measurement and analysis results show that the serious effect of etching process on the surface of SiC is the cause of inferior quality of gate oxide which strongly depresses the control of gate voltage on the channel. The further modification of the process is put forward based on above analysis.
引文
[1.1]Suzuki H.,Prospects for research on SiC and related materials,Key Engineering Materials 1999,Vols.159-160,pp11-16
    [1.2]Sriram S.4H-SiC MESFETs with 42 GHz fmax.IEEE EDL.1996.vol.17(7).p369.
    [1.3]Khemka V.etc."Voltage handling capability and microwave performance of a 4H-SiC MESFET-a simulation study" Materials Science Forum.1998.Vols(264-268).pp961
    [1.4]张义门,张玉明,碳化硅器件的需求背景及其发展现状,电子科学技术评论,1996,No.2,
    [1.5]杨克武,潘静,杨银堂,半导体材料及其器件应用,半导体情报,2000,4第37卷,第2期,第13-15页
    [1.6]田敬民,“SiC半导体材料与器件,半导体杂志,1996年6月,第21卷2期,第27-37页
    [1.7]Hudgins,Wide and Narrow Bandgap Semiconductors for Power Electronics:A New Valuation,Journal of Electronic Material,2003,Vol.32(6),pp471-477
    [1.8]张玉明,张义门,罗晋生,SiC、GaAs和Si的高温特性比较,固体电子学研究与进展,1997,3第17卷第3期,305-309页
    [1.9]Hornberger,J.;Lostetter,A.B.;Olejniczak,K.J.;etal."Silicon-carbide(SIC)semiconductor power electronics for extreme high-temperature environments"Aerospace Conference,2004.March 2004,Vol.4,6-13 pp:2538-2555
    [1.10]Surls,D.;Crawford,M.;Individual and parallel behavior of high current density,high-voltage 4h-silicon carbide P-I-N diodes Magnetics,IEEE Transactions on,Jan.2005,Volume:41,Issue:1,Pages:330-333
    [1.11]Krishnaswami,S.;Agarwal,A.;Ryu,S.-H.;etal.1000-V,30-A 4H-SiC BJTs With High Current Gain Electron Device Letters,IEEE,Volume:26,Issue:3,March 2005,Pages:175-177
    [1.12]宋登元SiC器件基本制备工艺的原理与发展现状 半导体技术 1994年02期5-9页
    [1.13]B.Ozpineci,I.M.Tolbert,S.K.Islam;Effects of silicon carbide power devices on PWM inverter losses,The 27 Annual Conference of the IEEE Industrial Electronics Society,Nov.29-Dec.2,2002,Denver.Colorado,pp.1061-1066
    [1.14]党冀萍,“迅速发展的SiC半导体技术”,半导体情报,1995,10,第32卷,第5期,第1-7页
    [1.15]Schwierz F.etc."Theoretical investigation of the electrical behavior of SiC MESFETs for microwave power amplification." Materials Science Forum.1998.Vols(264-268).pp973-976
    [1.16]L.M.Tolbert,B.Ozpineei,S.K.Islam et al."Impact of SiC power electronic devices for hybrid electric vehicles" 2002 Future Car Congress Preceedings,June 3-5,2002.
    [1.17]Yoon S.P,SiC materials and devices,Semiconductors and semimetals vol52,San Diego:Academic Press,1998,pp207-212
    [1.18]R.F.Davis,G.Kelner,"Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide,Proceedings of the IEEE,1991,Vol.79,No.5,pp.677
    [1.19]王丽玉,谢家纯,胡林辉,王克彦,碳化硅紫外探测器的研究,中国科学技术大学学报,2003年12月第33卷第6期683-687
    [1.20]Brown Dale M,Downey Evan T,Ghezzo,Mario,et al.Silicon Carbide UV Photodiodes[J].IEEE Transactions on Electron Devices,1993,Vol.40(2):325-333
    [1.21]Lee,J.-W.;Kuliev,A.;Kumar,V.;Schwindt,R.et al.Microwave noise characteristics of AlGaN/GaN HEMTs on SiC substrates for broad-band low-noise amplifiers,Microwave and Wireless Components Letters,IEEE,June 2004,Vol.14,Issue:6,Pages:259-261
    [1.22]Boutros,K.S.;Rowell,R;Brar,B.;A study of output power stability of GaN HEMTs on SiC substrates Reliability Physics Symposium Proceedings,2004.42nd Annual.2004 IEEE International,25-29 April 2004 pp:577-578
    [1.23]Trew,R.J.,"Wide bandgap semiconductor transistors for microwave power amplifiers",Microwave Magazine,IEEE,Vol:1,Issue:1,March 2000,pages:46-54
    [1.24]新型碳化硅晶体管 有色金属工业2004年05期
    [1.25]M.A.Capano,R.J.Trew,Silicon Carbide electronic materials and devices,MRS BULLETIN/March,1997,p 19
    [1.26]WU X M,WANG S W,WANG H Preparation and characterization of Bi2Ti2O7 thin films by chemical solution deposition technique[J].Thin Solid Films,2000,Vol.370,pp30-32
    [1.27]FU L W,WANG H,SHANG S X,et al.Preparation and characterization of Bi2 Ti2O7 thin films grown by metallorganic chemical vapor deposition[J].J Cryst Growth,1994,Vol.139:pp319-322
    [1.28]胡小波,徐现刚,王继扬,6H-SiC单晶的生长与缺陷,硅酸盐学报,2004年03期,248-254页
    [1.29]Jia Renxu,Zhang Yimen,Zhang Yuming.Study of nitrogen incorporation characteristics on a 4H-SiC epitaxial layer TFPA2007 September 25-28,2007,Shanghai,China
    [1.30]Power J A,Matus L G,Kuczmarski M A.Growth and characterization of cubic SiC single - ctystalline films on Si[J].Journal of the Electrochemical Society,1986,134(6):1 558
    [1.31]Sasaki K,Sakuma E,Misava S,et al.High temperature electrical properties of 3C - SiC epitaxial layers grown by chemical vapor deposition[J].Applied Physics Letters,1984,45(1):72
    [1.32]Li J P,Steckl A J.Structal characterazation of nanometer SiC films grown on Si[J].Applied Physcs Letters,1993,62(24):3135
    [1.33]孙国胜,张永兴,高欣.可用于Ⅲ族氮化物生长的50mm 3C-SiC/Si(111)衬底的制备(英文)[J].半导体学报,2004,(10)
    [1.34]M.Laube,F.Schmid,and G.Pensl,etal.Electrical activation of high concentrations of N~+and P~+ions implanted into 4H-SiC[J]J Appl.Phys,2002,92:549-554
    [1.35]Kazuhiro Ito et al.,Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials Science and Technology of Advanced Materials 2006,dio:10.1016/j.stam.2006.04.11
    [1.36]Frusin L.G.,Nickel ohmic contacts to p- and n-type 4H-SiC,Electron letters,2001,vol.27(17),pp1092-1093
    [1.37]H.Vang et al.,Ni-Al ohmic contact to p-type 4H-SiC,Superlattices and Microstructures 2006,doi:10.1016/j.spmi.2006.08.004
    [1.38]Crofton J.,High temperature ohmic contacts to p-type SiC,Fourth International High temperature electronics conference,1998,pp84-85
    [1.39]Guo Hui,Zhang Yi-men et al.,The Fabrication of Nickel Silicide Ohmic Contacts to N-type 6H-Silicon Carbide,Chin.Phys(received)
    [1.40]廖伟,硕士学位论文,6H-SiC MOS结构界面物理性质和辐照特性研究,2001年5月,第3页
    [1.41]鲁励,引人注目的SiC材料、器件和市场,世界产品与技术,2003年12期22 -26页
    [1.42]Itoh A.,Excellent reverse blocking characteristics of high voltage 4H-SiC schottky rectifiers with Boron implanted edge termination,Electron Device Letters,1996,pp139-141
    [1.43]Nakamura,T.;Miyanagi,T.;Kamata,I.et al,A 4.15 kV 9.07-mΩcm~2 4H-SiC Schottky-barrier diode using Mo contact annealed at high temperature Electron Device Letters,IEEE,Volume:26,Issue:2,Feb.2005 Pages:99-101
    [1.44]Richmond,J.;Sei-Hyung Ryu;Das,M.et al,An overview of cree silicon carbide power devices Power Electronics in Transportation,2004,21-22 Oct.2004,Pages:37-42
    [1.45]李静.宽禁带半导体SiC和GaN峥嵘初显 世界产品与技术 2003年11期 40-43页
    [1.46]杨银堂,高洪福,SiC半导体技术新进展,西安电子科技大学学报,1998,Vol.25,No.4,p478
    [1.47]彭军,“SiC材料与器件”,半导体技术,1995年,10月,第5期.33-40页
    [1.48]U.Schmid,W.Wondrak,“Process Technology and high temperature Performance of 6H-SiC MOS devices,High Temperature Electronics”,1999.HITEN 99.The Third European Conference on,1999,pp195-199
    [1.49]J.W.Palmour,H.S.Kong,and R.F.Davis,High-temperature depletion-mode metal-oxide semiconductor field-effect transistors in beta-SiC thin films,Applied Physics Letters,1987,Vol.51,p.2028
    [1.50]J.W.Palmour,J.A.Edmond,H.S.Kong,and C.H.Carter,Jr.,Vertical power devices in silicon carbide,Proceeding of International Conference on Silicon Carbide and Related Materials,1994,p.499
    [1.51]D.B.Slater,Jr.,L.A.Lipkin,G.M.Johnson,et al,Proceeding of International Conference on Silicon Carbide and Related Materials,September 1995,pp.18,Japan
    [1.52]Sei-Hyung Ryu;Krishnaswami,S.;O'Loughlin,M.;et al.10-kV,123-mΩ.cm~24H-SiC power DMOSFETs,Electron Device Letters,IEEE,Volume:25,Issue:8,Aug.2004 pp:556-558
    [1.53]J.Spitz,M.R.Melloch,J.A.Cooper,Jr.,and M.A.Capano,2.6kV 4H-SiC Lateral DMOSFET's,IEEE Electron Device Letters,1998,Vol.19,pp.100
    [1.54]S.Banerjee,T.P.Chow,and R.J.Gutmann,“1300-V 6H-SiC Lateral MOSFETs With Two RESURF Zones,” IEEE Electron Device Letters,October 2002, Vol.23,No.10,pp.624
    [1.55]张玉明,张义门,“6H-SiC MOS场效应晶体管的研制”,固体电子学研究与进展,2000,20(1):1
    [1.56]Gao Jinxia,Zhang Yimen and Zhang Yuming,Fabrication of 4H-SiC buried-channel n MOSFETs,Chinese Journal of Semiconductors,2004,25(12),1561-1566
    [1.57]N.S.Saks,S.S.Mani,A.K.Agarwal,V.S.Hegde,"Hall Mobility of Electron Inversion Layer in 6H-SiC MOSFETs",Materials Science Forum 2000,Vols.338-342,pp.737-740
    [1.58]S.K.Manhas,M.M.De Souza,A.S.Oates,et al "Impact of Oxide Degradation on Universal Mobility Behaviour of n-MOS Inversion Layers" Preceedings of 9~(th)IPFA 2002,Singapore,pp227-231
    [1.59]D.Alok,P.K.McLarty,and B.J.Baliga,"electrical properties of thermal oxide grown using dry oxidation on p-type 6H-silicon carbide," Appl.Phys.Lett.,1994,vol.65,No.17,pp.177-178
    [1.60]N.S.Sake,S.S.Mani and K.Agarwal,"Interface trap profile near the band edges at the 4H-SiC/SiO_2 interface",Appled physics letters,17 April 2000,vol 76,num 16,pp.2250-2252
    [1.61]汤晓燕,张义门,张玉明 郜锦侠“界面态电荷对n沟6H-SiC MOSFET 场效应迁移率的影响”物理学报,2003年第51卷第4期 p830
    [1.62]尚也淳,张义门,张玉明,6H-SiC反型层电子迁移率的MonteCarla模拟,电子学报,2001年2月第2期pp157-159
    [1.63]M.K.Das,B.S.Um,and J.A.Cooper,Jr.,"Anomalously high density of interface states near the conduction band in SiO/4H-SiC MOS devices," in Silicon Carbide and Related Materials-1999,C.H.Carter,Jr.,R.P.Devaty,and G.S.Rohrer,Eds.Zurich,Switzerland:Trans Tech,2000,p.1069.
    [1.64]Hiroshi Yano,Fumito Katafuchi,Tsunenobu Kimoto,ect"Effects of Wet Oxidation/Anneal on Interface Properties of Thermally Oxidized SiO_2/SiC MOS System and MOSFET's",IEEE TRANSACTIONS ON ELECTRON DEVICES,MARCH 1999,VOL.46,NO.3,pp504-510
    [1.65]Xu,J.R;Lai,RT.;Chan,C.L.;Li,B.;Cheng,Y.C."Improved performance and reliability of N_2O-grown oxynitride on 6H-SiC" IEEE Electron Device Letters,June 2000,Vol.2t Issue:6,pp298-300
    [1.66]P.T.Lai,J.P.Xu,and C.L.Chan."Effects of Wet N2O Oxidation on Interface Properties of 6H-SiC MOS Capacitors" IEEE ELECTRON DEVICE LETTERS, VOL.23,NO.7,JULY 2002.pp 410-412
    [1.67]L.A.Lipkin and J.W.Palmour "Improved Oxidation Procedures for Reduced SiO_2/SiC Defects",Journal of Electronic Materials,1996,vol.25,No.5,pp909-915
    [1.68]L.A.Lipkin,D.B.Slater,Jr.,and J.W.Palmour,"Low interface state density oxides on p-type SIC," in Silicon Carbide,Ⅲ-Nitrides and Related Materials.Zurich,Switzerland:Trans Tech,1998,p.853.
    [1.69]P.A.Mawby,C.Kampouris and A.Koh,Advances in Silicon Carbide MOS Technology,PROC.23rd International Conference on MIEL,May 2002,vol.1,pp41-44
    [1.70]Ryoji Kosugi,Won-ju Cho,Kenji Fukuda,et al High-temperature post-oxidation annealing on the low-temperature oxide 4H-SiC(0001),Journal of applied physics,Feb.2002,vol.91,num.31
    [1.71]Kosugi,R.;Suzuki,S.;Okamoto,M.;et al Strong dependence of the inversion mobility of 4H and 6H SiC(0001)MOSFETs on the water content in pyrogenic re-oxidation annealing IEEE Electron Device Letters,Volume:23 Issue:3,Mar 2002 pp:136-138
    [1.72]Gudjonsson,G.;Olafsson,H.O.;Allerstam,F.;et al High field-effect mobility in n-channel Si face 4H-SiC MOSFETs with gate oxide grown on aluminum ion-implanted material Electron Device Letters,IEEE,Feb.2005,Vol:26,Issue:2,Pages:96-98
    [1.73]M.K.Das,M.A.Capano,J.A.Cooper,et al "Effect of implant activation annealing conditions on the inversion channel mobility in 4H- and 6H-SiC MOSFETs," in Electronic Materials Conf.,Santa Barbara,CA,June 30-July 2,1999.
    [1.74]James A.Cooper,Jr.,Michael R.Melloch,et al "Status and prospects for SiC power MOSFETs" Electron Devices,IEEE Transactions on,2002,Vol.49(4),pp658-664
    [1.75]Khemka V.,Patel R.,Ramungul N.,Characterization of phosphorus implantation in 4H-SiC,J.Electron.Mater.,1999,vol.28(3),pp167-174
    [1.76]T.Kimoto,A.Itoh,H.Matsunami,T.Nakata,and M.Watanabe,"The effects of n dose in implantation into 6H epilayers," J.Electron.Mater.1995,Vol.24,p.235.
    [1.77]Toshiyuki Ohno,Naoto Kobayashi,Difference of secondary defect formation by energy B~+ and Al~+ implantation into 4H-SiC,Journal of applied physics, April.2002,vol.91,num.7,pp:4136-4142
    [1.78]Capano M.A.,Ryu S.,Melloch M.R.,Dopant activation and surface morphology of ion implantation 4H- and 6H- silicon carbide,J.Electron.Mater.,1998,vol27(4),pp370-376
    [1.79]Kimoto T.,Takemora O.,Matsunami H.,Al and B implantations into 6H-SiC epilayers and application to PN junction diodes,J.Electron.Mater.,1998,vol27(4),pp358-364
    [1.80]M.A.Capano,S.-H.Ryu,M.R.Melloch,et al "Dopant activation and surface morphology of ion implanted 4H- and 6H-silicon carbide," J.Electron.Mater.,1998,vol.27,p.370
    [1.81]M.A.Capano,S.Ryu,J.A.Cooper,et al "Surface roughening in ion implanted 4H-silicon carbide," J.Electron.Mater.,1999,vol.28,pp.214.
    [1.82]Ohno T.,Onose H.,Sugawara Y.,Electron microscopic study on residual defects of Al or B implanted 4H-SiC,J.Electron.Mater.,1999,vol28(3),pp180-185
    [1.83]王守国,张义门,张玉明,4H-SiC N离子注入层的特性 半导体学报 2002年12期 pp1249-1253
    [1.84]尚也淳,张义门,张玉明SiC MOS结构空间电荷区杂质离化的研究 西安电子科技大学学报 2001年10月 第28卷 第5期 pp:630-633
    [1.85]郜锦侠,张义门,张玉明,汤晓燕.表面态密度分布及源漏电阻对6H-SiC PMOS器件特性的影响.半导体学报,2002,Vol.23(4),pp408-413
    [1.86]S.M.Sze,Physics of Semiconductor Devices,2nd Ed.New York:Wiley,1981,pp.335
    [1.87]Bricout,P.-H.and E.Dubois(1996)."Short-Channel Effect Immunity and Current Capability of Sub-0.1 -Micron MOSFET's Using a Recessed Channel."IEEE_TRANSACTIONS ON ELECTRON DEVICES 43(8):1251-1255.
    [1.88]杜刚,刘弋波,孙雷等n沟肖特基势垒隧穿晶体管特性研究 固体电子学研究与进展 2004,Vol.24,No.1 Feb.,pp:10-14
    [1.89]M.P.Lepselter,and S.M.Sze,"SB-IGFET:An Insulated-Gate Field-Effect Transistor Using Schottky Barrier Contacts for Source and Drain," Proc.IEEE,August 1968,p.1400.
    [1.90]J.R.Tucker,C.Wang,and P.S.Carney,"Silicon field-effect transistor based on quantum tunneling," Appl.Phys.Lett.,Aug.1994,vol.65,pp.618
    [1.91]J.P.Snyder,C.R.Helms,and Y.Nishi,"Experimental investigation of a PtSi source and drain field emission transistor," Applied Physics Letters,September 1995,Vol.67,No.10,pp.1420
    [1.92]C.Wang,J.P.Snyder,and J.R.Tucker,"Sub-40nm PtSi Schottky source/drain metal-oxide-semiconductor filed-effect transistor," Applied Physics Letters,February 1999,Vol.74,No.8,pp.1174
    [1.93]J.Kedzierski,P.Xuan,E.H.Anderson,et al,"Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime," IEDM Tech.Digest 2000.
    [1.94]L.E.Calvet,C.wang,J.P.Tucker "Suppression of leakage current in Schottky barrier metal-oxide-semiconductor field-effect transistors" Journal of apply physics January 2002 vol.91,number 2 757
    [1.95]L.E.CALVET,H.LUEBBEN,M.A.REED,et al "Subthreshold and scaling of PtSi Schottky barrier MOSFETs" Superlattices and Microstructures,2000,Vol.28,No.5/6,
    [1.96]C.J.Koeneke,S.M.Sze,R.M.Levin,and E.Kinsbron,"Schottky MOSFET for VLSI",IEEE IEDM 1981,p.367
    [1.97]H.C.Lin,K.L.Yeh,R.G.Huang,et al "Schottky barrier thin-film transistor (SBTFT)with silicided source/drain and field-induced drain extension," IEEE Electron Device Lett.,April,2001,vol.22,pp.179-181
    [1.98]F-J.Huang,and K.K.O,"Metal-oxide semiconductor field-effect transistors using Schottky barrier drains(SBDR)," Electronics Letters,July 1997,Vol.33,No.15,pp.1341
    [1.99]Kuan-Lin Yeh,Horng-Chih Lina,Rou-Gu Huang,et al "Conduction mechanisms for off-state leakage current of Schottky barrier thin-film transistors" Applied Physics Letters Vol.79,Num.5 JULY 2001,p.30
    [1.100]J.Kedzierski,P.Xuan,E.H.Anderson,et al,"Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime," IEDM Tech.Digest 2000.
    [1.101]Shiyang Zhu;Jingde Chen;Li,M.-F.;et al N-type Schottky barrier source/drain MOSFET using ytterbium silicide,Electron Device Letters,IEEE Vol.25,Issue 8,Aug.2004 pp:565-567
    [1.102]H-C Lin,K-L Yeh,T-Y Huang,et al "Ambipolar Schottky-Barrier TFTs" IEEE Trans.on Electron Devices,Feb.2002,vol.49,pp.264-270
    [1.103]Yaohui Zhang,Jun Wan,Kang L.Wang et al "Design of 10-nm-Scale Recessed Asymmetric Schottky Barrier MOSFETs," IEEE Electron Device Letters,2002,Vol.23,No.7,pp.419
    [2.1]郜锦侠,硕士论文“碳化硅PMOS器件特性模拟及仿真”西安电子科技大学 2002
    [2.2]F.Roccaforte,F.La Via,V.Raineri,et al."Temperature dependence of the c-axis mobility in 6H-SiC Schottky diodes" Appl.Phys.Lett.83,4181(2003)
    [2.3]K.Xie,J.R.Flemish,J.H.Zhao,W.R.Buchwald "Low damage and residue-free dry etching of 6H-SiC using electron cyclotron resonance plasma",Appl.Phys.Lett.67,368(1995)
    [2.4]F.Roccaforte,F.La Via,A.Baeri,et al."Structural and electrical properties of Ni/Ti Schottky contacts on silicon carbide upon thermal annealing"J.Appl.Phys.96,4313(2004)
    [2.5]C.Raynaud,K.lsoird,and M.lazar,"Barrier height determination of SiC Schottky diodes by capacitance and current-voltage measurements" Journal of applied physics vol.91,number 12 June 2002
    [2.6]S.Doan,D.Johnstone,F.Yun,et al."The effect of hydrogen etching on 6H-SiC studied by temperature-dependent current-voltage and atomic force microscopy"Appl.Phys.Lett.85,1547(2004)
    [2.7]Binghui Li,Lihui Cao,and Jian H.Zhao "Evaluation of damage induced by inductively coupled plasma etching of 6H-SiC using Au Schottky barrier diodes" Appl.Phys.Lett.73,653(1998)
    [2.8]J.R.Waldrop,R.W.Grant Y.C.Wang,R.F.Davis "Metal Schottky barrier contacts to alpha 6H-SIC"4757 J.Appl.Phys.72(IO),15 November 1992
    [2.9]尚也淳,刘忠立,王姝睿“SiC肖特基结反向特性的研究”物理学报,2003,52(1):211-216
    [2.10]E.H.罗德里克[英],《金属半导体接触》 1984
    [2.11]Sameer P.Pendharkar,Craig R.Winterhalter and Krishna Shenai "Modeling and Characterization of the Reverse Recovery of a High-Power GaAs Schottky Diode" IEEE Trans.Electron Devices,1996,43(5):685-690
    [2.12]D.Defives,O.Durand,F.Wyczisk,et al Electrical behaviour and microstructural analysis of metal Schottky contacts on 4H-SiC Microelectronic Engineering,Volume 55,Issues 1-4,March 2001,Pages 369-374
    [2.13]Medici Two-Dimensional Device Simulation Program,Version 4.1,User Manual(TACAD Brisiness Unit,Fremont,California,USA),1998 Avant!Corporation
    [2.14] ISE 10.0, USER manual, 2001 Integr. Syst.Eng., Inc., San Jose, CA95113.
    [2.15] Kazuya Matsuzawa, Ken Uchida, and Akira Nishiyama, "A Unified Simulation of Schottky and Ohmic Contacts" ,IEEE Transactions on electron devices, 2000 47(1): 103-108
    [2.16] Ghatak A K, Gallawa R L , Goyal I C. "Modified airy function and WKB solutions to the wave equation" [Z ].National Institute of Standards and Techcnology, 1991.
    [2.17] K. L. Jensen and A. K. Ganguly. "Numerical simulation of field emission and tunneling: A comparison of the Wigner function and transmission coefficient approaches." J. Appl. Phys. 1993 73 (9): 4409-4427
    [2.18] Sun lei,Du gang,Liu xiao-yan et al. Direct tunneling effect in metal-semiconductor contacts simulated with Monte carlo method Chinese journal of semiconductors, 2001 22(11): 1364
    [2.19] Brian Winstead and Umberto Ravaioli. "Simulation of Schottky Barrier MOSFET's with a Coupled Quantum Injection/Monte Carlo Technique" IEEE Trans. Electron Devices 2000,47(6): 1241-1246
    [2.20] Aflatooni, K.; Hornsey, R.; Nathan, A.;"Reverse current instabilities in amorphous silicon Schottky diodes: modeling and experiments" Electron Devices, IEEE Transactions on , Volume: 46 , Issue: 7 , July 1999 Pages: 1417 - 1422
    [2.21] Sun lei, Du gang, Liu xiao-yan ect."Direct tunneling effect in metal-semiconductor contacts simulated with Monte carlo method"Chinese journal of semiconductors, Vol.22 NO.11 Nov. 2001 ppl364
    [2.22] Moongyu Jang, Kicheon Kang, and Seongjae Lee "Simulation of Schottky barrier tunnel transistor using simple boundary condition"APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 16 21 APRIL 2003
    
    [2.23] Shur M., Physics of semiconductor devices, New Jersey: Prentice Hall, 1990, pp204-217
    
    [2.24] Junji Kotani, Hideki Hasegawa and Tamotsu Hashizume , "Computer simulation of current transport in GaN and AlGaN Schottky diodes based on thin surface barrier model" ARTICLE Applied Surface Science, Volume 237, Issues 1-4, 15 October 2004, Pages 213-218
    
    [2.25] J.Crofton and S.Sriram, "Reverse Leakage Current Calculations for SiC Schottky Contacts", IEEE Trans. Electron Devices 1996 43(12):2305-2307
    [3.1]J.P.Snyder,C.R.Helms,and Y.Nishi,"Experimental investigation of a PtSi source and drain field emission transistor," Applied Physics Letters,September 1995,Vol.67,No.10,pp.1420
    [3.2]M.Jang,K.Kang,S.Lee,and K.Park,"Simulation of Schottky barrier tunnel transistor using simple boundary condition," Appl.Phys.Lett.,vol.82,Apr.2003,pp.2718-2720
    [3.3]Moongyu Jang.,Yarkyeon Kim,Jaeheon Shin,et al."Formation of erbium-silicide as source and drain for decananometer-scale Schottky barrier metal-oxide-semiconductor field-effect transistors" Materials Science and Engineering B(2004)
    [3.4]冯建峰 西安电子科技大学 硕士论文“硅肖特基源漏MOSFET的模拟研究”2005年3月
    [3.5]Itoh,M.Saitoh,and M.Asada "very short channel metal-gate Schottky source/drain SOI-PMOSFETs and their short channel effect" 2000,6
    [3.6]Gilles Horowitz,"Tunnel current in organic field-effect transis tors" Synthetic Metals 138(2003)101-105
    [3.7]Guo Hui,Zhang Yimen and Zhang Yuming,"Investigation of Ti-Al based Ohmic Contacts to N-type 6H-SiC with P~+ Ion Implantation" 2006 Chin.Phys.15 2142
    [3.8]郜锦侠,西安电子科技大学 博士士论文“4H-SiC隐埋沟道MOSFET理论和实验研究”2006年3月
    [3.9]L.E.CALVET,H.LUEBBEN,M.A.REED,et al "Subthreshold and scaling of PtSi Schottky barrier MOSFETs" Superlattices and Microstructures,2000,Vol.28,No.5/6
    [3.10]Laurie Ellen Calvet,a dissertation of Yale University in candidacy for the Degree of Doctor "Electrical transport in schottky barrier MOSFETs" May 2001
    [3.11]E.H.罗德里克[英]“金属半导体接触”科学出版社 1984
    [4.1]杨晓菲,西安电子科技大学 硕士论文“注入钒形成碳化硅半绝缘层的理论和技术研究”2005年
    [4.2]E.Janze,N.T.Son a,B.Magnusson "Intrinsic defects in high-purity SIC"Microelectronic Engineering 83(2006)130-134
    [4.3]Shenoy,P.M.;Bantval,V.;Kothandaraman,M.;"A novel P+ polysilicon/N-SiC heterojunction trench gate vertical FET" Power Semiconductor Devices and IC's,1997.ISPSD '97.,1997 IEEE International Symposium on,26-29 May 1997 Page(s):365-368
    [4.4]李跃进,杨银堂,柴常春,“6H-SiC材料的氧化特性”西安电子科技大学学报 2000年8月27卷4期 460-466
    [4.5]王阳元等 多晶硅薄膜及其在集成电路中的应用2001年08月第2版 科学出版社218页
    [4.6]Y.Kondo,T.Takahashi,K.Ishii etal."Experimental 3C-SiC MOSFET" IEEE electron device letters.vol.EDL-7,NO.7,July 1986,pp404-406
    [4.7]虞丽生,《半导体异质结物理》,科学出版社,第四章
    [5.1]汤晓燕,张义门,张玉明等,“碳化硅基上3UCVD淀积二氧化硅及其C-V 性能测试”物理学报,2004,53(9):3225
    [5.2]张利春,高玉芝,金海岩等,“超高速双层多晶硅反射极晶体管及电路”半导体学报,2001,22(3):245-249
    [5.3]Dale M.Brown,Mario Ghezzo,Kretchmer etal "SIC MOS Interface Characteristics" IEEE transactions on electron devices vol.41,NO.4 April 1994
    [5.4]Kosugi,R.;Suzuki,S.;Okamoto,M.;"Strong dependence of the inversion mobility of 4H and 6H SiC(0001)MOSFETs on the water content in pyrogenic re-oxidation annealing" IEEE Electron Device Letters,Volume:23 Issue:3,Mar 2002 Page(s):136-138
    [5.5](美)S.M.施敏“超大规模集成电路技术”北京 科学出版社 1987 PP.175
    [5.6]E.H.罗德里克[英]“金属半导体接触”科学出版社 1984
    [5.7]P.Batude,a_ X.Garros,L.Clavelier etal "Insights on fundamental mechanisms impacting Ge metal oxide semiconductor capacitors with high-k/metal gate stacks" JOURNAL OF APPLIED PHYSICS 102,034514_2007
    [5.8]P.Li,A.Rodriguez,B.Yarlagadda,etc."Electrical properties of oxidized polycrystalline silicon as a gate insulator for n-type 4H-SiC MOS devices".Solid-State Electronics 49(2005)2002-2005
    [5.9]Hoshi,M.,T.Hayashi,et al.(2007).Novel SiC Power Devices utilizing a Si/4H-SiC Heterojunction.Power Conversion Conference Nagoya,IEEE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700