纤维化竹单板层积材制造工艺及性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹基纤维复合材料的研发成为近年来生物质材料领域的研究热点。纤维化竹单板层积材是一种竹基纤维复合材料,它是由纤维化竹单板单元和胶粘剂层构成,纤维化竹单板层积材以其优越的物理力学性能,结构可设计性,性能可调控等特点,既可以用于工程结构材料如风电材料、建筑水泥模板材料、集装箱底板以及车厢地板材料,也可以用于室内外地板材料、家具材料、装饰装潢材料的制造;既符合目前低碳经济发展的需要,也可以有效解决我国木材资源供应不足的问题;既可以推动我国竹材产业的发展,提高了我国竹材资源利用率,高效利用竹材资源,也提高竹产区竹农的收入,具有极为广阔的应用前景。
     本论文以慈竹(Neosinocalamus affinis (Rendle) Keng f.)为主要研究对象,对纤维化竹单板单元进行评价,采用不同热压温度(130℃、140℃、150℃和170℃)和施胶量(7%、9%、10%和11%)制造不同密度(1.0g/cm3、1.1g/cm3、1.15g/cm3和1.2g/cm3)的纤维化竹单板层积材,并分析压板工艺对纤维化竹单板层积材的物理力学性能的影响。通过对不同压板工艺下的纤维化竹单板层积材的耐老化性和耐疲劳性的研究,揭示了纤维化竹单板层积材的性能变化规律,并探讨了纤维化竹单板广泛应用于高强度结构用材的可能性。主要研究结论如下:
     (1)不同疏解次数的纤维化竹单板的吸水率、吸胶率和吸附性能随着疏解遍数的增加而增加。纤维化竹单板等温吸附曲线均呈反S型,各试样的低温氮吸附等温线在升压过程的吸附等温线和降压过程的脱附曲线不重合,形成吸附回线,属于IV型等温线。滞留回环的类型属于H4的情况,纤维化竹单板中的孔道形状符合经典孔道模型。
     疏解机对纤维化竹单板上表面的竹青去除显著,竹纤维之间从基本组织部分被分离成相互粘连的束状,但纵向上保持完整纤维的形态,几乎没有断裂,竹黄的孔隙较多,碎裂的相对明显。
     (2)随着密度的逐渐升高,板材力学强度逐渐升高,吸水率和吸水厚度膨胀率降低。随着热压温度升高,板材的力学强度逐渐降低,吸水率和吸水厚度膨胀率略有降低。施胶量提高时,试材力学强度和24h吸水率有所降低。热压过程中板材升温速率随着密度的增加而降低,施胶量对升温速率影响不明显。
     本论文试验中不同压板工艺下的纤维化慈竹单板层积材,其主要力学性能均符合JB/T10194-2000《风力发电机组风轮叶片》的要求,其中密度为1.2g/cm3,施胶量10%的板材性能最优。
     对热压处理过的板材和未经处理的原竹材进行FT-IR分析发现,光谱谱带形状几乎一致,热压对竹材的组织结构和主成分几乎没有影响。热压过程中羟基的减少,导致吸水性降低,尺寸稳定性提高,半纤维素的损失削弱竹材及板材的力学强度。对板材进行扫描电镜观察可知在热压过程中,薄壁组织被压溃,竹纤维受热压的影响不明显。
     (3)加速老化后的板材的静曲强度和弹性模量,随着密度的增高而逐渐增加,和未处理前的板材强度相比,密度高的板材强度变化率相对大些。在同样的密度下,热压温度高的纤维化竹单板层积材的力学强度,略低于热压温度相对低的板材。从方差分析可知,密度对弯曲强度和垂直剪切强度的影响不显著,对弹性模量影响显著。热压温度对弯曲强度和弹性模量的影响不显著,对垂直剪切强度的影响显著。
     纤维化竹单板层积材有自身调节尺寸稳定的能力,密度高且热压温度高的板材有较好的尺寸稳定性。综合评定可以得出,密度为1.2g/cm3,施胶量10%,热压温度为130℃的板材性能最优。
     (4)板材可能承受最大的应力,随着两端施加的交变循环力的循环次数增加而降低。在循环103,104,105,106次后,纤维化竹单板层积材所能承受的最大应力分别为115MPa,110MPa,105Mpa和98MPa。从103次至106次,板材能承受的最大应力较原始静态抗拉强度下降了65.7%至70.7%,和铝、碳复合材料、钢制品、木单板层积材和玻璃纤维的S-N曲线相比,纤维化竹单板层积材有着更稳定的强度保持能力。
The research and development of bamboo-based fibrous composite has been the researchhotspot of bio-based materials. Bamboo laminated veneer lumber is a kind of bamboo-basedfibrous composite which is made of crushed bamboo veneer and adhesive. Bamboo laminatedveneer lumber has advantages such as high physical and mechanical performance, structuredesignability and regulatable performance etc.. Bamboo laminated veneer lumber can bewidely used in engineering structure materials and decoration materials, such as wind turbineblade, building cement template, container flooring, the floor of outdoor and indoor, carriagefloor and furniture. Bamboo laminated veneer lumber is endowed with promising future as aresult of geared to the developing of low carbon economy requirement by effective resolvedthe problem of inadequate timber resources in China, promoted the take-off of the bambooindustry by increase bamboo operation rate and increase farmers income in bamboo producedistrict.
     In this paper, Neosinocalamus affinis was used to make the laminated veneer lumber withdifferent hot pressing temperature (130℃,140℃,150℃and170℃), resin content (7%,9%,10%and11%) and density (1.0g/cm3,1.1g/cm3,1.15g/cm3,1.2g/cm3). First, crushed bambooveneer has been evaluated. Then analyzed the influence of physical and mechanical propertiesfor bamboo laminated veneer lumber. The change law of properties by bamboo laminatedveneer lumber were shown through tested aging resistant and fatigue durability. Thepossibility of the application of bamboo laminated veneer lumber was discussed at last. Themain results were summarized as follows,
     (1)As the times of crushing was increased, the water absorbing capacity, gum absorbingcapacity and adsorptive properties were improved. The isothermal adsorption curve of bamboolaminated veneer lumber appeared reverse “S” and the lifting pressure curve was notcoincident with the reduction pressure curve. The adsorption loop belongs to class IV and the type of retention loop belongs to situation H4. The pore shape of crushed bamboo veneer thatconforms to the classical pore model.
     The crushing machine bring about a striking effect on removing the outer surfaces ofbamboo. Bamboo fiber sticking to each other, but maintained the integrity of fiber morphologyalong the length of fiber, almost had no rupture. The inner of bamboo disintegrated relativeobviously which has more hole.
     (2)The mechanical strength of bamboo laminated veneer lumber increased with theincrease of density, water absorbing capacity and thickness swelling rate reduced at the sametime. The mechanical strength, water absorbing capacity and thickness swelling rate reducedas the hot pressing temperature increased. The mechanical strength and24h water absorbingcapacity reduced when resin content raised. Heating rate increased as the density reducedduring the hot-pressing process. The effect of heating rate by resin content was not obvious.
     The mechanical strength of bamboo laminated veneer lumber with hot pressingtemperature (130℃~170℃), resin content (7%~11%) and density (1.0g/cm3~1.2g/cm3)complied with the standard wind turbine rotor blade. Bamboo laminated veneer lumber withresin content of10%and density of1.2g/cm3had the best performance.
     FT-IR analysis of bamboo laminated veneer lumber showed that the molecular bandshape of bamboo laminated veneer lumber were similar to the untreated bamboo. The basiccomposition of bamboo made no obvious difference after hot press. The reduction of hydroxyled to the reduction of water absorbing capacity and the raise of dimension stability. The lossof hemicellulose weakened mechanical strength of bamboo laminated veneer lumber.Scanning electron microscope analysis of bamboo laminated veneer lumber showed thatparenchyma was crushed during hot-pressing process. The effect of bamboo fiber by hot presswas not obvious.
     (3)Modulus of elasticity and modulus of rupture by bamboo laminated veneer lumberafter accelerated aging increased as density upgraded. Compared with the mechanical strengthof bamboo laminated veneer lumber which before accelerated aging, the changing rate ofmechanical strength were relatively higher on high density bamboo laminated veneer lumber. Under the same density, mechanical strength of bamboo laminated veneer lumber with higherhot-pressing temperature a little less than bamboo laminated veneer lumber with lowerhot-pressing temperature. Variance analysis showed that density which had no significanteffect on modulus of rupture and vertical shear strength had significant effect on modulus ofelasticity, hot-pressing temperature which had no significant effect on modulus of elasticityand modulus of rupture had significant effect on vertical shear strength.
     Bamboo laminated veneer lumber had the ability of dimension stability which waspreferable with high density and hot pressing temperature. Assessment concluded that bamboolaminated veneer lumber with hot pressing temperature of130℃, resin content of10%anddensity of1.2g/cm3had the best performance.
     (4)The maximum stress which bamboo laminated veneer lumber can support reduced asthe times of fluctuating and cyclic stresses which pressured at the two ends of the samplesincreased. Bamboo laminated veneer lumber acted upon by fluctuating and cyclic stresses of103,104,105and106times. The maximum stress of bamboo laminated veneer lumber were115MPa,110MPa,105Mpa and98MPa, respectively. The tensile strength of bamboolaminated veneer lumber after103to106times of fluctuating and cyclic stresses reduced65.7%to70.7%than the original one. Bamboo laminated veneer lumber has better strengthretentiveness than Aluminium, carbon composite material, steel, wood laminate and fiberglass.
引文
[1] Randall W. Gentry,Gary S. Sayler and ZHUANG Jie. Towards Sustainable Cellulosic Bioenergy.Journal of Resources Ecology, Jun,2010, Vol.1:117~122
    [2]秦莉,于文吉.重组竹研究现状与展望.世界林业研究,2009,22(6):55~59
    [3] YANG Hai-liang, TANG Jun-ping, WANG Hai-yang, etc.. Study on Manufacture Technology ofBamboo Veneer. International Symposium on Veneer Processing and Products,2007,221~229
    [4] Bamboo imported from china offers substantial benefits. Specifier,2008,39(5):8
    [5]于雪斐,史建伟,于文吉.木(竹)基复合材料替代传统玻璃包装材料的探讨.中国人造板,2010,6:1~4
    [6]于雪斐,刘雷,于文吉.人造板作为乐器制作材料的发展现状及前景.木材加工机械,2010,21(6):33~36
    [7]吴正芳,吴正心.我国竹产品出口竞争力分析及对策.沿海企业与科技,2010,07:4~6
    [8]程良,王刚.直面中国竹产业.中国林业产业,2007,3:18~21
    [9]吕永来.全国各省(区、市)竹材和人造板产量排行榜.中国林业产业,2010,8:60~61
    [10]蔡亚林.我国正成为世界森林产业大国.经济,2008,1:114~115
    [11]蒋身学.我国竹地板的发展现状和趋势.中国人造板,2007,2:39
    [12] Jingming Gao, Yonggui Liu, Jinliang Liu, etc.. Production and Application of Bamboo Based Panel inChina. International Symposium on Veneer Processing and Products,2007,51~55
    [13] Rulxiang Cheng, Qisfaeng Zhang. Sliced bamboo veneer with non-woven cloth: A new utilizationmethod. Journal of bamboo and rattan,2007,6:89~94
    [14]野村隆哉.竹材的生物物理学特性.竹类杂志,1988,(5):27~59
    [15]熊文愈.竹材构造和性质报告.竹类研究,1991,10(1)
    [16]江泽慧,于文吉,余养伦.竹材化学成分分析和表面性能表征.东北林业大学学报,2006,34(4):1~6
    [17]江泽慧,于文吉,余养伦.竹材表面润湿性研究.竹子研究汇刊,2005,24(4):31~38
    [18]周建钟,冯炎龙,刘力.竹青竹黄的化学成分及综合利用.林产化工通讯,2003,2:8~9
    [19]李世红,付绍云.竹子──种天然的生物复合材料的研究.材料研究学报,1994,8(2):188~192
    [20]张晓东,程秀才,朱一辛.毛竹不同高度径向弯曲性能的变化.南京林业大学学报(自然科学版),2006,30(6):44~46
    [21]马建峰,陈五一,赵岭,等.基于竹子微观结构的柱状结构仿生设计.机械设计,2008,25(12):50~53
    [22]秦莉.热处理重组竹材耐久性能研究.中国林业科学研究院,博士论文,2010
    [23]张叶田,何礼平.竹集成材与常见建筑结构材力学性能比较.浙江林学院学报,2007,24(1):100~104
    [24]李琴,汪奎宏,华锡奇,等.小径杂竹制造重组竹的试验研究.竹子研究汇刊,2002,3
    [25]江泽慧,王戈,费本华,等.竹木复合材料的研究及发展.林业科学研究,2002,15(6):712~718
    [26]张齐生,孙丰文.竹木复合集装箱底板的研究.林业科学,1997,33(6):546~553
    [27]鲍逸培.竹木复合集装箱底板开发与研究.建筑人造板,1997,3:13~16
    [28]许斌,蒋身学.竹木复合层积材横纹静摩擦系数的研究.林业科技开发,2000,14(6):22~23
    [29]张齐生.中国竹材工业化利用.北京:中国林业出版社,1995
    [30]何翠花.竹木胶合板的试制报告.木材工业,1991,5(4):50~51
    [31]钱俊,叶良明,金永明.速生杉木与竹黄篾复合板的研究.建筑人造板,1999,(2):35~37
    [32]王思群,华毓坤,董士琴.竹木复合定向刨花板强度性能的研究.木材工业,1991,5(3):6~10
    [33]殷苏州,李北冈,胡德彪.竹材覆面定向刨花板性能的研究.木材工业,1997,11(4):8~11
    [34]吴章康,张宏健,黄素涌,等.竹木复合中密度纤维板工艺条件的研究.木材工业,2000,14(3):7~10
    [35]范毛仔,许若璇,杨爱和.碎单板竹片平行胶合材的研究.木材工业,1995,9(1):10~13
    [36]郑忠福.单板贴面竹编竹材层积材的生产工艺研究.建筑人造板,1995,(1):13~15
    [37]于文吉,江泽慧.早园竹的力学性能特点及测试方法研究.世界竹藤通讯,2003,1(2):20~23
    [38]于文吉,王天佑.我国非木材人造板的发展现状和存在问题.人造板通讯2004,12:5~10
    [39]熊文愈.竹材构造和性质报告.竹类研究,1991,10(1)
    [40]王耀先.复合材料结构设计.北京:化学工业出版社,2001
    [41]于文吉,余养伦,江泽慧.竹材纤维增强材料的特性.东北林业大学学报,2006,34(4):3~6
    [42]于文吉,余养伦,周月,等.小径竹重组结构材性能影响因子的研究.林产工业,2006,33(6):24~28
    [43] Hutchings B F, Leicester R H. Scrimber. In: Proceedings of the1988international conference ontimber engineering.1988, vol.2,525~533
    [44] Jordan B A. Scrimber: the leading edge of timber technology. In: Proceedings of the2rid Pacific timberengineering conference.1989, vol.2,13~15
    [45] Szoolag S, Rangaraju T S. An improved and economical process for manufacture of bamboo mat board.Proceedings of4th International Bamboo Workshop. Chiangmia, Thailand,1991
    [46] Kikata Y, Nagasaka H, Machiyasiki T. Zephyr wood, a network of continuous fibers. I. Defibration ofwood by roller crushing and recomposition of it. Mokuzai Gakkaish,1989,35:912~917
    [47] Kikata Y, Nagasaka H, Machiyasiki T. Zephyr wood, a network of continuous fibers. II. Production oflow-density zephyr wood. Mokuzai Gakkaishi,1989,35:918~923
    [48] Sibusawa T, Yu-Jung Kim. Board made of Bamboo. Kenshu (JICA),1998
    [49] Naresworo Nugroho., Ando N. Development of structural composite products made from bamboo Ⅰ.fundamental properties of bamboo zephyr board. Journal of wood science,2000,46:68~74
    [50] Naresworo Nugroho., Ando N. Development of structural composite products made from bamboo Ⅱ.fundamental properties of bamboo zephyr board. Journal of wood science,2001,47:237~242
    [51] Subyakto, Bambang Subiyanto, Sandra A Azis. Cultivation and utilization of bamboo in Indonesia.Journal of Bamboo Research,1997,16(2):1~7
    [52] Bambang Subiyanto, Atsushi Miyatake, Hayashi Tomoyuki. Production technology of superior strengthtimber (SST) from bamboo. The3th Pacific Rim BioBased Copmosite Symposium. Kyoto, Japan,1996
    [53]泽田丰,川井秀一,佐佐木光.以竹子为原料开发木质人造板(2).见:日本林学会研发要,1989,39:195~202
    [54] Matsuda T. Manufacture of medium density fiberboard from Malaysian fast growing tree species andbamboo. Bulletin of FFPRI, Ibaraki,1995,369~373
    [55]张心安,关明杰,朱一辛.单板层积材的研究现状.林业科技开发,2005,19(5):1~3
    [56] Zhang Min, Kawai Shuichi, Sasaki Hikaru. Manufacture and properties of compositefiberboard-Fabrication of board manufacturing apparatus and properties of bamboo/wood compositefiberboard. Mokuzai Gakkaishi,1995,41(10):903~910
    [57] Xu Heng, Chiaki Tanaka, Tetsuya Nakao. Mechanical properties of plywood reinforced by bamboo andjute. Forest Products Journal,1998,48(1):81~85
    [58] Lee A W C, Bai X S. Bangi A P. Flexural properties of bambooreinforced southern pine OSB beam.Forest Products Journal,1997,47(6):74~78
    [59] Stefano Lenci. A Microscale Model of Elastic and Damage Longitudinal Shear Behavior of HighlyConcentrated Long Fiber Composites. IUTAM Symposium on Multiscale Modelling of Damage andFracture Processes in Composite Materials,2006,77~87
    [60] T. Behzad, M. Sain. The Effect of Fiber Surface Treatment on the Performance of Hemp Fiber/AcrylicComposites for Automotive Structural Parts. SAE2006World Congress,2006,443~449
    [61] Takanori Matsuo, Alexandre Gomes, Koichi Goda, Junji Ohgi. Improvement of Mechanical Propertiesof Curaua Fiber Green Composites. Key Engineering Materials,2007,369~372
    [62]葛正浩,元庆凯,田普建,等.玻璃纤维对竹塑复合材料性能的影响.陕西科技大学学报,2010,28(4):12~15
    [63]崔益华,Noruziaan Bahman,Lee Stephen,等.玻璃纤维/木塑混杂复合材料及其协同增强效应.高分子材料科学与工程,2007,22(3):56~58
    [64]盐谷正俊.纤维及其复合材料力学性能和断裂过程中结构变化的研究.合成纤维,2010,8:46~49
    [65] Li yan, Chen yi, Hu chunjing, Luo ye. Effects of Ultraviolet and Moisture Aging on the MechanicalProperties of Natural Fiber Reinforced Composites. Sample China,2009,2:423~433
    [66]梁春群,莫攸.竹纤维增强环氧树脂复合材料的力学性能研究.化工技术与开发,2010,39(8):23~26
    [67]李新功,吴义强,秦志永,等.竹纤维──可生物降解塑料绿色复合材料制备的关键问题.竹子研究汇刊,2010,29(2):37~41
    [68]何强,李大纲,戴绍君,等.竹塑复合材料的制备及主要材性的研究.贵州化工,2009,34(6):11~13
    [69]方鲲,吴丝竹,丁雪佳,等.长玻璃纤维增强PP/m-PA6复合材料的制备及性能研究.中国塑料,2010,24(2):52~56
    [70]崔萍,楚晓,艾宏玲,等.亚麻/聚丙烯复合材料的成型工艺和拉伸性能研究.玻璃钢/复合材料,2010,2:41~43
    [71]史建设,张春祥,杨绪杰,等.纤维状凹凸棒增强尼龙6的微观结构及力学性能.功能材料,2010,5(41):830~832
    [72]罗吉祥,唐春,郭然.纤维增强复合材料截面脱层和基体裂纹的模拟分析.复合材料学报,2009,26(6):201~209
    [73]张力军,王德禹,朱锡,等.纤维束增强复合材料的双层次随机扩大临界核模型.复合材料学报,2010,27(2):140~146
    [74]张秀丽,谢朝晖,张恒.纤维方向对复合材料加工质量影响的试验研究.中国机械工程,2009,20(21):2617~2620
    [75]陈洁,李敏,张佐光,等.铁基非晶条带玻璃纤维混杂复合材料力学特性.复合材料学报,2009,26(6):18~24
    [76]陈招科,熊翔,李国栋.炭纤维增强TaC基复合材料的力学性能和氧化行为.材料研究学报,2010,24(2):201~207
    [77]杨成鹏,矫桂琼.界面对纤维增强陶瓷基复合材料拉伸性能的影响.复合材料学报,2010,27(3):116~121
    [78]郭建君,孙晋良,任慕苏,等.冷等离子处理对炭纤维表面及复合材料性能的影响.高分子材料科学与工程,2010,26(4):85~88
    [79]郭书良,段跃新,肇研,等.连续玻璃纤维增强热塑/热固性复合材料力学性能研究.玻璃钢/复合材料,2009,5:42~45
    [80]孟松鹤,韦利明,许承海,等.三维C/C复合材料的压缩性能及破坏机制.复合材料学报,2009,26(6):91~96
    [81]张艳军,晏玲,刘孝敏.石棉纤维/树脂基复合材料细观力学性能分析.山西建筑,2010,36(3):187~188
    [82]陈林,刘建军,邹武.三维编织复合材料的微结构与力学性能研究进展.材料导报:综述篇,2010,24(4):71~75
    [83]罗征,周新贵,于海蛟,等.三维四向复合材料微观模型的研究现状及展望.材料导报:综述篇,2010,24(2):117~120
    [84]陈利,李金超,邢静忠.三维五向编织复合材料的力学性能分析二:细观应力数值模拟.复合材料学报,2010,27(2):148~153
    [85]余育苗,王肖均,李永池,等.三维正交机织复合材料的弹道性能和破坏模式.爆炸与冲击,2009,29(5):523~528
    [86]全国人造板标准化技术委员会.LY/T1660-2006竹材人造板术语.北京:中国标准出版社,2006
    [87]朱一辛,莫弦丰,顾东兰,等.竹束的制备及性能评价.林业科技开发,2007,21(6):41~43
    [88] T. Katayama, M. AshimoriI. Study on injection molding of Bamboo Fiber Reinforced Thermoplastics.Advances in Experimental Mechanics,2004,1~7
    [89] B. H. Ahn, C. S. Kang, G. M. Chu, etc.. Effects of Different Levels of Crushed Bamboo Chip onPerformance and Carcass Characteristics of Holstein Steers. Journal of Animal Science and Technology,2006,48:401~414
    [90] Liu Jing, Li Zhiqiang. The Kinematics Emulation Study of the Machine for Bamboo Mat WeavingAutomatically. International Conference on Mechanical Engineering and Mechanics,2007,494~497
    [91]赵仁杰,赵星,尹忠健.竹篾层积材的制造新工艺.中南林学院学报,2004,24(5):57~61
    [92]余养伦,于文吉,苏志英.竹纤维增强复合材料及其制造方法.中华人民共和国国家知识产权局,2009
    [93]张方文.竹基重组结构材料制造技术的研究.中国林业科学研究院,2008
    [94]何余生,李忠,奚红霞,等.气固吸附等温线的研究进展.离子交换与吸附,2004,20(4):376~384
    [95]刘辉,吴少华,姜秀民,等.快速热解褐煤焦的低温氮吸附等温线形态分析.煤炭学报,2005,30(4):507~510
    [96] Sing K. S. W., Everett D. H, Haul R. A. W. et al.. Pure&Appl. Chem..1985,57(4):603
    [97] Rouquerol J., Avnir D., Fairbridge C. W. et al.. Pure&Appl. Chem..1994,66(8):1739
    [98] walter liese. The anatomy of bamboo culms. Beijing,1998
    [99]于文吉,江泽慧,叶克林.竹材特性研究及其进展.世界林业研究,2002,15(2):50~55
    [100]于文吉.我国高性能竹基纤维复合材料的研发进展.木材工业,2011,25(1):6~8,29
    [101]孟凡丹,余养伦,祝荣先,等.浸胶量对纤维化竹单板层积材物理力学性能的影响.木材工业,2011,25(2):1~3,7
    [102]祝荣先,周月,任丁华,等.制造工艺对竹基纤维复合材料性能的影响.木材工业,2011,25(3):1~3
    [103]于雪斐,孙华林,于文吉.结构用慈竹单板层积材的制备工艺与性能.木材工业,2011,25(4):1~3
    [104] Roh JeangKwan, Ra JongBum. Effect of moisture content and density on the mechanical properties ofveneer-bamboo zephyr composites. Forest Products Journal,2009,59:75~78
    [105]张亚慧,孟凡丹,于文吉.疏解次数对竹基纤维复合材料性能的影响.木材工业,2011,25(5):1~4
    [106]秦莉,于文吉.木材光老化的研究进展.木材工业,2009,23(4):33~36
    [107]秦莉.热处理对重组竹材物理力学及耐久性能影响的研究.北京:中国林业科学研究院,2010,68
    [108]翟志文,申世杰,姜忠华,等.纤维增强树脂/集成材复合材料耐久性研究进展.林业机械与木工设备,2010,38(1):15~17
    [109]王志勇,肖生苓,杨丽丽.木质剩余物轨枕复合材料老化性能.东北林业大学学报,2009,37(8):1~3
    [110]王林娜,蔡建臣,薛平.木塑复合材料加速老化性能的研究.工程塑料应用,2010,38(2):63~66
    [111] Partrick J. Brennan.人工加速老化测试──氙灯试验箱.装备环境工程,2005,2(4):88~93
    [112]肖伟,李大纲.氙灯加速老化对复合材料抗弯强度和弹性模量的影响.林业机械与木工设备,2010,38(9):37~39
    [113]黄小真,蒋身学,张齐生.竹材重组材人工加速老化方法的比较研究.中国人造板,2010,6:25~27
    [114]张晓冬,程秀才,班磊.竹木复合层合板老化性能试验.林业科技开发,2010,24(3):18~21
    [115] GB/T20241-2006,单板层积材
    [116] Abdel Wahab, M.M., Crocombe, A. D., Beevers, A. et al. Coupled stress-diffusion analysis fordurability study in adhesively bonded joints. International Journal of Adhesion and Adhesives,2002,22(1):61~73
    [117] D.M. Brewis., J. Comyn, and C. Phanopoulos, Effect of water on some wood adhesives. InternationalJournal of Adhesion and Adhesives,1987,7(1):43~48
    [118] Wind turbine blades: big and getting bigger. Plastic Technology.2008
    [119]叶鼎铨.全球风电复合材料发展概况.玻璃纤维,2009,1:33~39
    [120]丁权.风电市场:纤维增强材料的机遇.玻璃纤维,2007,5:45~46
    [121] Bannister D. Materials technology for the wind energy market. JEC Composites,2008, No.40:41~43
    [122]戴春晖,刘钧,曾竟成,等.复合材料风电叶片的发展现状及若干问题的对策.玻璃钢复合材料,2008,1:53~56
    [123] Reinforced Plastics Group. Wind turbine blade designed for low-wind sites. Reinforced Plastics,2007,51:5
    [124]钟方国,赵鸿汉.风力发电发展现状及复合材料在风力发电上的应用.纤维复合材料,2006,3:48~54
    [125] Griffin D A. Cost&performance tradeoffs for carbon fibers in wind turbine blades. SAMPLE Journal,2004,40(4):15~19
    [126] Griffin D A, Ashwill T D. Alternative composite materials form egawatt-scale wind turbine blades:Design considerations and recommended testing. Proceedings of the AIAA/ASME wind energysymposium.2003
    [127] Suppliers focus on improving productivity of blade producers. Reinforced Plastics,2008(5):34~37
    [128] K.P. Subrahmanian, Fabrice Dubouloz. Adhesives for bonding wind turbine blades. ReinforcedPlastics,2009,53:26~29
    [129] Zhaocheng Wu, Jincheng Lin, Zheyuan Liu, etc.. Investigation on the Root Connection Wind TurbineBlade. Journal of the Mechatronic Industry,2009, p:34~41
    [130] Malcolm D J. Modal response of3-bladed wind turbines. Sol Energy Eng,2002,124:364~371
    [131]江泽慧,孙正军,任海青.先进生物质复合材料在风电叶片中的应用.复合材料学报,2006,23(3):127~129
    [132] Bradaigh C O. First recyclable wind blade to be developed. Reinforced Plastics,2004,48(10):8
    [133] Gardiner G. Wind blade manufacturing, Part1: M&P innovations optimize production.High-performance composites, November2008:42~49
    [134] Thomas D.Ashwill, Joshua A.Paquette. Composite materials for innovative wind turbine blades.Sample,2008,1~25
    [135] A.A.Shaniavski. Durability and fatigue crecks geowth life of turbine blades of aircraft engineNK-8-2U. Engineering Integrity Society International Conference,2003,73~80
    [136] Wind power blades energize composites manufacturing. Plastic Technology, October2008
    [137]黄晓东,江泽慧,陈玲,等.杉木作为风电叶片复合材料增强相的性能评价.木材工业,2009,23(1):24~27
    [138]黄晓东,江泽慧,陈玲.竹青板作为风电叶片复合材料增强相的性能评价.林业科技开发,2009,3(1):23~26
    [139] Leihong Li, Vitali V. Volovoi, Dewey H. Hodges. Structural Design Against Fatigue Failure forComposite Rotor Blades. AHS International annual forum,2008,2167~2177
    [140] C.G. Diagne, G. Thauvin, Z. Azari, etc.. Influence of manufacturing and loading parameters on thefatigue limit of a blade. Fatigue&Durability Assessment of Materials,2000,475~482
    [141] Moe Moe Thwe, Kin Liao. Durability of bamboo-glass fiber reinforced polymer matrix hybridcomposites. Composites Science and Technology,2003,63:375~387
    [142] Mahmood M. Shokrieh, Roham Rafiee. Simulation of fatigue failure in a full composite wind turbineblade. Composite Structures,2006,332~342
    [143] M. Ragheb. Fatigue loading in wind turbines.2009
    [144] Mar′n JC et al.. Study of fatigue damage in wind turbine blades, Engineering Failure Analysis,2008,1~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700