原纤化超细纤维复合空气过滤材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代过滤技术要求滤材具有更优秀的过滤性能和更理想的制造、加工性能。为了实现这一目的,直径小于5μm,特别是直径小于1μm的超细纤维被复合到过滤材料中。原纤化超细纤维的超细纤维结构,使它可用于生产效率较高的湿法成型方式来制造高性能空气过滤材料。这是一个新的高性能空气过滤材料研究领域。
     本文的研究以空气过滤为背景,对原纤化超细纤维的纤维特性及其湿法复合的空气过滤材料进行了研究,认识了这种新型过滤材料的结构与性能之间的关系,并建立了与性能较优的双层原纤化超细纤维复合滤材结构相匹配的理论模型。研究表明:
     1、原纤化超细纤维的形成历程是一个纤维由大到小,由不扭曲向扭曲,由单分散形态向多分散形态变化的复杂过程。
     2、通过筛分法获得的最细小原纤化超细纤维FL_5比原纤化处理得到的原纤400更有利于提高滤材的效率、表面过滤特性和匀度。FL_5的平均直径仅为0.24μm。
     3、随着原纤化程度的加深,原纤化超细纤维的打浆度不断提高,手抄片匀度不断改善,但抄造难度也不断提高,以致原纤260,原纤320和原纤400不适合单独地进行湿法成型抄片。
     4、随着原纤化程度的加深,原纤化超细纤维手抄片的透气度和孔径值不断下降,孔径分布的峰值不断向小孔径方向偏移——最小的原纤200手抄片的透气度和平均孔径仅为6.3mm/s和0.22μm。
     5、原纤化超细纤维的双层复合结构比单层结构更能体现原纤化超细纤维复合带来的过滤性能优势——在相同复合量下,双层结构对0.3-0.5μm颗粒的最高过滤效率为93.2%,而此时单层结构仅有38%。
     6、原纤化超细纤维以分散的方式搭架在基材纤维的表面孔隙上,而不是相互缠结或与主体纤维缠结,可使其过滤效用得到更好的体现。
     7、通过进一步优化原纤化超细纤维复合滤材的面层结构,可获得更理想的性能:采用“过渡层”复合或玻璃棉纤维面层复合的方式将最小尺寸的原纤化超细纤维FL_5进行复合,复合量仅为1g/m~2左右就可以有效提升滤材的综合过滤性能——复合面层配比为MGF_3比FL_5为6:4、定量为1g/m~2时,滤材对0.3-0.5μm颗粒的过滤效率由25.8%提升到了了61.1%,获得了最高的品质因子。
     8、双层结构原纤化超细纤维复合滤材的建模和验证表明,从滤材结构特点与单纤维过滤理论结合的角度出发,可获得与滤材实际性能符合的计算模型。
Modern air filtration technology requires filter media with better filtration properties andexcellent processability. To achieve this requirement, the ultrafine fibers with diameter under5μm—especially those under1μm—are utilized by advanced filter media. With theultrafine-fiber structure, the fibrillated ultrafine-fiber can be applied to produce the highperformance filter media via wet-laid process. It’s a new field for high performance filtermedia.
     The research of this paper is based on high performance air filtration application. Theforming process of fibrillated ultrafine-fiber and its wet-laid filter media will be studied. Andthe relation between structure and performance of media will be illustrated. The research willalso theoretically model the optimal double-layer media which laminated with fibrillatedultrafine fiber mixed layer. This research shows that:
     1. The forming of fibrillated ultrafine-fiber is a complicated process during which thefibers transform from large to fine, straight to curl and monodisperse size to polydisperse size.
     2. The fibrillated ultrafine-fiber FL_5with the highest filtration efficiency, surfacefiltration properties and uniformity can be obtained by classifying. And the average fiberdiameter of FL_5is0.24μm.
     3. With the rising of fibrillation intensity, the beating degree of fibrillated ultrafine-fiberkeeps increasing and the uniformity of its handsheet becomes better and better, while thewet-laid formability of the fibrillated ultrafine-fiber becomes worsen as a result that it isn’tsuitable for sheet forming alone.
     4. With the rising of fibrillation intensity, the permeability and pore size of the fibrillatedultrafine-fiber handsheet keeps decreasing and the peak of its pore size distribution shiftstowards smaller value.
     5. Compared with single-layer structure, double-layer structure greatly improves thefiltration properties of media which is composed of fibrillated ultrafine-fiber. In the samecontent of fibrillated ultrafine-fiber, the highest filtration efficiency for0.3-0.5μm particles ofdouble-layer structure media is93.2%, while single-layer structure is only38%.
     6. The fibrillated ultrafine-fibers bridge the surface pores of substrate in a dispersedfashion leads to better filtration performance. While fibrillated ultrafine-fibers intertwist ortangle with the substrate fibers lead worse.
     7. Better filtration performance can be obtained by further optimizing the surface layerstructure of the fibrillated ultrafine fiber laminated media: Intermediate-layer or fibrillated ultrafine-fiber mixed layer are applied to improve the filtration efficiency of media withoutincreasing pressure drop significantly. When the basis weight of mixed layer is only1.00g/m~2,mixed ratio is6:4(MGF_3:FL_5), the filtration efficiency for0.3-0.5μm particles of the mediaincreases from25.8%to61.1%and acquires the highest quality factor.
     8. The modeling and verification of the optimal double-layer media laminated withfibrillated ultrafine-fiber mixed layer suggest the calculation model is reliable which isestablished by the filter media structure and single fiber filtration theory.
引文
[1]克来德奥尔[美].过滤理论与实践[M].郭启祥译.国防工业出版社,1982.4第一版:28-64
    [2]许钟麟.空气洁净技术原理[M].第三版.北京:科学出版设,2003.6:86-88
    [3]蔡杰.空气过滤ABC.北京:中国建筑工业出版社,2002.10:3
    [4] Clyde Orr, Filtration Principles and Practices[M], Marcel Dekker, Inc, New York,1977
    [5] Vibhor Gupta, A. K. Jena. Advances in Filtration and Separation Technology[J].American Filtration&Separation Society,1999(13b):833
    [6] Irwin M Huntten.Handbook of Nonwoven Filter Media[M].UK:Elsevier,2007:87
    [7]姜坪,刘梅红.空气过滤材料的发展与应用[J].现代纺织技术,2002,10(4):52-55
    [8] Peter P. Tsai,柯勤飞.过滤材料全球技术发展趋势[J].产业用纺织品,2003,(01):8-11
    [9]黄继红.微孔薄膜复合滤料运行阻力的研究[J].建筑热能通风空调,2001,1:1-4.
    [10] Houfek, W.E., Nonwovens: Theory, Process, Performance, and Testing (Chapter2)[J],TAPPI Press,1993:11-18
    [11]曼·胡默尔滤清器贸易(上海)有限公司.汽车行业中的过滤技术[J].汽车与配件.2004(11):36
    [12]王延熹.国外非织造滤料发展与前景[J].产业用纺织品,2000,18(2):1-5.
    [13]王延熹.中国非织造滤料生产和应用的现状与发展[A].第一届中国国际过滤材料研讨会论文集[C],2000:1~4.
    [14]赵璜,屠恒忠.合成纤维在湿法过滤纸生产中的应用[J].纸和造纸,2004,(04):21-24
    [15]赵璜,屠恒忠.影响滤纸结构性能和过滤性能的一些因素[J].纸和造纸,2006,(06):1-4
    [16] http://www.donaldson.com/
    [17]美国Pall过滤器有限公司产品宣传手册[Z].过滤器的基本原理,18-19
    [18] MacDonald, I.F., El–Sayed, M.S., Mow, K. and Dullien, Flow through porous media–the ergun equation revisited[J]. Industrial and Engineering Chemistry Fundamentals,1979,18(3):199
    [19] Kasper, G., Schollmeier, S., Meyer, J. and Hoferer. The collection efficiency of a particleloaded single filter fiber[J]. Journal of Aerosol Science,2009,40:993-1009
    [20] Larsen, RI. The adhesion and removal of particles attached to air filter surfaces[J], Ind.Hyg.Assoc.,1958:265-270
    [21] Davies, CN. Air Filtration. Academic Press, London,1973.
    [22] Chen C.Y.. Filtration of aerosols by fibrous media [J]. Chemical Review,1955,55(4):595-623
    [23]《袋式除尘器》编写组.脉冲袋式除尘器[M].北京:冶金工业出版社,1978:75-78
    [24] Jaroszczyk T, Fallon S, Liu J. Fractional Efficiency–A Missing Parameter in Engine AirCleaner Filter Performance Characteristics [J]. Advances in Filtration and SeparationTechnology,1998(12):50–58
    [25] Bugli N. Service life requirements for engine air induction filters [J]. Advances inFiltration and Separation Technology,1998(12):38–49
    [26] Bugli. N., Service Life requirements for Engine Air Iduction Filter[J]s, AFSS Asv. Filtr.Sep. Technol.,1998,(12):50-58.
    [27] D.F. Miller, A. Levy, K.T. Whitby and W.E. Wilson, Jr., Combustion andPhotochemical Aerosols Attributable to Automobiles [J], Air Pollut. Control Assoc.,1976,26:576-581.
    [28]刘来红,王世宏.空气过滤器的发展与应用[J].过滤与分离,2000,10(4):8~9.
    [29]张桂萍.空气过滤纸及其研究方向[J].天津造纸,1994,(2):4-6
    [30]詹怀宇,李志强,蔡再生.纤维化学与物理[M].北京:科学出版社,2005:451-539
    [31] J W S Hearle.High-performance fibers [M].马渝茳.北京:中国纺织出版社,2004:27-307
    [32] Salem, D. R. Structure Formation in Polymeric Fibers [M].高绪珊,吴大诚.北京:化学工业出版社,2004:176-279
    [33]朱华,张建春,施楣梧. Tencel纤维原纤化产生机理的探讨[J].上海纺织科技,2003,(1):14-15
    [34]王宜,黄毅汪,王习文等. PBO原纤化的研究[J].合成纤维工业,2010(,6):21-23
    [35]尤秀兰,傅群,刘兆峰.芳纶浆粕纤维的结构性能与应用[J].产业用纺织品,2001,(8):27-29
    [36] J.K. Lee, K.L. Rubow and B.Y.H. Liu, Design and Performance Evaluation of aPressure Reducing Device for Aerosol Sampling from High Purity Gases[J], AerosolSci. Technol.,1993,19:215-226.
    [37] Linda C. Sawyer, Michael Jaffe. The structure of thermotropic copolyesters[J], Journalof Materials Science,1986,21:1897-1913
    [38] W. Rupertseder, T. Ertl.含有纳米纤维的新型过滤介质[J].国际纺织导报,2008(,12):60-63
    [39]侯琳熙,韩玉平,魏丹毅等.超细纤维的功能性应用及生产现状[J].山东纺织经济,2007,(3):84-86
    [40] Davie C.N.. The separation of airborn dust and particles [J]. Proc inst Mech Eng.,1952,1B:185-213
    [41] Qin, XH. and Wang, SY. Filtration properties of electrospinning nanofibers. Journal ofApplied Polymer Science,2006,102(2):1285-1290
    [42] Selcuk, G., Yury G.G. and Vladimir K. Ko, FK, Nanoengineered NanofibrousMaterials[M], NATO Science Series: Mathematics, Physics and Chemistry, KluwerAcademic Publishers,2004,169:1-18
    [43] Megelski, S., Stephens, JS., Chase, DB. and Rabolt, JF. Micro-and nanostructuresurface morphology on electrospun polymer fibers [J], Macromolecules,2002,35(22):8456-8466
    [44] A. Podg′orski, A. Ba azy, L. Grado′n, Application of nanofibers to improve thefiltration efficiency of the most penetrating aerosol particles in fibrousfilters [J], Chem.Eng. Sci.2006(61):6804–6815
    [45] Martin, CR. Membrane-Based Synthesis of Nanomaterials, Chemistry of Materials [J],1996:8(8):1739-1746.
    [46] Jing Wang,Seong Chan Kim, David Y. H. Pui. Investigation of the figure of merit forfilters with a single nanofiber layer on a substrate [J].Aerosol Science,2008(39):323-334
    [47] Vasudevan, G. and Chase, GG. Performance of B–E-glass fiber media in coalescencefiltration[J]. Aerosol Science,2004,35:83
    [48] Payet, S., Boulaud, D., Madelaine, G. and Reoux, A. Penetration and Pressure drop of aHEPA filter during loading with submicron liquid particles[J], Aerosol Sci.1992,7:723-735
    [49] Hajra, MG., Mehta, K. and Chase, G. G.―Effects of humidity, temperature, andnanofibers on drop coalescence in glass fiber media‖, Separation and PurificationTechnology,2003,30(1):79-88
    [50]施红勤,刘金艺.玻璃纤维与涤纶交织过滤材料的开发与应用[A].第一届中国国际过滤材料研讨会论文集[C],2000:238~240
    [51]郭建芬,徐小浩.0.1μm ULPA过滤器和低阻HEPA过滤器的开发洁净与空调技术[J].洁净与空调技术,2001,(1):16-20
    [52]饶邦群.玻纤空气过滤纸[J].西南造纸,2000,(4):36-36
    [53]康定学.超细微粒空气过滤纸[J].中国造纸,1997,16(2):15-18
    [54]刘玉军,侯幕毅,肖小雄.熔喷法非织造布技术进展及熔喷布的用途[J].纺织导报,2006,(8):79-83
    [55]袁传刚,张勇.熔喷法聚丙烯过滤材料的加工工艺参数对其性能的影响[J].产业用纺织品,2008,(1):16-18
    [56] DOSHI J. Nanofiber-Based Nonwoven Composites: Properties and Applications [J].Nonwovens wor1d,2001,4(10):64-68
    [57] Zhao R, Larry C, et al., Attenuating PP/PET bicomponent melt-blown microfibers [J].Polymer Engineering and Science,2003,43(2):463-469
    [58] Graham K. Ouyan M., Raether T. Grafe T., McDonald B. Knauf P..PolymericNanofibers in Air Filtration Applications [C]. AFSS15thAnnual Technical Conferenceand Exposition,2002
    [59] DOSHI J, MAINZ M H,BHAT G S. Nanofiber Based Nonwoven Composites:Properties and Applications[C]. Proceedings of the l0th Annual International TANDECNonwovens Conference.2000:1-7
    [60] Caskey, M., Dust and Sand Protection for Marine Gas Turbine[J]. Journal of Engineerfor Power,1982,104:260–267
    [61] Retka, T. J., Wylie, G. S., Field Experience with Pulse-Jet Self-Cleaning Air Filtration onGas Turbines in an Arctic Environment[J], Journal of Engineering for Gas Turbines andPower,1987,109:79–84
    [62] Shelton, L.V., Carleton, R.S., The Marine Environment and Its Influences on InletSystem Design[J], Journal of Engineering for Gas Turbines and Power,1984,106:819–824
    [63] Zaba, T, Lombardi, P. Experience in the Operation of Air Filters in Gas TurbineInstallation[J], The Brown Boveri Review,1985,72(4):165-171.
    [64] Wang, CS., Electrostatic forces in fibrous filters–a review[J], Powder Technology2001,118:166-170
    [65] Subbiah, T., Bhat, GS.,Tock, RW., Parameswaran, S. and Ramkumar, SS.Electrospinning of nanofibers[J], Journal of Applied Polymer Science,2005:96(2),557-569
    [66] Heikkila, P., Sipila, A., Peltola, M., Harlin, A. and Taipale, A.―Electrospun PA-66coating on textile surfaces‖, Textile Research Journal,2007,77(11):864-870
    [67] Zussman E., Yarin AL. and Weihs D. A micro-aerodynamic decelerator based onpermeable surfaces of nanofiber mats [J], Experiments in Fluids,2002,33:315-20
    [68] Jayesh Doshi,Reneker D H.Electrospinning process and applications of electrospunfibers[J]. JElectrostatics,1995,35:151
    [69] Huang, ZM., Zhang, YZ., Kotaki, M. and Ramakrishna, S. A review on polymernanofibers by electrospinning and their applications in nanocomposites[J], CompositesScience andTechnology.2003:63,2223-2253
    [70] MacDiarmid, A G., Jones, WE., Norris, ID., Gao, J., Johnson, AT., Pinto, NJ., Hone, J.,Han, B., Ko, F K., Okuzaki, H. and Llaguno, M. Electrostatically-generated nanofibersof electronic polymers[J], Synthetic Metals,2001,119(1-3):27-30
    [71] Demir, MM., Yilgor, I., Yilgor, E. and Erman, B. Electrospinning of polyurethaneFibers[J], Polymer,2002,43(11):3303-3309
    [72] Srinivasan, G. and Reneker, DH. Structure and morphology of small diameterelectrospun aramid fibers, Polymer International,1995,36(2):195-201
    [73] Fong, H. and Reneker, DH. Electrospinning and the formation of nanofibers [J],StructureFormation in Polymeric Fibers,2001:225-246.
    [74] Reneker D H.,Chun I. Nanometre diameter fibres of polymer, Produced byelectrospinning[J].Nanotehnology,1996,7:216
    [75] Koslow Technologies Corporation. Nanofiber filter mddia[P]. United States Patent:US6872311,2003
    [76]刘军,任国琼.纳米纤维空气过滤纸[P].中国专利:CN201010115287.4,2010
    [77] J. Wang, Filtration of Aerosol Particles by Elliptical Fibers: A Numerical Study[J],Nanoparticle Research,2009,11(1):185-196.
    [78] B.Y.H. Liu, B.Y.H. and K.L. Rubow, Characteristics of Air Sampling Filter Media,Aerosol in the Mining and Industrial Work Environment[J], Ann Arbor Science,1982,3:989-1038
    [79] Andersen, A.A.. New sampler for the collection, sizing, and enumeration of viableairborne particles [J]. Journal of Bacteriology,1958(76):471-484
    [80] W\.S. Poon, C.T. Lee and B.Y.H. Liu, A Compact Porous Denuder for AtmosphericSampling of Inorganic Aerosols[J], Aerosol Sci.,1994,25:923-934
    [81] C.J. Tsai and B.Y.H. Liu, Capture and Rebound of Small Particles Upon Impact withSolid Surfaces[J], Aerosol Sci. Technol.,1990,12:497-507
    [82] B.Y.H. Liu, Electrical Neutralization of Aerosols[J], J. Aerosol Sci.,1974,5:465-472
    [83] Maynard, A.D., Nanotechnology and Occupational Health: New technologies–NewChallenges[J], Nanoparticle Research,2007,9(1):1-3
    [84] K.T. Whitby, W.E. Clark, V.A. Marple, G.M. Sverdrup, G.J. Sem, K. Willeke and B.Y.H.Liu, Characterization of California Aerosols I. Size Distribution of Freeway Aerosol[J],Atmos. Environ.,1975,9:463-482
    [85] Lee, KW. and Liu, BYH. Theoretical Study of aerosol filtration by fibrous filters[J],Aerosol Science and Technology1982:1(2),147-161
    [86] Maus, R.and Umhauer, H. Collection and Adhesion Efficiency of Biological Particleson Single Fibers[J], Aerosol Sci,1996,27:255-256
    [87] Kirsch, AA., Stechkina, IB. and Fuchs, NA. Gas flow in aerosol filters made ofpolydisperse fibers, Aerosol Science,1974,5:39-45
    [88] Friedlander S K. Theory of aerosol filtraton [J]. Ind Eng Chem,1958,50:1161-1164
    [89] C. Asbach, Fissan, H., Kim, J. H., and Yook, S. J., Technical Note: Concepts forprotection of EUVL masks from particle contamination[J], Nanoparticle Research,2006,8:705-708
    [90] W.G. Shin, G.W. Mulholland, and S.C. Kim, J., Experimental Study of FiltrationEfficiency of Nanoparticles below20nm at Elevated Temperatures[J], Aerosol Science,2008,39:488-499
    [91] B.Y.H. Liu, Aerosol Sampling Inlets and Inhalable Particles[J], Atmos. Environ.,1981,15:589-600
    [92] Kirsch, AA., Stechkina, IB. and Fuchs, NA. Effect of gas slip on the pressure drop in asystem of parallel cylinders at small Reynolds numbers, Coll. Interface Sci.,1971,37(2):458–461
    [93] Kirsch, A.A., Stechkina, I.B., Fuchs, N.A.. Effect of gas slip on the pressure drop infibrous filters [J]. Journal of Aerosol Science,1973,4:287–293
    [94] Kirsch, A.A., Stechkina, I.B., Fuchs, N.A.. Gas flow in aerosol filters made ofpolydisperse ultrafine fibres [J].1974,Journal of Aerosol Science,5:39–45
    [95] Masuda, S. and Takahashi, Advances in Instrumentation for MicrocontaminationMeasurement[J], Aerosols: Science, Industry, Health and Environment, Pergamon Press,1990:21-25
    [96] D.R. Chen and B.Y.H. Liu, Optimization of Pleated Filter Designs Using aFinite-Element Numerical Model[J], Aerosol Sci. Technol.1995,23:579-590
    [97] D.W. Van Osdell, B.Y.H. Liu, and K.L. Rubow, Experimental Study of Submicrometerand Ultrafine Particle Penetration and Pressure Drop for High Efficiency Filters[J],Aerosol Sci. Technol.,1990,12:911-925
    [98] T.H. Kuehn and J.P. Gratzek, Experimental and Numerical Results for Air Flow andParticle Transport in a Microelectronics Clean Room[J], ASHRAE Transaction,1992,98: AN-92-9-2
    [99] Asbach, C., Fissan, H., Kim, J. H., and Yook, S. J., Simple Theoretical Approach toEstimate the Effect of Gravity and Thermophoresis on the Diffusional NanoparticleContamination under Low Pressure Conditions[J], J. Vacuum Sci. Technol.,2007,25(1):47-53
    [100] Brow n R C. T heory of airflow through filters modelled as arrays of parallel fibers [J].C hemical Engnieering Science,1993,48(20):3535-3543
    [101] Davies C N. The clogging of fibrous aerosol filters[J]. J Aerosol Sci,1970,1:35-39
    [102] Rosner D.E., Tandon P., Konstanpulous A.G..Local size distribution of particlesdeposited by internal impaction on cylindrical target in dust-looaden[J]. Aerosol Sci,1995,26:1257-1279
    [103]罗国华,梁云,郑炽嵩等.纤维材料过滤理论的研究进展[J].过滤与分离,2006,16(4):20-24
    [104] R. C. Brown. Theory of Air flow through Filters Modeled as arrays of ParallelFibers[J]. Chemical Engineering Science,1993,48(20):3535-3543
    [105] Davies C N. Viscous flow transvers to a circular cylinder[J]. Proc Phys Sci,1950,63:288-296
    [106] Kuwabara, S. The Forces experienced by Randomly Distributed Parallel CircularCylinders or Spheres in a Viscous Flow at Small Reynolds Numbers[J], Journal of thePhysical Society of Japan,1959,14(4):527-532
    [107] Hosseini, S.A, and Tafreshi, H.V.,2010. Modeling Permeability of3-D NanofiberMedia in Slip Flow Regime. Chemical Engineering Science,65,2249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700