波纹钢板桥涵试验研究与力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波纹钢板桥涵是一种新型结构形式,由一种新型建筑材料——波纹钢板拼装而成,具有施工便捷、造型优美、价格低廉诸多优异性能,有着极强的生命力和广阔的应用前景。然而,目前尚无关于波纹钢板生产标准和波纹钢板结构设计、施工规范或规程;同时,波纹钢板桥涵应用还有许多问题有待于进一步研究,如波纹钢板桥涵和土的共同作用问题,波纹钢板桥涵的稳定性问题,波纹钢板厚度对结构的影响,波纹钢板能否适用于中、大跨径的桥涵等等。湖北洪沙线丰收渠桥涵工程主体由一半径3.30m、斜跨9.334m与公路纵轴成45°角的小桥组成,是全国波纹钢板小桥中跨径最大的一座桥涵。本文针对其中的前两个问题,以该工程为背景,对波纹钢板桥涵进行了试验研究和力学性能分析。
     本文首先系统地分析了波纹钢板桥涵和其他桥涵相比所具有的优缺点,深入研究了波纹钢管的国内外的应用现状,以及其施工工艺。
     本文按照耶梅里杨诺夫模型的思路,首次建立了波纹钢板桥涵和土的耦合作用模型,将波纹钢板桥涵简化为固支拱结构,按平面应变问题进行计算。按E.B.Seydel方法,将波纹钢板的几何正交异性转化为材料正交异性,计算了其等效材料常数。通过现场静载试验,从结构的静态应变,相对变形,基础沉降等多个指标方面,对波纹钢板桥涵的力学性能进行了深入分析。一方面,用Matlab编程,推导了波纹钢板桥涵的内力和位移公式,另一方面,取一个波纹长度的波纹钢板桥涵和土作为分析对象,用大型有限元软件ANSYS对湖北洪沙线丰收渠桥涵工程的静载试验进行了模拟数值计算。两种方法计算出的结果均与现场实测数据吻合较好,既表明了波纹钢板桥涵这种柔性地下结构具有良好的受力性能,又证明了耦合模型的正确性与实用性,从而为波纹钢板桥涵的设计及工程应用提供了理论依据。
     基于波纹钢板桥涵和土的共同作用,本文用大型有限元软件ANSYS对波纹钢板桥涵进行了整体稳定性分析,首次计算了该结构的稳定承载力和失稳模态,结果表明该结构具有很好的稳定性。对波纹钢板桥涵在我国的
    
    武汉理工大学硕士学位论文
    推广应用具有一定的参考意义。
     最后,在总结论文工作的基础上,提出了本课题尚待解决的问题。
A new kind of structure, CSBCS (Corrugated Steel Bridge and Culvert Structure) is made of Corrugated Steel that is a new tape of building material. And it is necessary for CSBCS to have a great vitality and high possibility of wide application in future due to the properties of fast construction, elegant form and low price and otherwise. At present, however, there are no code for design and construction of CSBCS, and there are many problems remain to be studied about the application thereof, such as the interaction between CSBCS and soil, overall stability of CSBCS, and effect of the thickness of CS (Corrugated Steel) on CSBCS, and the application of CS to middle or large bridge, and so on. Based on an actual project, Feng-shou-qu Project in Honghu city, Hubei province, which is one of the biggest CSBCS all over the country with a radius of 3. 3m and an oblique span of 9.334m, and bevels 45° with the axes of road, experimental study and mechanics analysis of CSBCS are finished in this paper so as to resolve the first two problems above.
    Contrast to other bridge and culvert, the advantages and disadvantages of CSBCS are systematically analyzed, what more, the further research on the application of CSPI (Corrugated Steel Pipe) to both at home and abroad, construction technique thereof are made time.
    Based on the model of for the first time, the coupled model of CSBCS and soil considering the interaction between them was established in this paper, in which CSBCS was simplified into the arch structure with fixed support and problem of plane strain. According to the method of
    E.B.Seydel, the geometry orthotropic plate was transferred into
    
    
    
    material one, and also the equivalent material coefficients of CSPL (Corrugated Steel Plate) were calculated. On the basis of test under loading statically about static strain, opposite deformation to sedimentation of foundation on the actual project, further mechanics analysis of CSBCS was done. On one hand, the internal forces and displacement formulas of CSBCS were deduced by using the Matlab program, on the other hand, taking out of one wavelength of CSBCS and soil from the actual project as the analysis object, simulation numeric calculation was carried out by using big-style FEM (finite element member) software, ANSYS. The results of two methods checked well with the actual test information, which shows not only that CSBCS, which is a kind of flexible underground structure, has the favorable behaviors under loading, but also that the coupled model is right and suitable, so that theoretic basis of the design and project application about CSBCS are presented.
    Based on the interaction between CSBCS and soil, the overall stability of CSBCS was analyzed by using ANSYS. The failure models of stability were proposed and the steady carrying capacity of structure was calculated. The result indicates that CSBCS has the property of high stability, which can be used as the reference to some degree for the more wide application of CSBCS at home.
    Some problems about CSBCS worth to be studied afterward are put up in the end of this paper.
引文
1.中华人民共和国交通部标准.公路工程技术标准(JTJ10-88).北京:人民交通出版社,1994
    2.田国伟,刘兴业,孙中岳.大口径输水钢管的受力分析[J].工程力学(增刊).2001,15(02):57~58
    3.折学森.填土荷载下柔性管道的变形计算[J].2001,031(011):57~59
    4.李祝龙,章金钊.高原多年冻土地区波纹管涵应用技术研究[J].公路 2000,15(02):54~55
    5.杨猛,陈宝永,沈翰斌,周大鹏.公路应用波纹钢结构涵洞的可行性探讨[J].黑龙江交通科技.1999,15(02):51~53
    6.张勇.广州猎德污水处理厂波纹钢板地下管廊的设计和施工[J].广州大学学报(综合版).2001,15(11):55~58
    7.苏玉堂,史友好.玻璃钢管道的合理安装[J].玻璃铜/复合材料.1996,031(3):47~48
    8.叶旭峰.钢质波纹板通道在公路中的应用[J](杭州市公路管理处310004).
    9.王煜翥.波纹板成形工艺及其冲压模具设计[J].锻压技术.2001,031(011):52~54
    10.孙力彤,周学军,全晔.金属拱形波纹屋面计算常数的等效计算[J].山东建材学院学报.2001,031(011):37~39
    11.王小平.大跨度金属拱型波纹屋顶试验研究与有限元分析[学位论文].武汉:武汉工业大学.1999
    12.王小平,蒋沧如,李桂青.金属拱型波纹屋面计算的简化[J].钢结构.1999,14(4):27~29
    13.王建明,张静,王示,周学军.金属拱型波纹屋面有限元参数建模及稳定极限承载力分析[J].钢结构.2000,15(4):10~13
    14.张勇,刘锡良.支座位移对金属拱型波纹屋盖结构承载力的影响[J].工业建筑.2001,031(011):57~59
    
    
    15.陕亮,蒋沧如.金属波纹拱支座刚度对其稳定承载力的影响[J].江汉石油学院学报.2001,031(011):17~19
    16.彭述权,朱平华,俞静.高层建筑基础大体积砼和土壤耦合温度场计算[J].武汉理工大学学报,2003,124(9):56~59
    17.朱平华,彭述权,俞静.高层建筑基础大体积砼绝热温升计算[J].武汉理工大学学报.2003,122(7):31~33
    18.公路桥涵设计通用规范(JTJ021-89)[M].北京:中华人民共和国交通部
    19.城市桥梁设计准则(CJJ11-93)[M].北京:中华人民共和国交通部
    20.城市桥梁设计荷载标准(CJJ77-98)[M].北京:中华人民共和国交通部
    21.王秉荪,张振业,黄振民,刘致平.桥涵设计[M].北京:中国铁道出版社.1981
    22.桥涵设计[M].成都铁路技术学校.北京:人民铁道出版社.1981
    23.公路桥涵施工手册(涵洞)[M].北京:中国建筑出版社.1981
    24.华南工学院等编.地基及基础[M].北京:中国建筑工业出版社.1981
    25.黎钟,高云虹著.钢结构.北京:高等教育出版社.1990
    26.张有才等.建筑物的检测鉴定加固与改造.北京:冶金工业出版社.1997
    27.王传志,滕志明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社.1985
    28.袁海庆,蒋沧如.有限单元法的理论与工程应用[M].武汉:武汉工业大学出版社.1997.8
    29.王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社.1999
    30.陈精一,蔡国忠.电脑辅助工程分析.ANSYS使用指南[M].北京:中国铁道出版社.1998
    31.天津大学,同济大学,东南大学,清华大学.混凝土结构[M].北京:中国建筑工业出版社.1998
    
    
    32.王国周,瞿履谦主编.钢结构原理与设计.北京:清华大学出版社.1998
    33.同济大学.钢质波纹椭圆涵管计算报告[M].
    34. ZhuPinghua Yujing PengShuquan. Calculation of Adiabatic Temperature Change of Mass Concrete of Foundation in High-rise Building. hehai university journiral[J]. 2004, 79(4): 693~710.
    35. Buried Corrugated Metal Structures[J]. In gal Civil Products a Division of Industrial Culavnizen Corporation Ply, Ltd 1999, 78(3): 639~650.
    36. Hand book of Steel Drainage & Highway Construction Products[M], Washington D. C: American Ironand SteelInstitute, 1971, 78(3): 693~710.
    37. Triotsky M S. Stiffened Plates, Bending, Stability and Vibrations[M]. Elsevier, New York, 1976, 80(3): 593~610.
    38. Erdal Atrek, Arthur H Nilson. Nonlinear analysis of cold-formedsteel shear diaphragms[J]. J of the Structureal Division, 1980, 89(10): 683~700.
    39. M Hamada, M Tanaka. Design of U-shaped bellows considering low-cycle fatigue[J]. Tran of ASME, 1978, 100(2): 382~388
    40. D R J Owen, E Hindon. Finite elements in plasticity theroy and practice[M]. UK, Prineridy Press Limited, 1980, 12(4): 227~237
    41. Alexander Newman. Metal Building Systems[M]. McGraw Hill Inc., 1997
    42. Anderson D, et al. Analysis of semi-rigid steel frames and criteria for their design. Journal of Constructional Steel Research, 1991, 18(3): 247~257
    43. Tsai K C, Chen H W, Hong C P, Su Y F. Design of Steel Triangular Plate Energy Absorbers for Seismic-resistant Construction[J]. Earthquake Spectra, 1993, 9(3): 297~334
    44. Chen W F, Kim Seung-Eock. LRFD Steel Design Using Advanced Analysis[M]. New York: CRC Press, 1997, 86(7): 277~314
    45. Chen Shao-Fan. Steel Structure (Second Edition)[M]. Beijing: Architecture Industry Press of China, 1994, 86(7): 291~330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700