复杂应力状态下钢筋与混凝土的粘结性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土作为一种复合材料,能成功地应用于结构首先取决于钢筋与混凝土具有良好的粘结。钢筋与混凝土之间的粘结性能是影响钢筋混凝土结构承载力和使用性能的一个重要因素,也是钢筋混凝土结构进行理论和数值计算的必要参数。实际混凝土结构中,钢筋的粘结作用常常受到周围混凝土侧向约束,该约束作用将对粘结性能产生重要的影响。本论文主要通过中心拉拔试件研究了光圆钢筋与变形钢筋在单向和双向侧压应力下的粘结性能,考察了拉拔试件的不同破坏模式,分析了各粘结参数与复杂侧向压应力场之间的关系,构建了光圆钢筋和变形钢筋与混凝土之间的粘结本构关系。论文主要研究内容和结论如下:
     (1)对复杂侧向压应力作用下光圆钢筋的试验研究表明,有无侧压下光圆钢筋的粘结机理是不同的,其粘结-滑移曲线形状也不同。试验结果表明,其极限和残余粘结强度都随着侧向应力的增加而增大,但是残余强度与极限强度的比值基本保持不变。随着侧向应力的施加,极限粘结强度对应的滑移量先大幅下降,然在再随着侧向应力而增大。本文回归分析了各粘结参数与平均侧向压应力的关系,并基于粘结曲线的形状构建了光圆钢筋的粘结本构关系。结果表明,该本构关系与试验结果吻合良好。
     (2)对侧向压应力下钢筋与混凝土界面的应力状态进行了理论分析,通过取钢筋单元建立了应力平衡方程,推导了光圆钢筋的拉拔力和粘结强度的解析解,并将解析结果与试验结果进行了对比,并进行了参数分析。
     (3)侧向压应力作用下变形钢筋的试验研究表明,粘结试件的破坏模式与侧向压应力的大小有关,随着侧向压应力的不断增大,破坏模式从劈裂破坏转变为劈裂-拔出破坏直至拔出破坏。其粘结强度的变化也与破坏模式有关,总体上随着侧向压应力的增加而增加。通过试验数据分析并结合破坏模式,回归了粘结强度及其对应的滑移、残余强度及其对应的滑移与侧向应力的关系。
     (4)基于粘聚力的虚拟裂缝模型,对变形钢筋粘结试件的劈裂破坏进行了理论分析,假定虚拟裂缝面线性分布,同时假定内层混凝土开裂区满足等效弹性周向变形。该模型与静水压力劈裂试件和拉拔试件的结果吻合良好。最后,基于裂缝扩展准则研究了粘结试件的劈裂破坏全过程,并分析了其裂缝扩展阻力曲线(KR-曲线)。
     (5)为变形钢筋的粘结本构关系选择了合理的数学模型,并结合粘结参数的回归统计,合理地预测了复杂应力状态下其粘结-滑移全曲线,通过试验验证了粘结滑移关系与侧向应力场的路径无关,得出变化侧向应力场下的粘结-滑移曲线是无数定侧压应力场下粘结-滑移全曲线的叠加。
The satisfactory use of reinforced concrete as a composite material in structures depends mainly on the fine bond action between reinforcing bars and concrete. The bond of reinforcing bars in concrete is a key factor affecting both the bearing capacity and the usability of reinforcing concrete structures, and is a requisite parameter for theoretical and numerical analysis of reinforced concrete structures. In real concrete structures, the bond action of reinforcing bars is usually influenced by the lateral confinement from surrounding concrete, and this confinement will exert significant influences on the bond performance. The main objective of this thesis is to study the bond performance of plain round and deformed reinforcing bars on pull-out specimens subjected to uniaxial and biaxial lateral pressures. The different failure modes of the bond specimens are examined and the bond parameters are analyzed with respected to the complex lateral pressure. Then, the bond constitutive relationships for plain round and deformed reinforcing bars are proposed. The main research contents and findings are summarized as follows:
     (1) The experimental study on plain round bars subjected to complex lateral pressure indicates that its bond mechanism is different before and after the lateral pressure is applied, and the corresponding bond stress-slip curves are also differs. The experimental results show that both the ultimate and the residual bond strength are increased by the increase in lateral pressure, but the residual to ultimate bond strength ratio basically remains constant. The slip at the ultimate bond strength firstly drops with the appearance of lateral pressure and then increases with the increase in lateral pressure. A regression analysis is conducted for the bond parameters with respected to the mean lateral pressure in this thesis. Then, a bond constitutive relation is proposed for plain round bars based on the characteristics of tested bond stress-slip curves, and the results show an agreement between the proposed and the experimental bond stress-slip curves.
     (2) The stress state at the interface between plain round bars and concrete subjected to complex stress state is analyzed theoretically. By equating the equilibrium of the stresses on a bar element, the analytic solutions for pull-out capacity and the bond strength of plain round bars are derived. The analytical predictions are then compared with the test results, and a parameter analysis is done.
     (3) The experimental study on deformed bars subjected to complex lateral pressure indicates that the failure mode of bond specimens depends on both the direction and the magnitude of complex lateral pressure. With the increase in complex lateral pressure, the failure mode changes from splitting failure, to splitting-pullout failure and to pullout failure. The variation of bond strength is related to the failure modes and generally increases with the increase in lateral pressure. Through analyzing the test data and combining the failure mode, the ultimate bond strength and the corresponding slip, and the residual strength and the corresponding slip are fitted with respected to the complex lateral pressures.
     (4) On the basis of the fictitious crack model considering the cohesive stress, a theoretical analysis is conducted for the splitting failure of bond specimens with deformed bars. In this analysis, the crack profile is assumed linear along the fictitious crack and the cracked zone of inner concrete follows an equivalent elastic circumferential deformation. The analytical predictions show a good agreement with the experimental results of both hydraulic pressure tests and bond tests. Subsequently, the whole process of splitting failure of bond specimens is numerically simulated based on the crack propagation criteria and then, the crack extension resistance curve is studied.
     (5) A suitable mathematical model is adopted for the bond constitutive relationship of deformed bars. With the regression of bond parameters, the present model reproduces the reasonable complete bond stress-slip curves under complex lateral pressure. The bond stress-slip curves are experimentally verified to be path-independent of the lateral complex pressure. As a result, the bond constitutive relations under variable complex lateral pressure can be considered as a superposition of numerous bond constitutive curves under constant complex lateral pressure.
引文
[1]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国工业建筑出版社,1985.
    [2]徐有邻.变形钢筋—混凝土粘结锚固性能的试验研究[D].北京:清华大学,1990.
    [3]赵羽习.钢筋混凝土粘结性能和耐久性的研究[D].杭州:浙江大学,2001.
    [4]高向玲.高性能混凝土与钢筋粘结性能的试验研究及数值模拟[D].上海:同济大学,2003.
    [5]郑晓燕.锈蚀钢筋与混凝土动态粘结性能研究[D].南京:河海大学,2004.
    [6]牟晓光.高强预应力钢筋粘结性能试验研究及数值模拟[D].大连:大连理工大学,2005.
    [7]Task Committee on Finite Element Analysis of Reinforced Concrete Structures, "State-of the-Art Report:Element Analysis of Reinforced Concrete," ASCE,1982.
    [8]Keuser M, Mehlhorn G. Finite element models for bond problems [J]. Journal of Structural Engineering, ASCE,1987,113(10):2160-2173.
    [9]Malvar L J. Bond of reinforcement under controlled confinement [J]. ACI Materials Journal,1992, 89(6):593-601.
    [10]Malvar L. J. Tensile and bond properties of GFRP reinforcing bars [J]. ACI Materials Journal,1995, 92(3):276-285.
    [11]Malvar L J, Cox J V, Cochran K B. Bond between carbon fiber reinforced polymer bars and concrete. I: experimental study [J]. Journal of Composites for Construction, ASCE,2003,7(2):154-163.
    [12]Cox J V, Cochran K B. Bond between carbon fiber reinforced polymer bars and concrete. II: computational modeling [J]. Journal of Composites for Construction, ASCE,2003,7(2):164-171.
    [13]Untrauer R E, Henry R L. Influence of normal pressure on bond strength [J]. ACI Journal,1965, 62(5):577-585.
    [14]Robins P J, Standish I G. The effect of lateral pressure on the bond of round reinforcing bars in concrete [J]. International Journal of Adhesion and Adhesives,1982,2(2):129-133.
    [15]Robins P J, Standish I G. The influence of lateral pressure upon anchorage bond [J]. Magazine of Concrete Research,1984,36(129):195-202.
    [16]Navaratnarajah V, Speare P R S. An experimental study of the effects of lateral pressure on the transfer bond of reinforcing bars with variable cover [J]. Proceedings of the Institution of Civil Engineers, Part 2,1986,81 (Dec):697-791.
    [17]Navaratnarajah V, Speare P R S. A theory of transfer bond resistance of deformed reinforcing bars in concrete under lateral pressure [J]. Magazine of Concrete Research,1987,39(140):161-168.
    [18]Laldji S, Young A G. Bond between steel strand and cement grout in ground anchorages [J]. Magazine of Concrete Research,1988,40(143):90-98.
    [19]Walker P R, Batayneh M K, Regan P E. Bond strength test on deformed reinforcement in normal weight concrete [J]. Materials and Structures,1997,30(7):424-429.
    [20]Walker P R, Batayneh M K, Regan P E. Measured and design bond strength of deformed bars, including the effect of lateral compression [J]. Magazine of Concrete Research,1999,51(1):13-26.
    [21]Kong F K, Teng S, Singh A, Tan K H. Effect of embedment length of tension reinforcement on the behavior of lightweight concrete deep beams [J]. ACI Structural Journal,1996,93(1):21-29.
    [22]Soroushian P, Choi K B. Local bond of deformed bars with different diameters in confined concrete [J]. ACI Structural Journal,1989,86(2):217-222.
    [23]Soroushian P, Choi K B, Park G H, Aslani F. Bond of deformed bars to concrete:effect of confinement strength of concrete [J]. ACI Material Journal,1991,88(3):227-232.
    [24]Kemp E L, Wilhelm W J. Investigation of the parameters influencing bond cracking [J].ACI Journal, 1979,76 (1):47-71.
    [25]Plizzari G A, Deldossi M A, Massimo S. Transverse reinforcement effects on the anchored deformed bars [J]. Magazine of Concrete Research,1998,50(2):161-177.
    [26]Giuriani E, Plizzari G, Schumm C. Role of stirrups and residual tensile strength of cracked concrete on bond [J]. Journal of Structural Engineering, ASCE,1991,117(1):1-18.
    [27]Eligehausen R, Popov E P, Bertero V V. Local bond stress-slip relationships of deformed bars under generalized excitations [R]. Report No.83/23, Earthquake Engineering Research Center, University of California, Berkeley, California.
    [28]Hwang S J, Leu Y R, Lee C S. Effect of silica fume on the splice strength of deformed bars of high-performance concrete [J]. ACI Structural Journal,1994,91(3):294-301.
    [29]Hamad B, Machaka M. Effect of transverse reinforcement on bond strength of reinforcing bars in silica fume concrete. Material and Structures,1999,32(6):468-476.
    [30]Yerlici V A, Ozturan T. Factors affecting anchorage bond strength in high-performance concrete [J]. ACI Structural Journal,2000,97(3):499-507.
    [31]Baldwin M I, Clark L A. The assessment of reinforcing bars with inadequate anchorage [J]. Magazine of Concrete Research,1995,47(171):95-102.
    [32]Feldman L R, MacFarlane D C, Kroman J A, Bartlett F M. Construction staging of the center street bridge rehabilitation to accommodate emergency vehicle traffic [C].31st Annual Conference of the Canadian Society for Civil Engineering, CD-ROM,2003:10.
    [33]Abrams D A. Tests of bond between concrete and steel [R]. University of Illinois Bulletin No.71, University of Illinois at Urbana-Champaign, Urbana, IL,1913.
    [34]Canadian Engineering Standards Association. Standard Specification for Concrete and Reinforced Concrete [S]. Canadian Engineering Standards Association, Ottawa, Ontario, Canada,1929.
    [35]Stoker M F, Sozen M A. Investigation of prestressed reinforced concrete for highway bridges. Part V: Bond characteristics of prestressing strand [R]. University of Illinois Bulletin No.503, University of Illinois at Urbana-Champaign, Urbana, IL,1970.
    [36]Tassios T P. Properties of bond between concrete and steel under load cycles idealizing seismic actions [R]. Comite Euro-International du Beton, Bulletin No.131, Paris,1979.
    [37]CEB-FIP.CEB-FIP Model Code (MC-90) [S]. Comite Euro-International du Beton (CEB), Thomas Telford Ltd., London, UK,1993.
    [38]Xiao J Z, Falkner H. Bond behavior between recycled aggregate concrete and steel rebars [J]. Construction and Building Materials,2007,2(2):395-401.
    [39]Verderame G M, et. al. Cyclic bond behaviour of plain bars. Part I:experimental investigation [J]. Construction and Building Materials,2009,23(12):3499-3511.
    [40]Verderame G M, et. al. Cyclic bond behaviour of plain bars. Part Ⅱ:analytical investigation [J].Construction and Building Materials,2009,23(12):3512-3522.
    [41]Mylrea T D. Bond and anchorage [J] ACI Journal,1948,44(3):521-552.
    [42]Kankam C K. Relationship of bond stress, steel stress, and slip in reinforced concrete [J]. Journal of Structural Engineering, ASCE,1997,123(1):79-85.
    [43]Mo Y L, Chan J. Bond and slip of plain rebars in concrete [J]. Journal of Materials in Civil Engineering, ASCE,1996,8(4):208-211.
    [44]Feldman L R, Bartlett F M. Bond strength variability in pull-out specimens with plain reinforcement [J]. ACI Structural Journal,2005,102(6):860-867.
    [45]Feldman L R, Bartlett F M. Bond stresses along plain steel reinforcing bars in pullout specimens [J], ACI Structural Journal,2007,104(6):685-692.
    [46]Larrard F D, Schaller I, Fuchs J. Effect of bar diameter on the bond strength of passive reinforcement in high-performance concrete [J]. ACI Materials Journal,1993,90(4):333-339.
    [47]Hossain K M A. Bond characteristics of plain and deformed bars in lightweight pumice concrete [J]. Construction and Building Materials,2008,22(7):1491-1499.
    [48]Fang C Q, et. al. Effect of corrosion on bond in reinforced concrete under cyclic loading [J]. Cement and Concrete Research,2006,36(3):548-555.
    [49]Canadian Standards Association. CSA Standard A23.3-1970-Code for design of plain and reinforced concrete structures [S]. Rexdale, Ontario, Canada,1970.
    [50]ACI Committee 318. Building code requirements for reinforced concrete (ACI318-63). American Concrete Institute, Farmington Hills, Mich.,1963.
    [51]Fabbrocino G, Verderame G M, and Manfredi G. Experimental behaviour of anchored smooth rebars in old type reinforced concrete buildings [J]. Engineering Structures,2005,27(10):1575-1585.
    [52]Bedirhanoglu I, Ilki A, Pujol S, Kumbasar N. Behavior of deficient joints with plain bars and low-strength concrete [J]. ACI Structural Journal,2010,107(3):300-310.
    [53]徐有邻,邵卓明,沈文都.钢筋与混凝土的粘结锚固强度[J].建筑科学,1988,4(4):8-14.
    [54]高丹盈,谢丽,朱海棠.钢纤维高强混凝土与钢筋的粘结性能试验研究[J].建筑科学.2004,20(3):56-60.
    [55]安明喆,张盟.光圆钢筋与活性粉末混凝土的粘结性能试验[J].铁道学报,2007.29(1):90-94.
    [56]Rehm G. Ueber die grundlagen des verbundes zwischen stahlund beton. (The fundamentals of bond between steel reinforcement and concrete.) Bulletin No.138, Deutscher Ausschluss fur Stahlbeton, Berlin,1961.
    [57]Lutz L A, Gergely P. Mechanics of bond and slip of deformed bars in concrete [J]. ACI Journal,1967, 64(11):711-721.
    [58]Broms B B. Technique for investigation of internal cracks in reinforced concrete beams [J]. ACI Journal,1965,62(1):35-44.
    [59]Goto Y. Cracks formed in concrete around deformed tension bars [J]. ACI Journal,1971,68(4): 244-251.
    [60]Tassios T P, Koroneos E G. Preliminary results of local bond -slip relationships by means of the Moire method [C]. Structural Concrete under Seismic Actions, AICAP-CEB Symposium Rome, 1979:85-94
    [61]Tassios T P, Koroneos E.G. Local bond-slip relationship by means of the Moire method [J]. ACI Journal,1984,81(1):27-34
    [62]Jiang D H, Andonion A T, Shah S P. A new type of bond test specimen [C]. Proceedings of the International Conference on Bond in Concrete, Paisley, Scottland,1982:127-139.
    [63]Jiang D H, Shah S P, Andonion A T. Study of the transfer of tensile forces by bond [J]. ACI Journal, 1984,81(3):251-259.
    [64]Sorotz S, Holzenbein H. Influence of rib dimensions of reinforcing bars on bond and bend ability [J]. ACI Journal,1979,79 (1):111-125.
    [65]Skorobogatov S M, Edwards A D. The influence of the geometry of deformed steel bars on their bond strength in concrete [J]. Proceedings of Institute of Civil Engineers,1979,67(6):327-339.
    [66]Esfahani M R, Rangan B V. Local bond strength of reinforcing bars in normal strength and high-strength concrete (HSC) [J]. ACI Structural Journal,1998,95(2):96-106.
    [67]Hamad B S.Bond strength improvement of reinforcing bars specially designed rib geometries [J]. ACI Structure Journal,1995,92 (1):3-13.
    [68]Tepfers R. Cracking of concrete cover along anchored deformed reinforcing bars [J]. Magazine of Concrete Research,1979,31(106),3-12.
    [69]Cairns J. An analysis of the ultimate strength of lapped joints of compression reinforcement [J]. Magazine of Concrete Research,1979,31(106):19-27.
    [70]Menzel C A. Some factors influencing results of pull-out bond tests [J]. ACI Journal,1939, 35(6):517-502.
    [71]Plowman J M. The measurement of bond strength. RILEM Symposium, Stockholm,1957:23-27.
    [72]Ferguson P M, Thompson J N. Development length of high strength reinforcing bars in bond [J]. ACI Journal,1962,59(7):887-922.
    [73]Ferguson P M, Thompson J N. Development length for large high strength reinforcing bars [J]. ACI Journal,1965,62(1):113-134.
    [74]Sorushian P, Mirza F, Alhozaimy A. Bonding of confined steel fiber reinforced concrete to deformed bars [J]. ACI Materials Jounral,1994,91(2):141-149.
    [75]Haraji M H, Sloukh K A. Effect of fibers on development/splice strength of reinforcing bars in Tension [J]. ACI Materials Jounral,1997,94(4):317-324.
    [76]Walker P R, Batayneh M K, Regan P E. Measured and design bond strength of deformed bars, including the effect of lateral compression [J]. Magazine of Concrete Research,1999,51(1):13-26.
    [77]Darwin D, Graham E K. Effect of deformation height and spacing on bond strength of reinforcing bars [J]. ACI Structural Journal,1993,90 (6):646-657.
    [78]Darwin D, Tholen M L, Idun E K, Zuo J. Splice strength of high relative rib area reinforcing bars [J]. ACI Structural Journal,1996,93 (1):95-107.
    [79]Chinn J, Ferguson P M, Thompson J N. Lapped splices in reinforced concrete beams [J]. ACI Journal, 1955,52(2):201-214.
    [80]Ferguson P M, Breen J E. Lapped splices for high strength reinforcing bars [J]. ACI Journal,1965, 62(9):1063-1078.
    [81]Mathey R G, Watstein D. Investigation of bond in beam and pull-out specimens with high-yield-strength deformed bars [J]. ACI Journal,1961,57(9):1071-1090.
    [82]Chamberlin S J. Spacing of spliced bars in beams [J]. ACI Journal,1958,54(8):689-698.
    [83]Raynor D J, Lehman D E, Stanton J F. Bond-slip response of reinforcing bars in ducts [J]. ACI Structural Journal,2002,99 (4):509-517.
    [84]Gambarova P G, Rosati G P. Steel-to-concrete bond after concrete splitting:test results [J]. Materials and Structures,1989,22(1):35-47.
    [85]Ichinose T, Kanayama Y, Inoue Y, Jr Bolander J E. Size effect on bond strength of deformed bars [J]. Construction and Building Materials,2004,18(7):549-558.
    [86]ACI Committee 318. Building code requirements for reinforced concrete (ACI318-71). American Concrete Institute, Farmington Hills, Mich.,1971.
    [87]Orangun C O, Jirsa J O, Breen J E. A revaluation of test data on development length and splices. ACI Journal,1977,74(3):114-122.
    [88]ACI Committee 318. Building code requirements for reinforced concrete (ACI318-79). American Concrete Institute, Farmington Hills, Mich.,1979.
    [89]Darwin D, et al. Development length criteria:bars not confined by transverse reinforcement [J]. ACI Structural Journal,1992,89(6):709-720.
    [90]Darwin D, et al. Development length criteria for conventional and high relative rib area reinforcing bars [J]. ACI Structural Journal,1996,93(3):347-359.
    [91]Darwin D, et.al. Splice strength of high relative rib area reinforcing bars [J]. ACI Structural Journal, 1996,93(1):95-107.
    [92]Zuo J, Darwin D. Splice strength of conventional and high relative rib area bars in normal and high-strength concrete [J]. ACI Structural Journal,2000,97(4):630-641.
    [93]Harijli M H. Comparison of bond strength of steel bars in normal- and high-strength concrete [J]. Journal of Materials in Civil Engineering, ASCE,2004,16(4):365-374.
    [94]Harijli M H. Numerical bond analysis using experimentally derived local bond laws:A powerful method for evaluating the bond strength of steel bars [J]. Journal of Structural Engineering, ASCE, 2007,133(5):695-705.
    [95]Bamonte P F, Gambarova P G. High-bond bars in NSC and HPC:Study on size effect and on the local bond stress-slip law [J]. Journal of Structural Engineering, ASCE,2007,133(2):225-234.
    [96]Wang H. An analytical study of bond strength associated with splitting of concrete cover [J]. Engineering Structures,2009,31(4):968-975.
    [97]Choi O C, Lee W S. Interfacial bond analysis of deformed bars to concrete [J]. ACI Structural Journal, 2002,99(6):750-756.
    [98]Allwood R J, Bajarwan A A. Modeling nonlinear bond-slip behavior for finite element analyses of reinforced concrete structures [J]. ACI Structural Journal,1996,93(5):538-544.
    [99]Mains R M. Measurement of the distribution of tensile and bond stresses along reinforcing bars [J]. ACI Journal,1951,21 (3):225-252.
    [100]Perry E S, Thompson J N. Bond stress distribution on reinforcing steel in beams and pullout specimens [J]. ACI Journal,1966,63(8):865-875.
    [101]Nilson A H. Nonlinear Analysis of Reinforced Concrete by the Finite Element Method [J]. ACI Journal, Proceedings,1968,65(9):757-766.
    [102]Mirza S M, Houde J. Study of bond stress-slip relationships in reinforced concrete [J]. ACI Journal, 1979,76(1):19-46.
    [103]Nilson A H. Bond stress-slip relationship in reinforced concrete [R]. Report No.345, Department of Structure Engineering, Cornell University, Ithaca, New York 1971,
    [104]Tassios T P, Yannopoulos P J. Analytical studies on reinforced concrete members under cyclic loading based on bond stress-slip relationships [J]. ACI Journal,1981,78(3)206-216.
    [105]Hawkins N M, Lin I J, Jeang F L. Local bond strength of concrete for cyclic reversed loadings [C]. Proceedings of the International Conference on Bond in Concrete, Paisley, Scottland,1982:151-161.
    [106]Cosenza E, Manfredi G, Realfonzo R. Behavior of bond of FRP rebars to concrete [J]. Journal of Composites for Constructions, ASCE,1997, 1(2):40-51.
    [107]Harajli M H. Development/splice strength of reinforcing bars embedded in plain and fiber-reinforced concrete [J]. ACI structural Journal,1994,91(5):511-519.
    [108]Harajli M, Hamad B, Karam K. Bond-slip response of reinforcing bars embedded in plain and fiber concrete [J]. Journal of Materials in Civil Engineering, ASCE,2002,14(6):503-511.
    [109]Gambarova P G, Rosati G P, Zasso B. Steel-to-concrete bond after concrete splitting:constitutive laws and interface deterioration [J]. Materials and Structures,1989,22(5):347-356.
    [110]Gambarova P G, Rosati G P. Bond and splitting in bar pull-out:behavioural laws and concrete cover role [J]. Magazine of Concrete Research,1997,49(179):99-110.
    [111]Somayaji S, Shah S P. Bond stress versus slip relationship and cracking response of tension members [J]. ACI Journal,1981,78(3):217-225.
    [112]Yankelevsky D Z. Bond action between concrete and deformed bar-a new model [J]. ACI Journal, 1985,82(2):154-161.
    [113]Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams [J]. ACI Journal,1967, 64(3):152-163.
    [114]Herrmann L R. Finite element analysis of contact problems [J]. Journal of the Engineering Mechanics Division, ASCE,1978,104(5):1042-1057.
    [115]Groot A K D, Kusters G M A, Monnier T. Numerical modeling of bond-slip behavior [J]. Heron,1981, 26(1B):6-38.
    [116]Schafer H. A Contribution to the solution of contact problems with the aid of bond elements [J]. Computer Methods in Applied Mechanics and Engineering,1975,6:335-354.
    [117]Allwood R J, Bajarwan A A. New method for modeling reinforcement and bond in finite element analyses of reinforced concrete [J]. International Journal for Numerical Methods in Engineering,1989, 28(4):833-844.
    [118]Nilson A H. Nonlinear analysis of reinforced concrete by the finite element method [J]. ACI Journal, 1968,65(9):757-766.
    [119]Lutz L A. Analysis of stresses in concrete near a reinforcing bar due to bond and transverse cracking [J]. ACI Journal,1970,67(10):276-287.
    [120]Reinhardt H W, Blaauwenradd J, Vos E. Prediction of bond between steel and concrete by numerical analysis [J]. Materials and Structures,1984,17(7/8):311-320.
    [121]滕智明.钢筋与混凝土间的粘结力.北京:清华大学建筑工程系,1978.
    [122]粘结锚固专题研究组.钢筋混凝土粘结锚固的研究及设计建议[S].建筑结构,1986,16(4):2-12.
    [123]滕智明,叶知满.月牙纹钢筋粘结滑移关系的试验研究.北京:清华大学土木工程系,1984.
    [124]滕智明,张合贵.钢筋与混凝土的粘结滑移计算.北京:清华大学土木工程系,1985.
    [125]狄生林.钢筋混凝土握裹应力-滑移关系的试验研究.南京:东南大学土木工程系,1981
    [126]金芷生,朱万福,庞同和.钢筋与混凝土粘结性能试验研究[J].南京工学院学报,1985,15(2):73-85.
    [127]宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究[J].大连工学院学报,1987,26(2):93-100.
    [128]徐有邻,沈文都,汪洪.钢筋混凝土粘结锚固性能的试验研究[J].建筑结构学报,1994,15(3):26-37.
    [129]唐九如,严永成,周起敬.钢纤维砼与变形钢筋粘结性能的试验研究[J].东南大学学报,1990,20(1):55-62.
    [130]高丹盈.钢纤维混凝土与钢筋的粘结强度[J]郑州工学院学报,1990,11(3):54-60.
    [131]李杰,高向玲,艾晓秋.纤维增韧混凝土与钢筋的粘结性能研究[J].建筑结构学报,2004,25(2):99-103.
    [132]李方元,赵人达.不同混凝土基体与变形钢筋的粘结滑移特性[J].工业建筑,2002,32(10):31-33.
    [133]李方元,赵人达.C80高强混凝土与变形钢筋的粘结滑移试验[J].同济大学学报,2003,31(6):714-718.
    [134]肖建庄,李丕胜,秦薇.再生混凝土与钢筋间的粘结滑移性能[J].同济大学学报(自然科学版),2006,34(1):13-16.
    [135]赵军.再生混凝土粘结锚固性能的试验研究[D].广西大学,2007.
    [136]陈伟伟.再生混凝土粘结性能试验研究[D].哈尔滨工业大学,2007.
    [137]王国杰.高强度自密实混凝土及其与钢筋粘结锚固性能的试验研究[D].福州大学,2002.
    [138]陈月顺,曾三海,董富枝,李先.轻骨料混凝土中变形钢筋粘结应力分布试验[J].湖北工业大学学报,2005,20(2):4-7.
    [139]王冰,李学章,计学闰.浮石混凝土与变形钢筋粘结锚固性能的研究[J].哈尔滨建筑大学学报,1998,31(6):30-37.
    [140]王卫玉.陶粒混凝土与钢筋粘结锚固性能的试验研究[D].广西大学,2005.
    [141]王洪昌.超高韧性水泥基复合材料与钢筋粘结性能的试验研究[D].大连理工大学,2007.
    [142]安明喆,张盟.变形钢筋与活性粉末混凝土的粘结性能试验研究[J].中国铁道科学,2007,28(2):50-54.
    [143]王晓慧.钢筋与活性粉末混凝土的粘结本构关系研究[D].北京交通大学,2007.
    [144]陈慧.活性粉末混凝土和光圆钢筋的粘结滑移研究[D].北京交通大学,2007.
    [145]岑小艳.碳纤维增强塑料筋与活性粉末混凝土的粘结性能试验研究[D].湖南大学,2006.
    [146]薛雪云.粉煤灰混凝土粘结性能的试验研究[D].西安建筑科技大学,2008.
    [147]徐有邻,刘立新,管品武,林红宇.冷轧扭钢筋粘结锚固性能的试验研究[J].建筑技术,1998,29(8):538-540.
    [148]徐有邻,刘立新,管品武.螺旋肋钢丝粘结锚固性能的试验研究[J].混凝土与水泥制品,1998(8):24-29.
    [149]毛达岭.HRB500钢筋粘结锚固性能的试验研究[D].郑州大学,2004.
    [150]李千.超细晶粒钢筋粘结锚固性能的研究[D].郑州大学,2007.
    [151]韩梅.首钢表面防锈处理钢筋粘结锚固性能的试验研究[D].郑州大学,2007.
    [152]薛伟辰.不同试验方法对GFRP筋粘结强度的影响研究[J].玻璃钢/复合材料,2003(5):10-13.
    [153]高丹盈,朱海堂,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构模型[J].工业建筑,2003,33(7):41-43.
    [154]贾新.玻璃纤维增强塑料锚杆锚固机理研究[D].同济大学,2005.
    [155]郭恒宁.FRP筋与混凝土粘结锚固性能的试验研究和理论分析[D].东南大学,2006.
    [156]陈剑GFRP筋与纤维混凝土粘结滑移试验研究[D].大连理工大学,2007.
    [157]李娟.纤维对GFRP筋与自密实混凝土基体粘结性能影响[D].大连理工大学,2008.
    [158]郝庆多,王言磊,侯吉林,欧进萍.GFRP带肋筋粘结性能试验研究[J].工程力学,2008,25(10):158-165.
    [159]吕西林,周长东,金叶.火灾高温下GFRP筋和混凝土粘结性能试验研究[J]建筑结构学报,2007,28(5):32-139.
    [160]薛伟辰.环氧涂层钢筋混凝土结构的试验研究[J].同济大学学报,2001,29(7):769-773.
    [161]徐有邻,刘立新,管品武,曾德贵.环氧树脂涂层钢筋锚固性能及设计方法[J].水运工程,1999,(8):33-37.
    [162]王林科,陶峰,王庆霖,杨兰生.锈后钢筋混凝土粘结锚固的试验研究[J].工业建筑,1996,26(4):14-16.
    [163]袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的试验研究[J].工业建筑,1999,29(11):47-50.
    [164]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报(工学版),2002,36(4):352-356.
    [165]赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究[J].建筑结构学报,2002,23(1):32-37.
    [166]范颖芳,黄振国,李健美,等.受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能研究[J].工业建筑,1999,29(8):49-51.
    [167]陈留国,方从启,寇新建,陈兵.受腐蚀钢筋混凝土的粘结性能[J].工业建筑,2004,34(5):15-17.
    [168]方从启.腐蚀对反复荷载下钢筋与混凝土粘结性能的影响[J].工业建筑,2005,35(12):15-18.
    [169]张伟平,张誉.锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报,2001,34(5):40-44.
    [170]Glanville W H. Studies in reinforced concrete:bond resistance. Building Research Technical Paper No.10, London,1980, pp120.
    [171]Moosavi M, Jafari A, Khosravi A. Bond of cement grouted reinforcing bars under constant radial pressure [J]. Cement and Concrete Composites,2005,27(1):103-109.
    [172]Ozden S, Akpinar E. Effect of confining FRP overlays on bond strength enhancement [J]. Construction and Building Materials,2007,21(7):1377-1389.
    [173]中华人民共和国国家标准.金属材料室温拉伸试验方法GB/T228-2002.北京:中国标准出版社,2002.
    [174]Takaku A, Arridge R G C. The effect of interfacial radial and shear stress on fiber pull-out in composite materials [J]. Journal of Physics D:Applied Physics,1973,6(17):2038-2047.
    [175]Timoshenko S P, and Goodier J N. Theory of Elasticity [M]. McGraw-Hill, New York,1970.
    [176]徐芝纶.弹性力学(上册)[M].高等教育出版社,北京,2006.
    [177]过镇海.混凝土的强度和变形.试验基础和本构关系[M].清华大学出版社,北京,1997.
    [178]Hillerborg A, Modeer M, Perterson P-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research,1976, 6(6):773-782.
    [179]Van Der Veen, C. Cryogenic bond stress-slip relationship [D]. PhD thesis, Delft University of Technology, Delft, the Netherlands,1990.
    [180]Reinhardt H W, Van Der Veen C. Splitting failure of a strain-softening material due to bond stresses [C]. Applications of Fracture Mechanics to Reinforced Concrete, Elsevier, Amsterdam, The Netherlands,1992:333-346.
    [181]Rosati G, Schumm C. Modeling of local bond to concrete bond in reinforced concrete beams [C]. Proceedings of the International Conference on Bond in Concrete, Riga, Latvia,1992:33-43.
    [182]Den Uijl J P, Bigaj A J. A bond model for ribbed bars based on concrete confinement [J]. HERON, 1996,41(3):201-226.
    [183]Ye J Q, Wu Z J. Micro-mechanical analysis of splitting failure in concrete reinforced with fiber reinforced plastic rods [J]. Cement and Concrete Composites,2000,22(4):243-251.
    [184]Noghabai K. Splitting of concrete in the anchoring zone of deformed bars [D]. PhD thesis, Lulea University of Technology, Sweden,1995.
    [185]Noghabai K, Ohlsson U, Olofsson T. Bond properties of high strength concrete [C]. Proceedings of the Third International Symposium on Utilization of High Strength Concrete, Lillehammer, Norway, 1993:1169-1176.
    [186]Nielsen C V, Bicanic N. Radial fictitious cracking of thick-walled cylinder due to bar pull-out [J]. Magazine of Concrete Research,2002,54(3):215-221.
    [187]Cattaneo S, Rosati G. Bond between steel and self-consolidating concrete experiments and modeling [J]. ACI Structural Journal,2009,106(4):540-550.
    [188]Reinhardt H W, Cornelissen H A W, Hordijk D A. Tensile test and failure analysis of concrete [J]. Journal of Structural Engineering, ASCE,1986,112(11):2462-2477.
    [189]Xu F, Wu Z M, Zheng J J, Zhao Y H, Liu K. Crack extension resistance curve of concrete considering variation of FPZ length [J]. Journal of Materials in Civil Engineering, ASCE,2011,23(5):703-710.
    [190]Morinaga S. Prediction of service lives of reinforced concrete buildings based on the rate of corrosion [R]. Special Report, No.23, Institute of Technology, Shimuzhu Corporation,1988.
    [191]Williamson S J, Clark L A. Pressure required to cause cover cracking of concrete due to reinforcement corrosion [J]. Magazine of Concrete Research,2000,52(6):455-467.
    [192]CEB-FIP. CEB-FIP Model Code 2010 [S]. Comite Euro-International du Beton (CEB), Thomas Telford Ltd., London, UK,2010.m
    [193]Tilantera T, Rechardt T. Bond of reinforcement in lightweight aggregate concrete [R]. Otaniemi, Helsinki University of Technology, Division of Structural Engineering,1977:1-36.
    [194]Urban V. Anchorage length and bond stress calculation [R]. Research Report 458, Technical University, Prague,1980.
    [195]Hadje-Ghaffari H, Choi O C, Darwin D, McCabe S. Bond of epoxy-coated reinforcement:Cover, casting position, slump, and consolidation [J]. ACI Structural Journal,1994,91(1):59-68.
    [196]Choi O C, Hadje-Ghaffari H, Darwin D, McCabe S L. Bond of epoxy-coated reinforcement:Bar parameters [J]. ACI Materials Journal,1991,88(2):207-17.
    [197]Harajli M, Hamad B, Karam K. Bond-slip response of reinforcing bars embedded in plain and fiber concrete [J]. Journal of Materials in Civil Engineering, ASCE,2002,14(6):503-511.
    [198]Darwin D, Graham E K. Effect of deformation height and spacing on bond strength of reinforcing bars [J]. ACI Structural Journal,1993,90(6):646-57.
    [199]董伟.混凝土Ⅰ-Ⅱ复合型裂缝起裂准则的试验研究与裂缝扩展全过程的数值模拟[D].大连理工大学.2008.
    [200]Xu S L, Reinhardt H W. Crack extension resistance and fracture properties of quasi-brittle softening materials like concrete based on the complete process of fracture [J]. International Journal of Fracture, 1998,92(1):71-99.
    [201]Xu S L, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle materials, part Ⅱ:Analytical evaluating and practical measuring methods for three-point bending notched beams [J]. International Journal of Fracture,1999,98(2):151-177.
    [202]中国航空研究院.应力强度因子手册[M].科学出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700