芯—表结构木塑复合材料机械性能与热膨胀性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以新型的芯-表结构的木塑复合材料和传统的木(竹)塑复合材料为研究对象,以HDPE为基体,有机填料与无机填料混合使用探讨了(1)芯-表结构木塑复合材料的表层性能对复合材料整体性能的影响,以机械力学性能为基础,分析了其热膨胀性能并建立了芯-表结构木塑复合材料的有限元模型;(2)以机械性能为基础,研究了传统木(竹)塑复合材料的热膨胀性能。本研究得到的结论归纳如下:
     (1)当单一填料(滑石粉(Talc)或玻璃纤维(GF))作为增强材料增强芯-表结构木塑复合材料表层时,GF对其表层材料的拉伸模量的提高效果更明显,将已有的模型预测值与测量值进行了比较,PPA可以预测HDPE/GF复合材料的拉伸强度和模量及HDPE/GF复合材料的拉伸模量;Nicolais和Nicodemo建立的模型可用于预测HDPE/Talc复合材料的拉伸强度;HDPE/GF表层材料的弯曲强度和模量更大,其冲击强度随着纤维加入量的增加而提高;DMA测试结果与弯曲性能测试结果相似,与纯HDPE相比,HDPE/GF表层材料的α松弛峰通常出现在较高的温度区域,而HDPE/Talc表层材料出现α松弛峰的温度区域与纯HDPE相近;HDPE/GF表层材料的Tan8值随着GF加入逐渐降,HDPE/Talctanδ值未发生明显变化。当混合填料(Talc和GF)按l0wt%和30wt%增强材料增强芯-表结构木塑复合材料表层时,无论混合填料的比例(Talc:GF)是1:1,1:2或者是1:3,复合材料的力学性能都有提高。混合填料中GF的含量越高,其复合材料的力学性能越好,当填料加入量为30wt%时,表现的尤为明显。DMA分析与弯曲性能的测试结果相一致。E′随着填料含量的增加而升高,E"『在50℃--62℃左右出现α松弛内耗峰。总的来说,Tan8值随着填料含量的增加而降低。
     无论填料是单一还是混合加入,随着温度的升高(降低),其复合材料的尺寸变化不断变大(变小)。填料的加入降低了其复合材料的热膨胀,纯HDPE(AD60)试样具有较明显的残留变形;当GF在HDPE/GF复合材料中含量较高(30%和40%).时,其复合材料的残留变形较小;HDPE/Talc复合材料的残留变形与纯HDPE相似;HDPE/GF复合材料与同样木粉含量的WPC相比,具有较小的LTEC;混合填料中GF/Talc比例以1:1增强表层时,表层的LTEC值最小。
     (2)对于纤维状的GF增强表层的芯-表结构木塑复合材料而言,当表层的弯曲模量小于芯层的弯曲模量时,随着表层厚度的增加,芯-表结构木塑复合材料的弯曲模量逐渐下降;当表层的弯曲模量高于芯层的弯曲模量时,则复合材料弯曲模量随表层厚度的变化趋势恰恰相反,复合材料弯曲模量随表层厚度的增加而增加。由芯-表结构木塑复合材料(GF增强表层)表层及芯层随温度变化的应变分布的有限元分析可知,模型中左端点随着温度的升高而限制膨胀(-0.007027),材料的热变形从左至右呈现线性增长,右侧有较大的热变形;芯-表结构木塑复合材料的LTEC随表层厚度的变化趋势较为复杂,它是表层和芯层性能共同作用的结果。LTEC随表层的厚度呈现线性变化。当表层的LTEC值大于芯层LTEC时,表层厚度的增加可以导致芯-表结构木塑复合材料LTEC的增加;当表层的LTEC值小于芯层LTEC时,芯-表结构木塑复合材料LTEC随表层厚度的增加而减少;总的来说,芯-表结构木塑复合材料(GF增强表层)的热膨胀系数的测量值和有限元模型模拟值是契合的,
     芯-表结构木塑复合材料复合材料(Talc增强表层)的弯曲性能随着表层滑石粉加入量的增加而增加,即随着表层弯曲性能的增加而增加;降低复合材料表层材料的热膨胀系数的同时可以一起降低芯-表结构复合材料的热膨胀系数;当表层厚度降低为芯层的一半时,由于Talc是片状结构,故表层材料的滑石粉的含量从0依次增加到10wt%时,芯-表结构木塑复合材料热膨胀系数显著降低,而当表层滑石粉从10wt%依次增加到49wt%时,其热膨胀系数降低的不显著。
     (3)纯R-PP&PE的热膨胀残留变形较大,而添加了单一或混合填料的复合材料的热膨胀残留变形明显较小;当PCC加入量从3wt%增加到30wt%时,随着PCC含量的升高复合材料的LTEC显著降低。较纯的R-PP&PE基体,PCC加入量为0时,当40wt%GBP(TGBP)或者RBF(TRBF)加入塑料基体后,其复合材料的LTEC在3个温度区间内均下降;PCC加入后,复合材料的LTEC随着PCC含量的增加而减小;当PCC的加入量相同时,经硅烷处理过的有机填料具有更好的降低热膨胀的效果;TRBF较TGBP也具有更好降低复合材料热膨胀的效果。
     (4)随着WPC的木粉含量从0增加到35%,其弯曲强度和弯曲模量不断增强,其线性热膨胀系数呈下降的趋势,且对长度方向上的热膨胀的限制较宽度方向上更大;在加入木粉未加入偶然联剂的情况下,木塑复合材料的冲击强度呈现下降趋势,加入偶联剂后的木塑复合材料的热膨胀系数较未加入任何类型的偶联剂的木塑复合材料热膨胀系数均有显著降低,其拉伸模量和冲击强度均有所提高,木粉与偶联剂的加入均对WPC的热膨胀有限制作用,但主要的影响因素应该是木粉的加入量及塑料基体的种类;当单一的PA或者SEBS加入后,HDPE/PA(SEBS)复合材料的LTEC呈下降趋势,但幅度不大,SEBS-G-MA加入后,复合材料继续呈现下降趋势,当竹粉加入后,复合材料的LTEC显著下降,当竹粉,PA,SEBS-G-MA和MAPE(PEAC4)共同作用时候,复合材料的热膨胀系数最低,影响复合材料LTEC最主要的因素是竹粉的加入量。
Mechanical/thermal expansion coefficients of co-extruded wood plastic composite(core-shell) or WPC were investigated in this paper. The filler involved talc,glass fiber, PrecipitatedCaCO3, pine fiber, bamboo flour. The effect of individual and combined filler on mechanical and thermal performance of the filled HDPE composites was studied to develop a suitable shell system for co-extruded wood plastic composites (core-shell) and mechanical/thermal expansion behavior of WPC. The model provides a way to optimize raw material composition for minimize thermal expansion behavior of co-extruded WPC(core-shell).The following conclusions can be drawn from the study.
     (1) The use of silane-modified short GFs had a much larger effect in improving mechanical properties and in reducing LCTE values of filled composites compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of30wt%combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with role of mixture, while a PPA-based model can be used to predict the modulus and strength of SGF-filled composites.
     (2)Coextruded wood plastic composite(core-shell) with glass-fiber (GF) filled shells were manufactured and their mechanical/thermal expansion coefficients were evaluated. The use of GF-filled shell enhanced overall composite modulus and strength, and at the same time, lowered composite linear coefficient of thermal expansion (LCTE). The imbalance of shell and core LCTE and moduli led to complex stress field within the composite system. Three-dimensional finite element model based on linear isotropic material for both shell and core was developed to predict LCTE of the material. The model predicted a trend which is in general agreement with the experimental data. The model provides a way to optimize raw material composition for minimize thermal expansion of WPC. For coextruded wood plastic composite(core-shell)with talc filled shell system, flexural properties of composite increased with the increase of talc content. LTEC of the co-extruded wood plastic composite decreased with decrease of the LTEC for the shell.
     (3) Thermal expansion of the composites decreased with increased PCC and bamboo filler loading levels. The composite system with RBFs had smaller LCTE values than those from systems with GBPs. The use of silane treatment on bamboo fiber/particle surface helped with their bonding to the plastic matrix, leading to further reduction of LCTE values for both GBP and RBF systems. The observed behavior of reduced LCTE is attributed to a small filler LCTE value, reduced over-plastic volume, and enhanced interfacial bonding with treated materials. Thus, hybrid bamboo and PCC fillers are suitable materials for controlling the thermal expansion of the composite materials caused by temperature changes.
     (4) The flexural and thermal expansion properties of composites was investigated. The flexural strength and modulus of composites was higher than that of pure PE, which were increased with increasing fiber content. As the filler loading increased, the thermal expansion of composites slightly decreased, The modifier content showed better influences on the longitudinal LTEC than that of tangential; Without addition of modifiers, tensile strength of composites was lower than virgin HDPE. Tensile modulus is not sensitive to content of coupling agent.LTEC change of various composites was primarily caused by the matrix and filler content; Low impact strength is the major drawback of WPC in many end-use applications. The impact strength'change of composites is caused by coupling agents. The different matrix and ratio of modifier content showed different influences on the various Linear thermal expansion coefficients of composites in three temperature zone, the reduction of the LTEC appear in HDPE/Pine composites was not dependent on coupling agent. Therefore, LTEC change of various composites was primarily caused by the matrix and filler. When the PA, SEBS of bamboo flour filled to the matrix, the LTEC was reduced.SEBS-G-MA as couple agent can reduced the LTEC of the BF/PA/HDPE composite, but LTEC of composites was primarily caused by the bamboo flour
引文
[l]周定国,梅长彤.面向21世纪的农作物秸杆材料工业.南京林业大学学报.2001.5:1-4.
    [2]Rossi, L.M.Wood-plastic composites:putting innovation on a faster track.8th nternational Conference on Woodfiber-Plastic Composites. Madison. WI. USA.2005,3-6.
    [3]Mohanty, A. K.;Misra, M.; Drzal, L. T. Natural Fibers, Biopolymers, and Their Biocomposites. CRC press.2005.
    [4]William L. James. RESEARCH NEEDS IN WOOD PHYSICS:A BROAD OVERVIEW. WOOD AND FIBER SCIENCE, APRIL,1998,20(2):277-294.
    [5]J Son and D.J.Gardner. Understanding the viscoelastic properties of extruded polypropylene wood plastic composites. Journal of Applied Polymer Science2003,89:1638-1644.
    [6]Klyosov AA.2007. Wood-plastic composites. Hoboken, New Jersey:John Wiley&Sons Inc;698p.
    [7]Nielson, L.E., and R.F. Landel.1993, Mechanical Properties of Polymers and Composites (2nd edition), Marcel Dekker, New York, NY.
    [8]Liu, H., F. Yao, Y. Xu, and Q. Wu.2010. A novel wood flour-filled composite based on microfibrillar high density polyethylene (HDPE)/nylon-6blends. Bioresource Technology,101(9):3295-3297
    [9]Yao, F., Q. Wu, Y. Lei, and Y. Xu.2008. Rice straw fiber reinforced high density polyethylene composite:Effect of fiber type and loading. J. Industrial Crops and Products:28:63-72.
    [10]J Son,D. J.Gardner. Understanding the viscoelastic properties of extruded polypropylene wood plastic composites. Journal of Applied Polymer Science.2003,89,1638-1644.
    [11]Kazayawoko, M.; Balatinecz, J.J.; Woodhams, R. T.Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J ApplPolym Sci.1997,66:1163-1173.
    [12]潘明珠。麦秸纤维/聚丙烯复合材料的研究。南京林业大学。2008
    [13]Bengtsson, M.; Oksman, K. Silanecrosslinked wood plastic composites:processing and properties. Compos Sci Technol.2006,66(13):2177-2186.
    [14]Yao, F.and Q. Wu,2010. Coextruded polyethylene and wood-flour composite:Effect of shell thickness, wood loading, and core quality. J. Applied Polymer Science,118(6):3594-3601.
    [15]C. E. Bakis, L. C. Bank, F.ASCE V. L. Brown, et al M.ASCE.2002. Fiber-Reinforced Polymer Compositesfor Construction-State-of-the-Art Review. JOURNAL OF COMPOSITES FOR CONSTRUCTION.73-87
    [16]Antonio Norio Nakagaito. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano. Cellulose.2008:15:555-559
    [17]B. Pizzo, G. Rizzo, P. Lavisci,(2002).Comparison of thermal expansion of wood and epoxy adhesives.HolzalsRoh-und Werkstoff60285-290
    [18]B. A. Kiselev, Glass-Fiber-Reinforced Plastics [in Russian], Gosizdat (1961). Linear-expansion coefficients of glass-fiber-reinforced plastics based on polymethylsiloxane resin, up to1000℃ Mechanics of Composite Materials10(3):449-452.
    [19]Pojur(1972). Thermal expansion at elevated temperatures III. A hemispherical laminar composite of pyrolytic graphite, silicon carbide and its constituents between300and800K Journal of physics D:Applied physics5(7)
    [20]Antonio Norio Nakagaito(2008). The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano.Cellulose15:555-559
    [21]MagaliFerrandon, Magnus Berg, Emilia Bjornbom (1999). Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler Catalysis53:647-659
    [22]RICHARD C. WEATHERWAX, Chemist, et al.THE COEFFICIENTS CI THERMALEXPANSION OF WOOD ANDWOOD PRODUCTS. UNITED STATES DEPARTMENT OF AGRICULTUREFOREST SERVICE.1956,report No1487.
    [23]Simpson, W.T.1993. Specific gravity, moisture content,and density relationships for wood. U.S. Department ofAgriculture Gen. Tech. Rep. FPL-GTR-76. Madison, WI:U.S. Department of Agriculture, Forest Service, ForestProducts Laboratory.
    [24]Skaar, C.1988. Wood-water relations. New York:Springer-Verlag. New York, Inc.
    [25]Villari E (1868) Experimental-Untersuchungenu"bereinigeEigenschaftendes mitseinenFasern parallel oder transversal durchschnittenenHolzes. Ann. Phys. Chem.133(3):400-429.
    [26]Kubler H (1959) La "ngena" nderungenbei der Wa"rmebehandlungfrischenHolzes. HolzRoh-Werkstoff17(3):77-86; Kubler H, Liang L, Ch(1973) Thermal expansion of moistwood. Wood and Fiber5:257-267.
    [27]Schirp M, Kubler H (1968) Untersuchungenu'ber die ka"ltebedingtenLa"ngena"nderungenkleinerHolzproben. HolzRoh-Werkstoff26(9):335-341.
    [28]Salme'n L (1990) Thermal Expansion of Water-saturated Wood.Holzforschung44(1):17-19; Stevens WC (1960) The thermal expansion of wood. Wood25(8):328-329
    [29]Stumes P (1975) Testing the efficiency of wood epoxy reinforcementsystems. APT Bulletin VII(3):2-35;
    [30]B. Pizzo, G. Rizzo, P.Lavisci,(2002).Comparison of thermal expansion of wood and epoxy adhesives.HolzalsRoh-und Werkstoff60285-290.
    [31]H.-S. Yang, M. P. Wolcott, H.-S. Kim(2005). Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites Journal of Thermal Analysis and Calorimetry.82157-160.
    [32]Wada M.(2002).Mechanical properties of silk fibroin-microcrystalline cellulose composite films.Polym. Sci., Part B:Polym. Phys.40:1095-1102.
    [33]Takahashi M. and Takenaka H.(1982). The Thermal Expansion of Wood Cellulose Crystals. Polymer14:675-679.
    [34]Reddy, N., Yang, Y.Q.,. J (2006). Properties of High-Quality Long Natural Cellulose Fibers from Rice Straw.Agric. Food Chem.,54(21),8077-8081.
    [35]M V. RAMIAH and D. A. I. GORING.The Thermal Expansion of Cellulose, Hemicelldose, and Lignin。JOURNAL OF' IWLYMEIt SCIENCE:PART C。1965:27-48.
    [36]Seitsonen S. and Mikkonen I.1973. X-ray study on the thermal expansion of cotton cellulose. Polymer J.5:263-267.
    [37]Takahashi M. and Takenaka H.1982. X-ray study of the thermal expansion and transition of crystalline cellulose Polymer J.14:675-679.
    [38]Vazquez, A., V. A. Dominguez, and J. M. Kenny.1999. Bagasse fiber-polypropylene based composites. Journal of Thermoplastic Composite Materials12:477-497.
    [39]Ward, I. M.1971. Mechanical Properties of Solid Polymers. Wiley-interscience.
    [40]Okubo, K., T. Fujii, and Y. Yamamoto.2004. Development of bamboo-based polymer composites and their mechanical properties. Composites Part A:Applied Science and Manufacturing35:377-383.
    [41]Bledzki, A. K., S. Reihmane, and J. Gassan.1998. Thermoplastics reinforced with wood fillers:A literature review. Polymer-Plastics Technology and Engineering37:451-468.
    [42]Bledzki, A. K. and O. Faruk.2004. Creep and impact properties of wood fibre-polypropylene composites:influence of temperature and moisture content. Composites Science and Technology64:693-700.
    [43]Bledzki, A. K. and J. Gassan.1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science24:221-274.
    [44]Nunez, A. J., N. E. Marcovich, and M. I. Aranguren.2004. Analysis of the creep behavior of polypropylene-woodflour composites. Polymer Engineering and Science44:1594-1603.
    [45]MagaliFerrandon, Magnus Berg, Emilia Bjornbom. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler Catalysis.1999,53:647-659
    [46]Antonio Norio Nakagaito. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano.Cellulose,2008:15:555-559
    [47]Bijan ADL-ZARRABI, Lars BOSTROM(1995). Determination of Thermal Properties of Wood and Wood Based Productsby Using Transient Plane Source.Panelguides。
    [48]M Barucci, G Bianchinib, T Del Rossoaetal.Thermalexpansion and thermal conductivity of glass-fibre reinforced nylon at low temperature. Cryogenics.2001,40:456-457
    [49]Sombatsompop, N. and K. Chaochanchaikul.2004. Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly(vinyl chloride)/wood sawdust composites. Polymer International53:1210-1218.
    [50]Sombatsompop, N., K. Chaochanchaikul, C. Phromchirasuk, and S. Thongsang.2003. Effect of wood sawdust content on rheological and structural changes, and thermo-mechanical properties of PVC/sawdust composites. Polymer International52:1847-1855.
    [51]Sain, M. M., J. Balatinecz, and S. Law.2000. Creep fatigue in engineered wood fiber and plastic compositions. Journal of Applied Polymer Science77:260-268.
    [1]Susan E. Selke, Indrek Wichman. Wood fiber/polyole fin composites. Composites Part A,2004,35:321-326
    [2]Bengtsson, M.; Oksman, K. Silane crosslinked wood plastic composites:processing and properties. Compos Sci Technol.2006,66(13):2177-2186.
    [3]Bengtsson, M.; Gatenholm, P.; Oksman, K. The effect of crosslinking on the properties of polyethylene-wood flour composites. Compos Sci Technol.2005,65:1468-1479.
    [4]Joshi. M., Maiti. S.N. and Misra, A., Influence of fibre length. Fibre orientation and interfacial adhesion on poly(butylene terephthalate) polyethylene alloys reinforced with short glass fibres. P&m. Comp.,1994,15,349-358.
    [5]Kannan. K. and Misra. A., Short glass fibre reinforced PA6and ABS blends:mechanical properties and morphology. Intern. Polym.Pmcess..1994,11.184-192.
    [6]Gupta, V.B., Mittal, R.K. and Sharma, P.K., Some studies on glass fibre reinforced polypropylene. Part Ⅱ:mechanical properties and their dependence on fibre length, interfacial adhesion and fibre dispersion. Polym. Comp.,1989,10,16-27.
    [7]Smith, P.M. and M.P. Wolcott. Opportunities for wood/natural fiber-plastic composites inresidential and industrial applications. Forest Products Journal.2006,56(3):4-11.
    [8]Stark, N. M., and L. M. Matuana.2009. Co-extrusion of WPCs with a clear cap layer to improve color stability,4th Wood Fiber Polymer Composites International Symposium, March30-31,2009, Bordeaux, France, pp.1-13.
    [9]Yao, F.and Q. Wu,2010. Coextruded polyethylene and wood-flour composite:Effect of shell thickness, wood loading, and core quality. J. Applied Polymer Science,118(6):3594-3601.
    [10]Jin., S., and L. M. Matuana,2010. Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride) cap layer. Polymer International,59,648-657.
    [11]Kim, B.J., F. Yao, G. Han, and Q. Wu.2012. Performance of bamboo plastic composite with hybrid bamboo and precipitaed calcium carbonate fillers. Polymer Composites DOI10.1002/pc.21244.
    [12]J.-I. WEON, H.-J. SUE. Mechanical properties of talcand CaCO3-reinforced high-crystallinity polypropylene composites. J MATER SCI41(2006)2291-2300
    [13]Karrad, S., J.M. Lopez Cuesta, and A. Crespy.1998. Influence of a fine talc on the properties of composites with high density polyethylene and polyethylene/polystyrene blends, J. Materials Sci.33:453-461
    [14]Huda, M.S., L.T. Drzal, A.K. Mohanty, M. Misra.2007. The effect of silane treated-and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites Composites:Part B38(2007)367-379
    [15]Shao-Yun Fu and Bernd Lauke. Characterization of tensile behaviour of hybrid short glass fibre/calcite particle/ABS composites. Composites Parr A29A (1998)575-583
    [16]Ulrych. F.. Sova, M.. Vokrouhlecky, J. and Turcic, B., Empirical relations of the mechanical properties of polyamide6reinforced with short glass fibres. Polym. Comp.,1993,14,229-237.
    [17]Rueda. L.I.. Anton, C.C. and Rodriguez. M.C.T., Mechanics of short fibres in filled styrene-butadiene rubber (SBR) composites. Po/.vm. Camp..1989.9.199-203.
    [18]Vu-Khanh. T. and Denault, J.. The effects of injection molding on the mechanical behavior of long-tibre reinforced PBT/PET blends. Compos. Sci. und Technol.1991.40.423-4.39.
    [19]Nielson, L.E., and R.F. Landel.1993, Mechanical Properties of Polymers and Composites (2nd edition), Marcel Dekker, New York, NY.
    [20]Piggott M.R.,1994."Short fiber polymer composites:a fracture-based theory of fiber reinforcement," J. of Composite Materials, Vol.28, No.7,1994, pp.588-606.
    [21]Pilla, S., Gong, S., O'Neil, E., Rowell, R.M., Krzysik, A.M.,2008. Polylactide-pine wood flour composites. Polym. Eng. Sci.48(3),578-587.
    [22]Johnson, R.K., Zink-Sharp, A., Renneckar, S.H., Glasser, W.G.,2008. Mechanical properties of wetlaid lyocell and hybrid fiber-reinforced composites with polypropylene. Compos. Part A-Appl. S.39(3),470-477.
    [23]Fornes, T.D., Paul, D.R.,2003. Modeling properties of nylon6/clay nanocomposites using composite theories. Polymer44(17),4993-5013.
    [24]Sperling, L.H.2006. Introduction to physical polymer science (4th ed), Hoboken, New Jersey:John Wiley&Sons, p.702-705.
    [25]Cox, H. L.1952. The elasticity and strength of paper and other fiberous materials. Br. J. Appl Phys.,3:72-79.
    [26]Fu, S. Y., and B. Lauke.1998. An analytical characterization of the anisotropy of theelasticmodulus of misalignedshort-fiber-reinforcedpolymers Composite Sci. Technol.58:389-400.
    [27]Jayaraman, K., and M.T. Kortschot.1996. Correction to the Fukuda-Kawata Young's modulus theory and the Fukuda-Chou strength theory for short fibre-reinforced composite materials. J. Mater. Sci.31:2059-2064.
    [28]Ma, O., P.C. Tibbenham, X. Lai, T. Glogovsky, and X. Su.2009. Micromechanical modeling of the mechanical behavior of thermoplastic olefin. Polymer Engineering and Science.50(3):536-542.
    [29]Stixrude, L.2002. Talc under tension and compression:spinodal instability, elasticity, and structure. J. Geophysical Research,107(B12),2327.
    [30]L. NICOLAIS and L. NICODEMO, Int. J. Polym. Mater.4.(1974)229.
    [31]Nicodemo, L., and L. Nicolais.1983. Mechanical properties of metal/polymer composites Journal of Materials Science Letters2(5):201-203.
    [32]Piggott M.R.,1994."Short fiber polymer composites:a fracture-based theory of fiber reinforcement," J. of Composite Materials, Vol.28, No.7,1994, pp.588-606.
    [33]Zak, G., M. N. Sela V Yevko C. B. Park B. Benhabib.1998. Layered-manufacturing of fiber reinforced composites. Computer Integrated Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto.21p.
    [34]Kortschot, M.T., Correction to the Fukudd-Kawata Young's modulus theory and the Fukuda-Chou strength theory for short tibre reinforced composite materials. J. Muter.SC;..1996,31.2059-2064.
    [35]Lauke. B.. Schultrich, B. and Pompe. W., Theoretical considerations of toughness of short-fibre reinforced thermoplastics. Polvm. Pltrsf. Tech&Eng.(Special Issue).1990.29,607-806.
    [36]Rueda. L.I.. Anton, C.C. and Rodriguez. M.C.T., Mechanics of short fibres in filled styrene-butadiene rubber (SBR) composites. Po/.vm. Camp..1989.9.199-203.
    [37]Dash, B. N.; Rana, A. K.; Mishra, H. K.; Nayak, S. K.; Mishra, S. C.; Tripathy, S. S. Novel, low-cost jute-polyester composites. Part1:Processing, mechanical properties, and SEM analysis. Polym Compos.1999,20:62-71.
    [38]Huda MS, Mohanty AK, Drzal LT, Misra M, Schut E.2005. Green composites from recycled cellulose and poly(lactic acid):physicomechanical and morphological properties evaluation. J Mater Sci.40(16):4221-9.
    [39]Felix, J. M.; Gatenholm, P. The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci1991,42:609-620.
    [40]Matuana LM, Park CB, Balatinecz JJ (1998) Cell morphology and property relationships of microcellular foamed PVC/wood fibre
    composites. Poly Eng Sci38(11):1862-1872.
    [41]Mohanty, S. Panda, B. Karelia, H and Issar, R.,(2006), Knowledge management in disaster risk reduction:The Indian approach, India:Ministry of home affaires.
    [42]Huang, Y. Q.; Jiang, S. L.; Wuand, L. B.; Hua, Y Q. Polym Test2004,23,9.
    [43]Mingzhu Pan. Research of rice straw reinforced PP composites.2008.Nanjing Forestry University.
    [44]Sie Chin Tjong, Shi-Ai Xu,Robert Kwok-Yiu Li,et al.2002,Mechanical behavior and fracture toughness evaluation of maleic anhydride compatibilized short glassfiber/SEBS/polypropylene hybrid composites. Composites Science and Technology.62(6):831-840
    [45]M.S. Hudaa, L.T. Drzala, A.K. Mohanty.2007.The effect of silane treated-and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Composites Part B:Engineering.38(3):367-379.
    [46]Vu-Khanh. T. and Denault, J.. The effects of injection molding on the mechanical behavior of long-tibre reinforced PBT/PET blends.Compos. Sci. und Technol..1991.40.423-425.
    [47]Chung, H.J., Lee, E.J. and Lim, S.T.(2002). Comparison in Glass Transition andEnthalpy Relaxation between Native and Gelatinized Rice Starches, Carbohydrate Polymers,48:287-298.
    [48]Bleach, N.C., Nazhat, S.N., Tanner, K.E., Kellomaki, M. and Tormala, P.(2002). Effect ofFiller Content on Mechanical and Dynamic Mechanical Properties of Particulate BiphasicCalcium Phosphate-polylactide Composites, Biomaterials,23:1579-1585.
    [49]R. A. Shanks,A. Hodzic, S. Wong.2004. Thermoplastic biopolyester natural fiber composites. Journal of applied polymer science.91(4):2114-2121.
    [1]Yao F, Wu QL. Coextruded Polyethylene and Wood-Flour Composite:Effect of Shell Thickness. Wood Loading, and Core Quality. Journal of Applied Polymer Science.2010;118:3594-601.
    [2]Stark NM, Matuana LM. Co-extrusion of WPCs with a clear cap layer to improve color stability. In: Proceedings of4th Wood Fiber Polymer Composites International Symposium. Bordeaux, France,2007. p.1-13.
    [3]Jin S, Matuana LM. Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride) cap layer. Polymer International.2010;59:648-57.
    [4]Kim Birm-June, Yao Fei, Wang Qingwen, Wu Qinglin. Mechanical and Physical Properties of Core-Shell Structured Wood Plastic Composites:Effect of Shells with Hybrid Mineral and Wood Fillers, Composite Part A. In review.
    [5]Klyosov AA.2007. Wood-plastic composites. Hoboken, New Jersey:John Wiley&Sons Inc;698p.
    [6]Singh, S., and Mohanty.2007. Wood fiber reinforced bacterial bioplastic composites:fabrication and performance evaluation. Composite Science and Technology67:1753-1763.
    [7]Jones, R.M.1975. Mechanics of Composite Materials. McGraw-Hill, New York, USA.
    [8]Zhu, R. P., and C.T. Sun.2003. Effects of fiber orientation/elastic constants on cofficients of thermal expansion in laminates. Mechanics Advd Mater. Strut10:99-107.
    [9]Haneef, M., Shabbir Ahmed R M, and Mohammed Mohsin Ali.2011. Studies on delaminating Effects on Stress Development in Composite Structures. Proceedings of the World Congress on Engineering2011Vol Ⅲ WCE2011, July6-8,2011, London, U.K.
    [10]Hsueh, C.H. and M. K. Ferber,2002. Apparent coefficient of thermal expansion and residual stresses in multilayer capacitors. Composites Part A.33:1115-1121.
    [11]Halpin, J.C. and N.J. Pagano.1969. The Laminate Approximation for Randomly Oriented Fibrous Composites. J. Comp. Mat., Vol.3, p.720.
    [12]Bressan, F., F De Bona, and A Soma.2004. Design of composite laminates with low thermal expansion. J. Materials:Design and Applications218:201-209.
    [13]Yu, Z. and A. Zhou.2010. An integrated thermomechanical method for modeling fiber reinforced polymer composite structures in fire. In Proc. ASCE Analysis and Computation Specialty Conference. PP:492-503.
    [14]Vos, Daniel J.1998. Engineering Properties of Wood-Plastic Composite Panels. University of Wisconsin-Madison. MS Thesis.149p.
    [1]Klyosov AA.2007. Wood-plastic composites. Hoboken, New Jersey:John Wiley&Sons Inc;698p.
    [2]Wypych, G.2010. Handbook of fillers (3rd Edition), ChemTec Publishing, P.840.
    [3]Mohanty AK, Misra M, Drzal LT.2001. Surface modification of natural fibers and performance of the resulting biocomposites:An overview. Comp Interf.8(5):313-43.
    [4]Lu JZ, Wu QL, McNabb HS.2000. Chemical coupling in wood fiber and polymer composites:A review of coupling agents and treatments. Wood and Fiber Science32(1):88-104.
    [5]Okubo K, Fujii T, Yamamoto Y.2004. Development of bamboo-based polymer composites and their mechanical properties. Composites Part A-Applied Science and Manufacturing.35(3):377-83.
    [6]Singh, S., and Mohanty.2007. Wood fiber reinforced bacterial bioplastic composites:fabrication and performance evaluation. Composite Science and Technology67:1753-1763.
    [7]Tan JK, Kitano T, Hatakeyama TJ.1990. Crystallization of carbon reinforced polypropylene. Mater Sci25:3380-4.
    [8]Luo S, Netravali AN.1999. Interfacial and mechanical properties of environment-friendly green composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. J Mater Sci.34:3709-19.
    [9]Han G, Lei Y, Wu Q, Kojima Y, Suzuki S.2008. Bamboo-Fiber Filled High Density Polyethylene Composites:Effect of Coupling Treatment and Nanoclay. Journal of Polymers and the Environment.16(2):123-30.
    [10]Xiaobo Li.2004.Physical, Chemical, and Mechnical Propertiesof Bambooandits UtilizationPotentialfor Fiberbord Manufacturing.Louisiana State University.
    [11]Okubo K, Fujii T, Yamamoto Y.2004. Development of bamboo-based polymer composites and their mechanical properties. Composites Part A-Applied Science and Manufacturing.35(3):377-83.
    [12]Echeverria AA, and Holst MR.2005. Use of precipitated calcium carbonate (PCC) originating from sugar as a raw material in the ceramic industry. US patent0218546Al.
    [13]Kim, B.J., F. Yao, G.H., Han, and Q. Wu.2011. Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polymer Composites, Accepted.
    [14]Salmen L, Yin YF, Berglund L.2011. Effect of Steam Treatment on the Properties of Wood Cell Walls. Biomacromolecules.12(1):194-202.
    [15]Selke SE, Wichman I.2004. Wood fiber/polyolefin composites. Compos Part A35:321-326.
    [16]Kim, HS, Choi, SW, Lee, BH, Kim, S, Kim, HJ, Cho, CW, Cho, D.2007. Thermal properties of bio flour-filled polypylene bio-composites with different pozzolan contents. J. Thermal Analysis and Calorimetry.89(3):821-827.
    [17]Belgacem MN, Abdelmouleh M, Boufi S, Duarte AP, Ben Salah A, and Gandini A.2004. Modification of cellulosic fibres with functionalised silanes:development of surface properties. International Journal of Adhesion and Adhesives.24(1):43-54.
    [18]Singh, S., and Mohanty.2007. Wood fiber reinforced bacterial bioplastic composites:fabrication and performance evaluation. Composite Science and Technology67:1753-1763.
    [l]李光哲.木塑复合材料的研究热点及发展趋势.木材加工机械,2010(2),41-44.
    [2]刘涛,何慧,洪浩群,等.木塑复合材料研究进展.绝缘材料2008,41(2):38-41
    [3]李凯夫,谢雪甜,戴东花,等.木塑复合包装材料的性能评价.木材工业,2006(3),29-31
    [4]董淑娟,周根树.木塑复合材料的研究与展望.材料导报,2009,23(5):61:64.
    [5]J Son, D.J.Gardner. Understanding the viscoelastic properties of extruded polypropylene wood plastic composites. Journal of Applied Polymer Science.2003,89,1638-1644.
    [6]Antonio Norio Nakagaito. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano. Cellulose,2008:15:555-559
    [7]Magali Ferrandon, Magnus Berg, Emilia Bjornbom. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler Catalysis.1999,53:647-659
    [8]Sanna Sevanto, Teemu Holtta, Anne Hirsikko,et al. Determination of thermal expansion of green wood and the accuracy of tree stem diameter variation measurements. Boreal environment researche.2005,10:437-445
    [9]曾广胜,徐成,谢桂容,等。植物纤维增强PS木塑复合材料的性能研究.包装学报,2011,3(2):21-24.
    [10]Susan E. Selke,Indrek Wichman. Wood fiber/polyolefin composites. Composites Part A,2004,35:321-326
    [11]Antonio Norio Nakagaito. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano. Cellulose.2008:15:555-559
    [12]A.Klysov.Wood plastic composites.Copyright.2007John Wiley&Sons,Inc.333-335
    [13]Harper,D.P, Wolcott M.P, and Laborie. The Impact of Polypropylene-graft-Maleic Anhydride on the Crystallization and Dynamic Mechanical Properties of Isotactic Polypropylene. Journal of Applied Polymer Science.2009,111(2):753-758
    [14]Matsuda Y, Hara M, Mano T et al. Effect of the compatibility on toughness of injection-molded polypropylene blended with EPR and SEBS. Polymer Engineer Science,2006,46(1):29-38.
    [15]Greco R, Mancarella C, and Martuscelli E,ea al. Effect of EPR composition on structure, morphology and mechanical properties of iPP/EPR alloys, Polymer1987,28(11):1929-1936.
    [16]Yokoyama Y, Ricco T. Toughening of Polypropylene By Different Elastomcric Systems Polymer,1998,39(16):3675-3681.
    [17]Chow WS, Bakar AA, and Ishak ZAM,et al. Effect of maleic anhydride-grafted ethylene-propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide6/polypropylene nano composites. Europe Polymer Journal,2005,41(4):687-696.
    [18]Liu, H., F. Yao, Y. Xu, and Q. Wu.2010. A novel wood flour-filled composite based on microfibrillar high density polyethylene (HDPE)/nylon-6blends. Bioresource Technology,101(9):3295-3297
    [19]Yao, F., Q. Wu, Y. Lei, and Y. Xu.2008. Rice straw fiber reinforced high density polyethylene composite:Effect of fiber type and loading. J. Industrial Crops and Products:28:63-72.
    [20]G.-M. Kim, G.H. Michler, J. Rosch, R. Mulhaupt.1998.Micromechanical deformation processes in toughened PP/PA/SEBS-g-MA blends prepared by reactive processing. Acta Polymerica.49:88-95
    [21]Mahmood Mehrabzadeh, Musa R.2002. Kamal.Polymer-Clay Nanocomposites Based on Blends of Polyamide-6and Polyethylene. The Canadian Journal of Chemical Engineering.80(3):1083-1092.
    [22]C. Albano, J. Trujillo, A. Caballero and O. Brito.(2001). Application of different kinetic models for determining thermal stability of PA66/HDPE blends. POLYMER BULLETIN.45(6):531-538.
    [23]Tjong, SC and Xu, SA1998. Impact and tensile properties of SEBS copolymer compatibilized PS/HDPE blends. J. Appl. Polym. Sci.,68:1099-1108
    [24]Rek V, Grguric T H, Jelcic Z.Effect of Styrene/Ethylene/Buthylene/Styrene Block Copolymer on Dynamic Mechanical Behaviourand Processability of High Impact Polystyrene.11-th Annual POLYCHAR World Forum on Advanced Materials. Denton, SAD,07-10.01.2003.
    Dingguo Zhou, Changtong Mei. Development of Agricultural Straw Material Industry in the21st CenturyJournal of Nanjing Forestry University.2000,.5:1-4.
    Rossi, L.M.Wood-plastic composites:putting innovation on a faster track.8th nternational Conference on Woodfiber-Plastic Composites. Madison. WI. USA.2005,3-6.
    Mohanty, A. K.;Misra, M.; Drzal, L. T. Natural Fibers, Biopolymers, and Their Biocomposites. CRC press.2005.
    William L. James. RESEARCH NEEDS IN WOOD PHYSICS:A BROAD OVERVIEW. WOOD AND FIBER SCIENCE, APRIL,1998,20(2):277-294.
    J Son and D.J.Gardner. Understanding the viscoelastic properties of extruded polypropylene wood plastic composites. Journal of Applied Polymer Science2003,89:1638-1644.
    Klyosov AA.2007. Wood-plastic composites. Hoboken, New Jersey:John Wiley&Sons Inc;698p.
    Nielson, L.E., and R.F. Landel.1993, Mechanical Properties of Polymers and Composites (2nd edition), Marcel Dekker, New York, NY.
    Liu, H., F. Yao, Y. Xu, and Q. Wu.2010. A novel wood flour-filled composite based on microfibrillar high density polyethylene (HDPE)/nylon-6blends. Bioresource Technology,101(9):3295-3297
    Yao, F., Q. Wu, Y. Lei, and Y. Xu.2008. Rice straw fiber reinforced high density polyethylene composite:Effect of fiber type and loading. J. Industrial Crops and Products:28:63-72.
    J Son,D. J.Gardner. Understanding the viscoelastic properties of extruded polypropylene wood plastic composites. Journal of Applied Polymer Science.2003,89,1638-1644.
    Kazayawoko, M.; Balatinecz, J.J.; Woodhams, R. T.Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J ApplPolym Sci.1997,66:1163-1173.
    Mingzhu Pan. Preparation and Properties of Wheat Straw Fibre/Polypropylene Composites.Nanjing forestry university.2008
    Bengtsson, M.; Oksman, K. Silanecrosslinked wood plastic composites:processing and properties. Compos Sci Technol.2006,66(13):2177-2186.
    Yao, F.and Q. Wu,2010. Coextruded polyethylene and wood-flour composite:Effect of shell thickness, wood loading, and core quality. J. Applied Polymer Science,118(6):3594-3601.
    C. E. Bakis, L. C. Bank, F.ASCE V. L. Brown, et al M.ASCE.2002. Fiber-Reinforced Polymer Compositesfor Construction-State-of-the-Art Review. JOURNAL OF COMPOSITES FOR CONSTRUCTION.73-87
    Antonio Norio Nakagaito. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano. Cellulose.2008:15:555-559
    B. Pizzo, G. Rizzo, P. Lavisci,(2002). Comparison of thermal expansion of wood and epoxy adhesives.HolzalsRoh-und Werkstoff60285-290
    B. A. Kiselev, Glass-Fiber-Reinforced Plastics [in Russian], Gosizdat (1961). Linear-expansion coefficients of glass-fiber-reinforced plastics based on polymethylsiloxane resin, up to1000℃Mechanics of Composite Materials10(3):449-452.
    Pojur(1972). Thermal expansion at elevated temperatures Ⅲ. A hemispherical laminar composite of pyrolytic graphite, silicon carbide and its constituents between300and800K Journal of physics D:Applied physics5(7)
    Antonio Norio Nakagaito(2008). The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano.Cellulose15:555-559
    MagaliFerrandon, Magnus Berg, Emilia Bjornbom (1999). Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler Catalysis53:647-659
    RICHARD C. WEATHERWAX, Chemist, et al.THE COEFFICIENTS CITHERMALEXPANSION OF WOOD ANDWOOD PRODUCTS. UNITED STATES DEPARTMENT OF AGRICULTUREFOREST SERVICE.1956,report No1487.
    Simpson, W.T.1993. Specific gravity, moisture content,and density relationships for wood. U.S. Department ofAgriculture Gen. Tech. Rep. FPL-GTR-76. Madison, WI:U.S. Department of Agriculture, Forest Service, ForestProducts Laboratory.
    Skaar, C.1988. Wood-water relations. New York:Springer-Verlag. New York, Inc.
    Villari E (1868) Experimental-Untersuchungenu"bereinigeEigenschaftendes mitseinenFasern parallel oder transversal durchschnittenenHolzes. Ann. Phys. Chem.133(3):400-429.
    Kubler H (1959) La"ngena"nderungenbei der Wa"rmebehandlungfrischenHolzes. HolzRoh-Werkstoff17(3):77-86; Kubler H, Liang L, Ch(1973) Thermal expansion of moistwood. Wood and Fiber5:257-267.
    Schirp M, Kubler H (1968) Untersuchungenu"ber die ka"ltebedingtenLa"ngena"nderungenkleinerHolzproben. HolzRoh-Werkstoff26(9):335-341.
    Salme'n L (1990) Thermal Expansion of Water-saturated Wood.Holzforschung44(1):17-19; Stevens WC (1960) The thermal expansion of wood. Wood25(8):328-329
    Stumes P (1975) Testing the efficiency of wood epoxy reinforcementsystems. APT Bulletin VII(3):2-35;
    B. Pizzo, G. Rizzo, P.Lavisci,(2002). Comparison of thermal expansion of wood and epoxy adhesives.HolzalsRoh-und Werkstoff60285-290.
    H.-S. Yang, M. P. Wolcott, H.-S. Kim(2005). Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites. Journal of Thermal Analysis and Calorimetry.82157-160.
    Wada M.(2002).Mechanical properties of silk fibroin-microcrystalline cellulose composite films.Polym. Sci., Part B:Polym. Phys.40:1095-1102.
    Takahashi M. and Takenaka H.(1982). The Thermal Expansion of Wood Cellulose Crystals. Polymer14:675-679.
    Reddy, N., Yang, Y.Q.,. J (2006). Properties of High-Quality Long Natural Cellulose Fibers from Rice Straw.Agric. Food Chem.,54(21),8077-8081.
    M V. RAMIAH and D. A. I. GORING.The Thermal Expansion of Cellulose, Hemicelldose, and Lignin。JOURNAL OF' IWLYMEIt SCIENCE:PART C。1965:27-48.
    Seitsonen S. and Mikkonen I.1973. X-ray study on the thermal expansion of cotton cellulose. Polymer J.5:263-267.
    Takahashi M. and Takenaka H.1982. X-ray study of the thermal expansion and transition of crystalline cellulose Polymer J.14:675-679.
    Vazquez, A., V. A. Dominguez, and J. M. Kenny.1999. Bagasse fiber-polypropylene based composites. Journal of Thermoplastic Composite Materials12:477-497.
    Ward, I. M.1971. Mechanical Properties of Solid Polymers. Wiley-interscience.
    Okubo, K., T. Fujii, and Y. Yamamoto.2004. Development of bamboo-based polymer composites and their mechanical properties. Composites Part A:Applied Science and Manufacturing35:377-383.
    Bledzki, A. K., S. Reihmane, and J. Gassan.1998. Thermoplastics reinforced with wood fillers:A literature review. Polymer-Plastics Technology and Engineering37:451-468.
    Bledzki, A. K. and O. Faruk.2004. Creep and impact properties of wood fibre-polypropylene composites:influence of temperature and moisture content. Composites Science and Technology64:693-700.
    Bledzki, A. K. and J. Gassan.1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science24:221-274.
    Nunez, A. J., N. E. Marcovich, and M. I. Aranguren.2004. Analysis of the creep behavior of polypropylene-woodflour composites. Polymer Engineering and Science44:1594-1603.
    MagaliFerrandon, Magnus Berg, Emilia Bjornbom. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler Catalysis.1999,53:647-659
    Antonio Norio Nakagaito. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano.Cellulose,2008:15:555-559
    Bijan ADL-ZARRABI, Lars BOSTROM(1995). Determination of Thermal Properties of Wood and Wood Based Productsby Using Transient Plane Source.Panelguides。
    M Barucci, G Bianchinib, T Del Rossoaetal.Thermalexpansion and thermal conductivity of glass-fibre reinforced nylon at low temperature. Cryogenics.2001,40:456-457
    Sombatsompop, N. and K. Chaochanchaikul.2004. Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly(vinyl chloride)/wood sawdust composites. Polymer International53:1210-1218.
    Sombatsompop, N., K. Chaochanchaikul, C. Phromchirasuk, and S. Thongsang.2003. Effect of wood sawdust content on rheological and structural changes, and thermo-mechanical properties of PVC/sawdust composites. Polymer International52:1847-1855.
    Sain, M. M., J. Balatinecz, and S. Law.2000. Creep fatigue in engineered wood fiber and plastic compositions. Journal of Applied Polymer Science77:260-268.
    KIYOTAKE MORIMOTO and TOSHIO SUZUKI. Thermal Conductivity and Thermal Expansion Behavior of Glass Fiber-Rein forcedRigid Polyurethane Foam.POLYMER EngineeringAND SCIENCE. AUOUST,1984,24(12):343-349.
    Susan E. Selke, Indrek Wichman. Wood fiber/polyolefin composites. Composites Part A,2004,35:321-326
    Cox, H. L.1952. The elasticity and strength of paper and other fiberous materials. Br. J. Appl Phys.,3:72-79.
    Fornes, T.D., Paul, D.R.,2003. Modeling properties of nylon6/clay nanocomposites using composite theories. Polymer44(17),4993-5013.
    Fu, S. Y., and B. Lauke.1998. The elastic modulus of misaligned short fiber reinforcd polymers. Composite Sci. Technol.58:389-400.
    Huda MS, Mohanty AK, Drzal LT, Misra M, Schut E.2005. Green composites from recycled cellulose and poly(lactic acid):physicomechanical and morphological properties evaluation. J Mater Sci.40(16):4221-9.
    Huda, M.S., L.T. Drzal, A.K. Mohanty, M. Misra.2007. The effect of silane treated-and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites Composites:Part B38(2007)367-379
    Jayaraman, K., and M.T. Kortschot.1996. Correction to the Fukuda-Kawata Young's modulus theory and the Fukuda-Chou strength theory for short fibre-reinforced composite materials. J. Mater. Sci.31:2059-2064.
    Jin., S., and L. M. Matuana,2010. Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride) cap layer. Polymer International,59,648-657.
    Johnson, R.K., Zink-Sharp, A., Renneckar, S.H., Glasser, W.G.,2008. Mechanical properties of wetlaid lyocell and hybrid fiber-reinforced composites with polypropylene. Compos. Part A-Appl. S.39(3),470-477.
    Karrad, S., J.M. Lopez Cuesta, and A. Crespy.1998. Influence of a fine talc on the properties of composites with high density polyethylene and polyethylene/polystyrene blends, J. Materials Sci.33:453-461
    Kim, B.J., F. Yao, G. Han, and Q. Wu.2012. Performance of bamboo plastic composite with hybrid bamboo and precipitaed calcium carbonate fillers. Polymer Composites DOI10.1002/pc.21244.
    Ma, O., P.C. Tibbenham, X. Lai, T. Glogovsky, and X. Su.2009. Micromechanical modeling of the mechanical behavior of thermoplastic olefin. Polymer Engineering and Science.50(3):536-542.
    L. NICOLAIS and L. NICODEMO, Int. J. Polym. Mater.4.(1974)229.
    Nicodemo, L., and L. Nicolais.1983. Mechanical properties of metal/polymer composites Journal of Materials Science Letters2(5):201-203.
    Nielson, L.E., and R.F. Landel.1993, Mechanical Properties of Polymers and Composites (2nd edition), Marcel Dekker, New York, NY.
    Pilla, S., Gong, S., O'Neil, E., Rowell, R.M., Krzysik, A.M.,2008. Polylactide-pine wood flour composites. Polym. Eng. Sci.48(3),578-587.
    Piggott M.R.,1994."Short fiber polymer composites:a fracture-based theory of fiber reinforcement," J. of Composite Materials, Vol.28, No.7,1994, pp.588-606.
    Stark, N. M., and L. M. Matuana.2009. Co-extrusion of WPCs with a clear cap layer to improve color stability,4th Wood Fiber Polymer Composites International Symposium, March30-31,2009, Bordeaux, France, pp.1-13.
    Sperling, L.H.2006. Introduction to physical polymer science (4th ed), Hoboken, New Jersey:John Wiley&Sons, p.702-705.
    Stixrude, L.2002. Talc under tension and compression:spinodal instability, elasticity, and structure. J. Geophysical Research,107(B12),2327.
    Tsai, S.W. and N.J. Pagano.1968. Invariant properties of composite materials. In:S.W. Tsai, J.C. Halpin, N.J. Pagano, Eds. Composite materials workshop. Stamford, CT, USA:Technomic Publishing Co. Inc.;1968. p.233-53.
    Yao, F.and Q. Wu,2010. Coextruded polyethylene and wood-flour composite:Effect of shell thickness, wood loading, and core quality. J. Applied Polymer Science,118(6):3594-3601.
    Zak, G., M. N. Sela V. Yevko C. B. Park B. Benhabib.1998. Layered-manufacturing of fiber reinforced composites. Computer Integrated Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto.21p.
    Yao F, Wu QL. Coextruded Polyethylene and Wood-Flour Composite:Effect of Shell Thickness. Wood Loading, and Core Quality. Journal of Applied Polymer Science.2010;118:3594-601.
    Stark NM, Matuana LM. Co-extrusion of WPCs with a clear cap layer to improve color stability. In: Proceedings of4th Wood Fiber Polymer Composites International Symposium. Bordeaux, France,2007. p.1-13.
    Jin S, Matuana LM. Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride) cap layer. Polymer International.2010;59:648-57.
    Kim Birm-June, Yao Fei, Wang Qingwen, Wu Qinglin. Mechanical and Physical Properties of Core-Shell Structured Wood Plastic Composites:Effect of Shells with Hybrid Mineral and Wood Fillers, Composite Part A. In review.
    Klyosov AA.2007. Wood-plastic composites. Hoboken, New Jersey:John Wiley&Sons Inc;698p.
    Singh, S., and Mohanty.2007. Wood fiber reinforced bacterial bioplastic composites:fabrication and performance evaluation. Composite Science and Technology67:1753-1763.
    Jones, R.M.1975. Mechanics of Composite Materials. McGraw-Hill, New York, USA.
    Zhu, R. P., and C.T. Sun.2003. Effects of fiber orientation/elastic constants on cofficients of thermal expansion in laminates. Mechanics Advd Mater. Strut10:99-107.
    Haneef, M., Shabbir Ahmed R M, and Mohammed Mohsin Ali.2011. Studies on delaminating Effects on Stress Development in Composite Structures. Proceedings of the World Congress on Engineering2011Vol III WCE2011, July6-8,2011, London, U.K.
    Hsueh, C.H. and M. K. Ferber,2002. Apparent coefficient of thermal expansion and residual stresses in multilayer capacitors. Composites Part A.33:1115-1121.
    Halpin, J.C. and N.J. Pagano.1969. The Laminate Approximation for Randomly Oriented Fibrous Composites. J. Comp. Mat., Vol.3, p.720.
    Bressan, F., F De Bona, and A Soma.2004. Design of composite laminates with low thermal expansion. J. Materials:Design and Applications218:201-209.
    Yu, Z. and A. Zhou.2010. An integrated thermomechanical method for modeling fiber reinforced polymer composite structures in fire. In Proc. ASCE Analysis and Computation Specialty Conference. PP:492-503.
    Vos, Daniel J.1998. Engineering Properties of Wood-Plastic Composite Panels. University of Wisconsin-Madison. MS Thesis.149p.
    Klyosov AA.2007. Wood-plastic composites. Hoboken, New Jersey:John Wiley&Sons Inc;698p.
    Wypych, G.2010. Handbook of fillers (3rd Edition), ChemTec Publishing, P.840.
    Mohanty AK, Misra M, Drzal LT.2001. Surface modification of natural fibers and performance of the resulting biocomposites:An overview. Comp Interf.8(5):313-43.
    Lu JZ, Wu QL, McNabb HS.2000. Chemical coupling in wood fiber and polymer composites:A review of coupling agents and treatments. Wood and Fiber Science32(1):88-104.
    Okubo K, Fujii T, Yamamoto Y.2004. Development of bamboo-based polymer composites and their mechanical properties. Composites Part A-Applied Science and Manufacturing.35(3):377-83.
    Singh, S., and Mohanty.2007. Wood fiber reinforced bacterial bioplastic composites:fabrication and performance evaluation. Composite Science and Technology67:1753-1763.
    Tan JK, Kitano T, Hatakeyama TJ.1990. Crystallization of carbon reinforced polypropylene. Mater Sci25:3380-4.
    Luo S, Netravali AN.1999. Interfacial and mechanical properties of environment-friendly green composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. J Mater Sci.34:3709-19.
    Han G, Lei Y, Wu Q, Kojima Y, Suzuki S.2008. Bamboo-Fiber Filled High Density Polyethylene Composites:Effect of Coupling Treatment and Nanoclay. Journal of Polymers and the Environment.16(2):123-30.
    Xiaobo Li.2004.Physical, Chemical, and Mechnical Propertiesof Bambooandits UtilizationPotentialfor Fiberbord Manufacturing.Louisiana State University.
    Okubo K, Fujii T, Yamamoto Y.2004. Development of bamboo-based polymer composites and their mechanical properties. Composites Part A-Applied Science and Manufacturing.35(3):377-83.
    Echeverria AA, and Holst MR.2005. Use of precipitated calcium carbonate (PCC) originating from sugar as a raw material in the ceramic industry. US patent0218546Al.
    Kim, B.J., F. Yao, G.H., Han, and Q. Wu.2011. Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polymer Composites, Accepted.
    Salmen L, Yin YF, Berglund L.2011. Effect of Steam Treatment on the Properties of Wood Cell Walls. Biomacromolecules.12(1):194-202.
    Selke SE, Wichman I.2004. Wood fiber/polyolefin composites. Compos Part A35:321-326.
    Kim, HS, Choi, SW, Lee, BH, Kim, S, Kim, HJ, Cho, CW, Cho, D.2007. Thermal properties of bio flour-filled polypylene bio-composites with different pozzolan contents. J. Thermal Analysis and Calorimetry.89(3):821-827.
    Belgacem MN, Abdelmouleh M, Boufi S, Duarte AP, Ben Salah A, and Gandini A.2004. Modification of cellulosic fibres with functionalised silanes:development of surface properties. International Journal of Adhesion and Adhesives.24(1):43-54.
    Singh, S., and Mohanty.2007. Wood fiber reinforced bacterial bioplastic composites:fabrication and performance evaluation. Composite Science and Technology67:1753-1763.
    Guangzhe Li. The research hotspots and development trend of wood-plastics composites. Wood Processing Machinery,2010(2),41-44.
    LIU Tao, HE Hui, HONG Hao-qun et al. Process in Study on Wood-plastic Composites. Insulating Materials2008,41(2):38-41
    LI Ka-i fu, XIE Xue-t ian, DA I Dong-hua et al. Evaluating the Properties of Wood-Plastic Composites. CHINA WOOD INDUSTRY,2006(3),29-31.
    DONG Shujuan, ZHOU Genshu. Research and Prospect of Wood□Plastic Composites. Materials Review,2009,23(5):61:64.
    J Son, D.J.Gardner. Understanding the viscoelastic properties of extruded polypropylene wood plastic composites. Journal of Applied Polymer Science.2003,89,1638-1644.
    Antonio Norio Nakagaito. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano. Cellulose,2008:15:555-559
    Magali Ferrandon, Magnus Berg, Emilia Bjornbom. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler Catalysis.1999,53:647-659
    Sanna Sevanto, Teemu Holtta, Anne Hirsikko,et al. Determination of thermal expansion of green wood and the accuracy of tree stem diameter variation measurements. Boreal environment researche.2005,10:437-445
    Antonio Norio Nakagaito. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano. Cellulose.2008:15:555-559
    A.Klysov.Wood plastic composites.Copyright.2007John Wiley&Sons,Inc.333-335
    Harper,D.P, Wolcott M.P, and Laborie. The Impact of Polypropylene-graft-Maleic Anhydride on the Crystallization and Dynamic Mechanical Properties of Isotactic Polypropylene. Journal of Applied Polymer Science.2009,111(2):753-758
    Matsuda Y, Hara M, Mano T et al. Effect of the compatibility on toughness of injection-molded polypropylene blended with EPR and SEBS. Polymer Engineer Science,2006,46(1):29-38.
    Greco R, Mancarella C, and Martuscelli E,ea al. Effect of EPR composition on structure, morphology and mechanical properties of iPP/EPR alloys, Polymer1987,28(11):1929-1936.
    Yokoyama Y, Ricco T. Toughening of Polypropylene By Different Elastomcric Systems Polymer,1998,39(16):3675-3681.
    Chow WS, Bakar AA, and Ishak ZAM,et al. Effect of maleic anhydride-grafted ethylene-propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide6/polypropylene nano composites. Europe Polymer Journal,2005,41(4):687-696.
    Liu, H., F. Yao, Y. Xu, and Q. Wu.2010. A novel wood flour-filled composite based on microfibrillar high density polyethylene (HDPE)/nylon-6blends. Bioresource Technology,101(9):3295-3297
    Yao, F., Q. Wu, Y. Lei, and Y. Xu.2008. Rice straw fiber reinforced high density polyethylene composite:Effect of fiber type and loading. J. Industrial Crops and Products:28:63-72.
    G.-M. Kim, G.H. Michler, J. Rosch, R. Mulhaupt.1998.Micromechanical deformation processes in toughened PP/PA/SEBS-g-MA blends prepared by reactive processing. Acta Polymerica.49:88-95
    Mahmood Mehrabzadeh, Musa R.2002. Kamal.Polymer-Clay Nanocomposites Based on Blends of Polyamide-6and Polyethylene. The Canadian Journal of Chemical Engineering.80(3):1083-1092.
    C. Albano, J. Trujillo, A. Caballero and O. Brito.(2001). Application of different kinetic models for determining thermal stability of PA66/HDPE blends. POLYMER BULLETIN.45(6):531-538.
    Tjong, SC and Xu, SA1998. Impact and tensile properties of SEBS copolymer compatibilized PS/HDPE blends. J. Appl. Polym. Sci.,68:1099-1108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700