纳米填料和高导热高分子复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发导热高分子复合材料对改善微型电子元器件散热问题,保证其使用的安全性,延长使用寿命具有重要意义。目前,获得导热高分子复合材料主要依靠填充高导热的无机陶瓷粉体材料。大量粉体材料加入虽然提高了复合材料的导热性能,但降低了复合材料的力学性能,增大了其密度。因此,研究具有优良综合性能的导热高分子复合材料才能进一步扩大其应用的领域。本文制备了新型纳米填料,并研究了不同填料以及不同填充方式对PA6导热复合材料导热性能、力学性能、电绝缘性、加工性能等的影响;采用有限元技术分析了填料对复合材料热传导过程的影响。
     首先,采用尿素法制备了纳米AlN、纳米AlN/CNTs和AlN/GE杂化材料作为新型纳米导热填料,通过SEM、XRD、TEM、FTIR、TG和XPS等手段对材料进行了表征,然后分别将三种纳米填料按相同配比与微米Al2O3混合,获得了填充导热环氧复合材料,并对复合材料导热性能、密度和热稳定性进行了分析与比较。结果表明,与只添加微米Al2O3的复合材料相比,纳米填料的加入明显提高复合材料的导热性能,导热系数由大到小分别是添加了AlN/CNTs、AlN/GE和纳米AlN填料的复合材料。此外,纳米填料的加入还降低了复合材料的密度,提高了复合材料初始分解温度和完全分解温度。
     其次,研究了Al2O3、AlN、BN、SiC和石墨几种不同填料单一颗粒、颗粒混杂和纤维与颗粒混杂三种填充方式对PA6复合材料导热性能、力学性能、电绝缘性、密度、热变形温度和加工性能的影响。结果表明,单一无机陶瓷颗粒填充的复合材料力学性能较好、导热性能稍差,石墨填充的具有高导热性能,但力学性能差;而通过颗粒混杂填充得到的复合材料兼具了陶瓷颗粒填充时的良好力学性能和石墨填充的高导热性能,纤维的加入还可以进一步提高复合材料的综合性能。
     最后,采用有限元软件分析了网格密度、填料种类以及树脂种类等对复合材料导热性能的影响。结果显示,模拟结果和实验结果接近,很好的反应了填料粒径、体积分数和种类以及树脂基体对导热复合材料的导热系数、温度场和热流分布的影响,可以为导热高分子复合材料的导热性能设计提供相应的参考依据。
For the aim of improving heat dissipation problem of micro-electroniccomponents, guaranteeing the security and extending the serviced lives of components,it is crucial to develop the polymer composites with high thermal conductivity. As arule, the high thermal conductivity polymer composites are fabricated by filling withthe high thermal conductivity inorganic ceramic materials. However, a high content offiller materials can improve the thermal conductively but simultaneously can result inthe poor mechanical properties and a high density of polymers. Therefore, the study ofthe thermal conductivity of polymer composites with excellent overall performance,such as light weight, appropriate mechanical properties and ease of processing, will bebenefit to expand their application fields. In this paper, the new nano-fillers wereprepared and then the effects of fillers type and filler systems on thermal conductivity,mechanical properties, electrical insulation, processing performance of compositeswere investigated. In addition, the effect of filler content on the heat conductionprocess of composites was also analyzed using finite element method.
     Firstly, the nano-AlN, AlN/CNTs and AlN/GE hybrid materials were prepared bysimple urea method to be employed as new nano thermal conductive filler materialand then were characterized by SEM, XRD, TEM, FTIR, TG and XPS. After that,these three types of nano-fillers were mixed with micro-Al2O3at the same proportionto prepare the thermal conductive epoxy composite. Furthermore, the influence ofthree type nanoparticles on thermal conductivity, density and thermal stability ofepoxy composites was investigated. The results revealed that the thermal conductivityof composite was significantly improved by adding nano-fillers. In addition, nanofiller was also helpful to reduce the density and improve initial decompositiontemperature and IPDT temperature of epoxy composites.
     Secondly, the Al2O3, AlN, BN, SiC, and graphite were selected as thermalconductivity fillers for PA6composites, respectively. The influences of compositesystems such as single type of particle fillers, hybrid particle fillers, and hybridparticle and fiber fillers on thermal conductivity, mechanical properties, electricalinsulation, density, heat distortion temperature and processing performance of PA6composites were investigated. The results revealed that PA6composites with singleinorganic ceramic particles had excellent mechanical properties and inferior thermal conductivity while the composites with single graphite particles had high thermalconductivity and inferior mechanical properties. The PA6composites with hybridparticle fillers exhibited a combination of excellent thermal conductivity andmechanical properties. Besides, the addition of fibers could improve thecomprehensive performances of the PA6composite further.
     Finally, the influences of fillers (particle size, volume fraction and types of fillers)and resin matrix on the thermal conductivity, temperature fields and heat fluxdistributions of the composites were obtained by finite element method. The thermalconductivity of composites obtained from finite element method exhibited agreementwith experimental results. It meant that this approach could be employed to providethe appropriate references for designing and fabricating polymer composite materialswith high thermal conductivity.
引文
[1]张帅,马永梅,王佛松.导热绝缘高分子复合材料的研究.塑料2007;36(3):41-45.
    [2]宋霞.导热塑料材料的研究进展.塑料制造2008;4:130-132.
    [3] Wong C, Bollampally RS. Thermal conductivity, elastic modulus, and coefficientof thermal expansion of polymer composites filled with ceramic particles forelectronic packaging. Journal of Applied Polymer Science1999;74(14):3396-3403.
    [4] Ganguli S, Roy AK, Anderson DP. Improved thermal conductivity for chemicallyfunctionalized exfoliated graphite/epoxy composites. Carbon2008;46(5):806-817.
    [5] T'Joen C, Park Y, Wang Q, et al. A review on polymer heat exchangers forHVAC&R applications. International Journal of Refrigeration2009;32(5):763-779.
    [6] Shojaei A, Fahimian M, Derakhshandeh B. Thermally conductive rubber-basedcomposite friction materials for railroad brakes-thermal conductioncharacteristics. Composites Science and Technology2007;67(13):2665-2674.
    [7]孔丽芬,张银华,徐珊.导热硅橡胶的研究进展.粘接2009;6:64-66.
    [8]涂春潮,齐暑华,周文英.氮化硼填充甲基乙烯基硅橡胶导热复合材料的性能.合成橡胶工业2009;32(3):238-240.
    [9]赵红振,齐暑华,周文英,等.氧化铝粒子对导热硅橡胶性能的影响.特种橡胶制品2007;28(5):19-21.
    [10]周文英,齐暑华,涂春潮,等.混杂填料填充导热硅橡胶性能研究.材料工程2006;8:15-19.
    [11] Nobuyuki K. Preparation of vulcanizates with high sress and thermalconductivity: Japan Patent, JP43428163,1990-07-11.
    [12] Hideaki T, Katsuro K, Shigemitsu K. Heat conductive rubber member, mountingpressure bonding sheet using the same and method for attaching film carrier:Japan Patent, JP2001212909,2001.
    [13] Michiaki Y. Fixing rolls in electrophotographic copying, silicone rubbercompositions for the rolls, and manufacture of the compositions: Japan Patent, JP03221982,1991.
    [14] Meguriya N, Hirabayashi S, Ubukata S, et al. Highly heat conductive siliconerubber composition, fixing roll and fixing belt: USA Patent, US7166363,2007.
    [15] Ichiro N. Silicone rubber compositions with fire resistance and thermalconductivity: Japan Patent, JP06453261,1994.
    [16] Nakano A, Takei H, Hashimoto T, et al. Thermally conductive silicone rubbercompositions with good moldabili: Japan Patent, JP43428163,1992.
    [17]何兵兵,傅仁利,江利,等.无机填料粒子的几何特征对环氧树脂灌封胶导热性能的影响.中国胶粘剂2010;19(7):20-24.
    [18] Xu YS, Chung DDL, Mroz C. Thermally conducting aluminum nitridepolymer-matrix composites. Composites Part A: Applied Science andManufacturing2001;32(12):1749-1757.
    [19] Chen Y, Ting J. Ultra high thermal conductivity polymer composites. Carbon2002;40(3):359-362.
    [20]王军祥,增强聚合物的导热和耐磨性能研究:[博士后学位论文],上海:上海交通大学;2004.
    [21] Lee E, Lee S, Shanefield DJ, et al. Enhanced thermal conductivity of polymermatrix composite via high solids loading of aluminum nitride in epoxy resin.Journal of the American Ceramic Society2008;91(4):1169-1174.
    [22] Zhou T, Wang X, Liu X, et al. Improved thermal conductivity of epoxycomposites using a hybrid multi-walled carbon nanotube/micro-SiC filler.Carbon2010;48(4):1171-1176.
    [23] Yung K, Liem H. Enhanced thermal conductivity of boron nitride epoxy-matrixcomposite through multi-modal particle size mixing. Journal of Applied PolymerScience2007;106(6):3587-3591.
    [24] He H, Fu R, Han Y, et al. High thermal conductive Si3N4particle filled epoxycomposites with a novel structure. Journal of Electronic Packaging2007;129(4):469-472.
    [25] Haggenmueller R, Guthy C, Lukes JR, et al. Single wall carbonnanotube/polyethylene nanocomposites: thermal and electrical conductivity.Macromolecules2007;40(7):2417-2421.
    [26] Tavman I, Aydogdu Y, K k M, et al. Measurement of heat capacity and thermalconductivity of HDPE/expanded graphite nanocomposites by differentialscanning calorimetry. Archives of Materials Science2011;50(1):56-60.
    [27] Kalaitzidou K, Fukushima H, Drzal LT. Multifunctional polypropylenecomposites produced by incorporation of exfoliated graphite nanoplatelets.Carbon2007;45(7):1446-1452.
    [28] Zhang S, Ke Y, Cao X, et al. Effect of Al2O3fibers on the thermal conductivityand mechanical properties of high density polyethylene with the absence andpresence of compatibilizer. Journal of Applied Polymer Science2012;124(6):4874-4881.
    [29] Li TL, Hsu SLC. Enhanced thermal conductivity of polyimide films via a hybridof micro-and nano-sized boron nitride. The Journal of Physical Chemistry B2010;114(20):6825-6829.
    [30] Tonpheng B, Yu J, Andersson O. Thermal conductivity, heat capacity, andcross-linking of polyisoprene/single-wall carbon nanotube composites underhigh pressure. Macromolecules2009;42(23):9295-9301.
    [31] Yang S, Lozano K, Lomeli A, et al. Electromagnetic interference shieldingeffectiveness of carbon nanofiber/LCP composites. Composites Part A: AppliedScience and Manufacturing2005;36(5):691-697.
    [32]覃碧勋,唐敬海,柯金成,等.玻纤增强PPS/MgO绝缘导热复合材料的研究.工程塑料应用2008;36(9):12-14.
    [33]覃碧勋,唐敬海,柯金成,等. PPS/玻纤/MgO导热绝缘塑料的性能研究.广东化工2008;35(9):8-10.
    [34]覃碧勋,李卫,柯金成,等. PPS/AIN/MgO导热复合材料的制备及性能研究.塑料工业2008;36(12):61-63.
    [35]林晓丹,曾幸荣,张金柱,等. PPS导热绝缘塑料的制备及性能研究.塑料工业2006;34(3):65-67.
    [36] Keith JM, King JA, Miller MG, et al. Thermal conductivity of carbon fiber/liquidcrystal polymer composites. Journal of Applied Polymer Science2006;102(6):5456-5462.
    [37] Ng HY, Lu X, Lau SK. Thermal conductivity of boron nitride-filledthermoplastics: effect of filler characteristics and composite processingconditions. Polymer Composites2005;26(6):778-790.
    [38] Zhou W, Qi S, An Q, et al. Thermal conductivity of boron nitride reinforcedpolyethylene composites. Materials Research Bulletin2007;42(10):1863-1873.
    [39]储九荣,张晓辉.导热高分子材料的研究与应用.高分子材料科学与工程2000;16(4):17-21.
    [40]韩雄炜,导热硅橡胶的制备及性能:[硕士学位论文],杭州:浙江大学;2006.
    [41] Hong J, Yoon S, Hwang T, et al. High thermal conductivity epoxy compositeswith bimodal distribution of aluminum nitride and boron nitride fillers.Thermochimica Acta2012;537(10):70-75.
    [42] Sanada K, Tada Y, Shindo Y. Thermal conductivity of polymer composites withclose-packed structure of nano and micro fillers. Composites Part A: AppliedScience and Manufacturing2009;40(6-7):724-730.
    [43] Choi S, Im H, Kim J. Flexible and high thermal conductivity thin films based onpolymer: aminated multi-walled carbon nanotubes/micro-aluminum nitridehybrid composites. Composites Part A: Applied Science and Manufacturing2012;43(11):1860-1868.
    [44]王亮亮,陶国良.聚丙烯/铝粉复合材料导热性能的研究.塑料工业2003;31(12):47-54.
    [45]周大纲,许乾慰.导热聚烯烃复合材料及其应用研究.塑料助剂2010;3:30-33.
    [46]林晓丹,曾幸荣,张金柱,等. PA66导热绝缘塑料的制备与性能.工程塑料应用2006;34(4):7-9.
    [47] Sim LC, Ramanan S, Ismail H, et al. Thermal characterization of Al2O3and ZnOreinforced silicone rubber as thermal pads for heat dissipation purposes.Thermochimica Acta2005;430(1):155-165.
    [48] Lee GW, Park M, Kim J, et al. Enhanced thermal conductivity of polymercomposites filled with hybrid filler. Composites Part A: Applied Science andManufacturing2006;37(5):727-734.
    [49] Kemaloglu S, Ozkoc G, Aytac A. Properties of thermally conductive micro andnano size boron nitride reinforced silicon rubber composites. ThermochimicaActa2010;499(1):40-47.
    [50] He H, Fu R, Shen Y, et al. Preparation and properties of Si3N4/PS compositesused for electronic packaging. Composites Science and Technology2007;67(11-12):2493-2499.
    [51] Tu H, Ye L. Thermal conductive PS/graphite composites. Polymers for AdvancedTechnologies2009;20(1):21-27.
    [52] Causin V, Marega C, Marigo A, et al. Morphological and structuralcharacterization of polypropylene/conductive graphite nanocomposites.European Polymer Journal2006;42(12):3153-3161.
    [53] Liu Z, Guo Q, Shi J, et al. Graphite blocks with high thermal conductivityderived from natural graphite flake. Carbon2008;46(3):414-421.
    [54] Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based compositematerials. Nature2006;442(7100):282-286.
    [55] Huang X, Qi X, Boey F, et al. Graphene-based composites. Chemical SocietyReviews2012;41(2):666-686.
    [56] Chen YM, Ting JM. Ultra high thermal conductivity polymer composites.Carbon2002;40(3):359-362.
    [57] Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a singlecarbon nanotube. Physical Review Letters2005;95(6):65502.
    [58]祝春华,王端阳.碳纳米管材料导热性能的实验研究.广东化工2007;34(8):5-9.
    [59] Díez-Pascual AM, Naffakh M, González-Domínguez JM, et al. Highperformance PEEK/carbon nanotube composites compatibilized withpolysulfones-II. mechanical and electrical properties. Carbon2010;48(12):3500-3511.
    [60] Díez-Pascual AM, Ashrafi B, Naffakh M, et al. Influence of carbon nanotubes onthe thermal, electrical and mechanical properties of poly(ether etherketone)/glass fiber laminates. Carbon2011;49(8):2817-2833.
    [61] Yang X, Wang Z, Xu M, et al. Dramatic mechanical and thermal increments ofthermoplastic composites by multi-scale synergetic reinforcement: carbon fiberand graphene nanoplatelet. Materials&Design2013;44:74-80.
    [62] Liu C, Huang H, Wu Y, et al. Thermal conductivity improvement of siliconeelastomer with carbon nanotube loading. Applied Physics Letters2004;84(21):4248-4250.
    [63] Novais RM, Simon F, Paiva MC, et al. The influence of carbon nanotubefunctionalization route on the efficiency of dispersion in polypropylene bytwin-screw extrusion. Composites Part A: Applied Science and Manufacturing2012;43(12):2189-2198.
    [64] Xiong J, Zheng Z, Qin X, et al. The thermal and mechanical properties of apolyurethane/multi-walled carbon nanotube composite. Carbon2006;44(13):2701-2707.
    [65] Morishita T, Matsushita M, Katagiri Y, et al. Noncovalent functionalization ofcarbon nanotubes with maleimide polymers applicable to high-meltingpolymer-based composites. Carbon2010;48(8):2308-2316.
    [66] Hong WT, Tai NH. Investigations on the thermal conductivity of compositesreinforced with carbon nanotubes. Diamond and Related Materials2010;17(7-10):1577-1581.
    [67] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis,properties, and applications. Advanced Materials2010;22(35):3906-3924.
    [68] Rao CNR, Sood AK, Subrahmanyam KS, et al. Graphene: The newtwo-dimensional nanomaterial. Angewandte Chemie International Edition2009;48(42):7752-7777.
    [69] Teng C, Ma CM, Lu C, et al. Thermal conductivity and structure of non-covalentfunctionalized graphene/epoxy composites. Carbon2011;49(15):5107-5116.
    [70]周文英,齐暑华,涂春潮,等. Al2O3对导热硅橡胶性能的影响.合成橡胶工业2006;29(6):462-465.
    [71] Kume S, Yamada I, Watari K, et al. High-thermal-conductivity AlN filler forpolymer/ceramics composites. Journal of the American Ceramic Society2009;92(S1):S153-S156.
    [72] Yu A, Ramesh P, Sun X, et al. Enhanced thermal conductivity in a hybridgraphite nanoplatelet–carbon nanotube filler for epoxy composites. AdvancedMaterials2008;20(24):4740-4744.
    [73] Jeng M, Yang R, Song D, et al. Modeling the thermal conductivity and phonontransport in nanoparticle composites using monte carlo simulation. Journal ofHeat Transfer2008;130(4):042410.
    [74] Yang SY, Ma CCM, Teng CC, et al. Effect of functionalized carbon nanotubes onthe thermal conductivity of epoxy composites. Carbon2010;48(3):592-603.
    [75] Im H, Kim J. The effect of Al2O3doped multi-walled carbon nanotubes on thethermal conductivity of Al2O3/epoxy terminated poly (dimethylsiloxane)composites. Carbon2011;49(11):3503-3511.
    [76] Seran C, Hyungu I, Jooheon K. The thermal conductivity of embeddednano-aluminum nitride-doped multi-walled carbon nanotubes in epoxycomposites containing micro-aluminum nitride particles. Nanotechnology2012;23(6):065303.
    [77] Im H, Kim J. Thermal conductivity of a graphene oxide–carbon nanotubehybrid/epoxy composite. Carbon2012;50(15):5429-5440.
    [78] Terao T, Zhi C, Bando Y, et al. Alignment of boron nitride nanotubes inpolymeric composite films for thermal conductivity improvement. The Journal ofPhysical Chemistry C2010;114(10):4340-4344.
    [79] Terao T, Bando Y, Mitome M, et al. Thermal conductivity improvement ofpolymer films by catechin-modified boron nitride nanotubes. The Journal ofPhysical Chemistry C2009;113(31):13605-13609.
    [80] Zhi C, Bando Y, Terao T, et al. Towards thermoconductive, electrically insulatingpolymeric composites with boron nitride nanotubes as fillers. AdvancedFunctional Materials2009;19(12):1857-1862.
    [81] Zhou Y, Wang L, Zhang H, et al. Enhanced high thermal conductivity and lowpermittivity of polyimide based composites by core-shell Ag@SiO2nanoparticlefillers. Applied Physics Letters2012;101(1):012903-012904.
    [82] Zeng J, Cao Z, Yang D, et al. Thermal conductivity enhancement of Agnanowires on an organic phase change material. Journal of Thermal Analysis andCalorimetry2010;101(1):385-389.
    [83] Shi Z, Radwan M, Kirihara S, et al. Enhanced thermal conductivity of polymercomposites filled with three-dimensional brushlike AlN nanowhiskers. AppliedPhysics Letters2009;95(22):224104.
    [84] Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymernanocomposites: a review. Progress in Polymer Science2011;36(7):914-944.
    [85] Bigg D. Thermally conductive polymer compositions. Polymer Composites1986;7(3):125-140.
    [86] Jiajun W, XiaoSu Y. Effects of interfacial thermal barrier resistance and particleshape and size on the thermal conductivity of AlN/PI composites. CompositesScience and Technology2004;64(10-11):1623-1628.
    [87] Zhou H, Zhang S, Yang M. The effect of heat-transfer passages on the effectivethermal conductivity of high filler loading composite materials. CompositesScience and Technology2007;67(6):1035-1040.
    [88]闵新民,安继明,陈峰,等.聚合物基复合材料的导热性能研究.功能材料2007;38(A08):3136-3139.
    [89]董其伍,刘琳琳,刘敏珊.预测聚合物基复合材料导热系数方法研究进展.材料工程2009;3:78-81.
    [90] Dondero M, Cisilino AP, Carella JM, et al. Effective thermal conductivity offunctionally graded random micro-heterogeneous materials using representativevolume element and BEM. International Journal of Heat and Mass Transfer2011;54(17-18):3874-3881.
    [91] Agari Y, Ueda A, Tanaka M, et al. Thermal conductivity of a polymer filled withparticles in the wide range from low to super-high volume content. Journal ofApplied Polymer Science1990;40(5-6):929-941.
    [92]梁基照,邱玉琳.三氧化二铝/硅橡胶复合材料热导率的预测.橡胶工业2009;8:476-479.
    [93] Shao YF, Yiu WM. Thermal conductivity of misaligned short-fiber-reinforcedpolymer composites. Journal of Applied Polymer Science2003;88(6):1497-1505.
    [94] Li Z, Chen H, Cai L, et al. Prediction of thermal conductivity of SiC-filledemulsion-polymerized styrene-butadiene rubber composites by finite elementmethod. Journal of Reinforced Plastics and Composites2012;31(22):1586-1598.
    [95] Mu L, Shi Y, Feng X, et al. The effect of thermal conductivity and frictioncoefficient on the contact temperature of polyimide composites: experimentaland finite element simulation. Tribology International2012;53:45-52.
    [96]田志红,范华乐,张浩,等. AlN填充有机灌封硅橡胶导热性能的数值模拟.复合材料学报2011;38(3):217-222.
    [97]潘琼瑶,贺鹏飞,郑百林,等.颗粒增强复合材料热性能的数值模拟研究.太原理工大学学报2005;36(6):663-672.
    [98]刘加奇,张立群,杨海波,等.粒子填充聚合物基复合材料导热性能的数值模拟.复合材料学报2009;29(1):12-19.
    [99]费海燕,朱鹏,宋艳江,等.石墨和炭纤维分别改性热塑性聚酰亚胺复合材料的导热行为.复合材料学报2007;24(5):44-49.
    [100]李典森,卢子兴,刘振国,等.三维五向编织复合材料导热性能的有限元分析.航空动力学报2008;23(8):1455-1460.
    [101] Yin Y, Tu ST. Thermal conductivity of PTFE composites with randomdistributed graphite particles. Journal of Reinforced Plastics and Composites2002;21(18):1619-1627.
    [102] Ramvir S, PK S. Effective thermal conductivity of metal filled polycomposites. Indian Journal of Pure&Applied Physics2011;49(2):112-116.
    [103]刘加奇,卢咏来,杨海波,等.粒子空间分布与复合材料导热性能关系的模拟研究.复合材料学报2011;28(5):12-19.
    [104] Zeng J, Fu R, Agathopoulos S, et al. Numerical simulation of thermalconductivity of particle filled epoxy composites. Journal of Electronic Packaging2009;131(4):041006.
    [105] Kumlutas D. A numerical and experimental study on thermal conductivity ofparticle filled polymer composites. Journal of Thermoplastic CompositeMaterials2006;19(4):441-455.
    [106]章继峰,王振清,周健生,等.基于Python-Abaqus复合材料代表性体积元的数值模型.宇航材料工艺2009;39(3):25-29.
    [107] Giordano C, Erpen C, Yao W, et al. Synthesis of Mo and W carbide andnitride nanoparticles via a simple “urea glass” route. Nano Letters2008;8(12):4659-4663.
    [108] Gomathi A, Sundaresan A, Rao CNR. Nanoparticles of superconductingγ-Mo2N and δ-MoN. Journal of Solid State Chemistry2007;180(1):291-295.
    [109] Qiu Y, Gao L. Metal-urea complex--a precursor to netal nitrides. Journal ofthe American Ceramic Society2004;87(3):352-357.
    [110] Teng CC, Ma CCM, Chiou KC, et al. Synergetic effect of thermal conductiveproperties of epoxy composites containing functionalized multi-walled carbonnanotubes and aluminum nitride. Composites Part B: Engineering2011;43(2):265-271.
    [111] Pak SY, Kim HM, Kim SY, et al. Synergistic improvement of thermalconductivity of thermoplastic composites with mixed boron nitride andmulti-walled carbon nanotube fillers. Carbon2012;50(13):4830-4838.
    [112] Miranzo P, García E, Ramírez C, et al. Anisotropic thermal conductivity ofsilicon nitride ceramics containing carbon nanostructures. Journal of theEuropean Ceramic Society2012;32(8):1847-1854.
    [113] Pei Q, Sha Z, Zhang Y. A theoretical analysis of the thermal conductivity ofhydrogenated graphene. Carbon2011;49(14):4752-4759.
    [114] Zaman I, Phan TT, Kuan HC, et al. Epoxy/graphene platelets nanocompositeswith two levels of interface strength. Polymer2011;52(7):1603-1611.
    [115] Giordano C, Erpen C, Yao W, et al. Metal nitride and metal carbidenanoparticles by a soft urea pathway. Chemistry of Materials2009;21(21):5136-5144.
    [116] Podsiadlo S. Stages of the synthesis of gallium nitride with the use of urea.Thermochimica Acta1995;256(2):367-373.
    [117] He Z, Chen Z, Li Y, et al. Molar ratio of In to urea directed formation ofIn2O3hierarchical structures: cubes and nanorod-flowers. CrystEngComm2011;13(7):2557-2565.
    [118] Shi Z, Radwan M, Kirihara S, et al. Morphology-controlled synthesis ofquasi-aligned AlN nanowhiskers by combustion method: effect of NH4Cladditive. Ceramics International2009;35(7):2727-2733.
    [119] Shi ZQ, Yang WL, Qiao GJ, et al. Growth of flower-like AIN by combustionsynthesis assisted with mechanical activation. Materials Science Forum2011;695:413-416.
    [120]何强,卢咏来,陈琪,等.碳纳米管/Al2O3/硅橡胶导热复合材料结构和性能的研究.特种橡胶制品2009;30(2):1-6.
    [121] Zhao J, Buldum A, Han J, et al. Gas molecule adsorption in carbon nanotubesand nanotube bundles. Nanotechnology2002;13(2):195-200.
    [122] Qian Y, Lu S, Gao F. Synthesis of manganese dioxide/reduced grapheneoxide composites with excellent electrocatalytic activity toward reduction ofoxygen. Materials Letters2011;65(1):56-58.
    [123] Timoshkin AY, Bettinger HF, Schaefer HF. The chemical vapor deposition ofaluminum nitride: unusual cluster formation in the gas phase. Journal of theAmerican Chemical Society1997;119(24):5668-5678.
    [124] Wei H, Yang W, Xi Q, et al. Preparation of Fe3O4@graphene oxide core-shellmagnetic particles for use in protein adsorption. Materials Letters2012;82(0):224-226.
    [125] Li L, Hao X, Yu N, et al. Low-temperature solvent thermal synthesis of cubicAlN. Journal of Crystal Growth2003;258(3):268-271.
    [126] Li C, Kao L, Chen M, et al. Rapid preparation of aluminum nitride powdersby using microwave plasma. Journal of Alloys and Compounds2012;542(25):78-84.
    [127] Guojun Y, Guangde C, Huiming L. Solid-state metasynthesis andcharacterization of AlN nanocrystals. International Journal of Refractory Metalsand Hard Materials2008;26(1):5-8.
    [128]袁文辉,顾叶剑,李保庆,等.低温剥离法制备高性能石墨烯/ZnO复合材料.无机材料学报2012;27(6):591-595.
    [129] Bai B, Kang S, Im J, et al. Effect of oxyfluorinated MWCNT additives onPTC/NTC behavior in HDPE polymeric switches. Materials Research Bulletin2011;46(9):1391-1397.
    [130] Guo J, Wang R, Tjiu WW, et al. Synthesis of Fe nanoparticles@graphenecomposites for environmental applications. Journal of Hazardous Materials2012;225-226(30):63-72.
    [131] Wang W, Chen H, Wu Y, et al. Properties of novel epoxy/claynanocomposites prepared with a reactive phosphorus-containing organoclay.Polymer2008;49(22):4826-4836.
    [132] Jin F, Park S. Thermal properties of epoxy resin/filler hybrid composites.Polymer Degradation and Stability2012;97(11):2148-2153.
    [133] Doyle C. Estimating thermal stability of experimental polymers by empiricalthermogravimetric analysis. Analytical Chemistry1961;33(1):77-79.
    [134] Park S, Kim H, Lee H, et al. Thermal stability of imidized epoxy blendsinitiated by N-benzylpyrazinium hexafluoroantimonate salt. Macromolecules2001;34(22):7573-7575.
    [135] Park SJ, Kim HC. Thermal stability and toughening of epoxy resin withpolysulfone resin. Journal of Polymer Science Part B: Polymer Physics2000;39(1):121-128.
    [136]陈洁,易长海,邹汉涛,等.水性环氧树脂制备复合材料的热性能研究.玻璃钢/复合材料2010;4:47-53.
    [137] Perminov V, Modyanova A, Ryabkov YI, et al. Epoxy composites modifiedwith finely dispersed fillers. Russian Journal of Applied Chemistry2002;75(4):636-640.
    [138] Guo Y, Bao C, Song L, et al. In situ polymerization of graphene, graphiteoxide, and functionalized graphite oxide into epoxy resin and comparison studyof on-the-flame behavior. Industrial&Engineering Chemistry Research2011;50(13):7772-7783.
    [139] Krucińska I, Gli cińska E, M der E, et al. Evaluation of the influence ofglass fibre distribution in polyamide matrix during the consolidation process onthe mechanical properties of GF/PA6composites. Fibres&Textiles in EasternEurope2009;17(1):81-86.
    [140] Xu Z, Zhang Y, Hong W, et al. Electric conductivity and thermorheologyproperties of polyacrylonitrile/nylon6composites filled with carbon black.Polymer-Plastics Technology and Engineering2009;48(3):280-284.
    [141] Bose S, Bhattacharyya AR, Bondre AP, et al. Rheology, electricalconductivity, and the phase behavior of cocontinuous PA6/ABS blends withMWNT: correlating the aspect ratio of MWNT with the percolation threshold.Journal of Polymer Science Part B: Polymer Physics2008;46(15):1619-1631.
    [142] Zheng D, Tang G, Zhang HB, et al. In-situ thermal reduction of grapheneoxide for high electrical conductivity and low percolation threshold in polyamide6nanocomposites. Composites Science and Technology2011;72(2):284-289.
    [143] González I, Eguiazábal JI. Attaining high electrical conductivity andtoughness in PA6by combined addition of MWCNT and rubber. CompositesPart A: Applied Science and Manufacturing2012;43(9):1482-1489.
    [144] Logakis E, Pandis C, Peoglos V, et al. Electrical/dielectric properties andconduction mechanism in melt processed polyamide/multi-walled carbonnanotubes composites. Polymer2009;50(21):5103-5111.
    [145] Zhang MH, Gu WQ, Lei JT, et al. Effect of filler loading and temperature onelectrical resistivity of stainless steel fiber/PA6conductive polymer composites.Advanced Materials Research2012;502:101-105.
    [146] Tekce HS, Kumlutas D, Tavman IH. Effect of particle shape on thermalconductivity of copper reinforced polymer composites. Journal of ReinforcedPlastics and Composites2007;26(1):113-121.
    [147] Heinle C, Brocka Z, Hülder G, et al. Thermal conductivity of polymers filledwith non-isometric fillers: a process dependent, anisotropic property; SPEANTEC conference, Chicago, IL, USA,2009.
    [148] Reynaud E, Jouen T, Gauthier C, et al. Nanofillers in polymeric matrix astudy on silica reinforced PA6. Polymer2001;42(21):8759-8768.
    [149]曾桂生,邹建平,彭强,等.硅烷类偶联剂KH-570对T-ZnOw的表面改性研究.功能材料2010;41(3):410-413.
    [150]魏红,文衍秋,张熙曼.改性氧化镁粉体的制备及其润湿性表征.泰山医学院学报2007;28(8):611-613.
    [151] Hsieh CY, Chung SL. High thermal conductivity epoxy molding compoundfilled with a combustion synthesized AlN powder. Journal of Applied PolymerScience2006;102(5):4734-4740.
    [152]刘运春,殷陶,陈元武,等. PPS/Al2O3导热复合材料的性能及其应用.工程塑料应用2009;37(2):48-51.
    [153] Lee GW, Park M, Kim J, et al. Enhanced thermal conductivity of polymercomposites filled with hybrid filler. Composites Part A: Applied Science andManufacturing2006;37(5):727-734.
    [154]叶昌明,陈永林.热传导高分子复合材料的导热机理,类型及应用.中国塑料2002;16(12):14-17.
    [155] You KM, Park SS, Lee CS, et al. Preparation and characterization ofconductive carbon nanotube-polyurethane foam composites. Journal of MaterialsScience2011;46(21):6850-6855.
    [156] Gorrasi G, Di Lieto R, Patimo G, et al. Structure-property relationships onuniaxially oriented carbon nanotube/polyethylene composites. Polymer2011;52(4):1124-1132.
    [157]陈晓梅,全成子.聚丙烯/石墨导电复合材料的制备与表征.中国塑料2001;15(9):40-43.
    [158]何小芳,贺超峰,刘玉飞,等.聚丙烯基石墨导电复合材料研究进展.中国塑料2012;5:17-21.
    [159]金政,闫善涛,李瑞琦,等.石墨/ABS树脂导电复合材料的研究.黑龙江大学自然科学学报2012;29(1):95-98.
    [160] Pezzotti G, Kamada I, Miki S. Thermal conductivity of AlN/polystyreneinterpenetrating networks. Journal of the European Ceramic Society2000;20(8):1197-1203.
    [161]胡新利,陆佳琦,罗宇,等.尼龙12导热导电复合材料的制备与性能研究.工程塑料应用2012;40(5):9-12.
    [162]欧阳杰,李渊,王曦,等.环氧树脂E-44反应增容尼龙6/废印刷电路板非金属粉复合材料的力学性能和热变形温度研究.精细化工中间体2011;41(5):61-66.
    [163] Renukappaa N, Shivakumar KN, Manjunatha M, et al. Effect of TiO2andoMMT nanofiller on thermal conductivity and heat deflection temperature ofnanodielectric composites; Properties and Applications of Dielectric Materials(ICPADM),2012IEEE10th International Conference,2012.
    [164] Bledzki A, Mamun A, Feldmann M. Polyoxymethylene composites withnatural and cellulose fibres: toughness and heat deflection temperature.Composites Science and Technology2012;72(15):1870-1874.
    [165]鲁圣军,李杨,何敏,等. CaCl2含量对PA1010/CaCl2复合材料结构与性能的影响术.塑料工业2012;39(12):30-33.
    [166]梁曦锋,徐睿杰.杂化碳化硅填充聚丙烯导热复合材料研究.广州化工2011;39(16):69-75.
    [167]张健群,袁吉宝,杨红华,等.阻燃剂加入量对ABS树脂性能的影响.云南化工2012;39(3):72-75.
    [168]周麒麟,张玥,焦雷,等. R-PET短纤维增强PP复合材料的结构与性能.高分子材料科学与工程2011;27(5):43-46.
    [169]陈元武,导热聚苯硫醚复合材料的研究:[硕士学位论文],广州:华南理工大学;2011.
    [170] Guoqing Z, Yanping X, Hui W, et al. A percolation model of thermalconductivity for filled polymer composites. Journal of Composite Materials2009;44(8):963-970.
    [171] Yu SZ, Hing P, Hu X. Thermal conductivity of polystyrene-aluminum nitridecomposite. Composites Part A: Applied Science and Manufacturing2002;33(2):289-292.
    [172] Dey TK, Tripathi M. Thermal properties of silicon powder filled high-densitypolyethylene composites. Thermochimica Acta2010;502(1-2):35-42.
    [173] Tu ST. Numerical simulation of saturation behavior of physical properties incomposites with randomly distributed second-phase. Journal of CompositeMaterials2005;39(7):617-631.
    [174] Cai W, Tu S, Tao G. Thermal conductivity of PTFE composites withthree-dimensional randomly distributed fillers. Journal of ThermoplasticComposite Materials2005;18(3):241-253.
    [175] Mishra D, Mohapatra L, Satapathy A, et al. Determination of thermalconductivity of polymer composites filled with solid glass beads; InternationalConference on Advancement in Polymeric Materials, Chennai,2011.
    [176]焦文文,张娟,康国政,等.基于RSA方法的颗粒增强金属基复合材料棘轮行为的数值模拟.复合材料:创新与可持续发展(下册)2010;776-780.
    [177] Hu M, Yu D, Wei J. Thermal conductivity determination of small polymersamples by differential scanning calorimetry. Polymer Testing2007;26(3):333-337.
    [178] Sun LW, Yu J. Comparative study of thermally conductive fillers in underfillfor the electronic components. Diamond and Related Materials2005;14(10):1647-1653.
    [179] Svoboda Z, Kubr M. Numerical simulation of heat transfer through hollowbricks in the vertical direction. Journal of Building Physics2010;34(4):325-350.
    [180]杜茂平,魏伯荣,宫大军,等.导热绝缘聚乙烯材料的研究.塑料2007;36(6):32-35.
    [181] Raman C, Meneghetti P. Boron nitride finds new applications inthermoplastic compounds. Plastics, Additives and Compounding2008;10(3):26-29,31.
    [182] Li Z, Chen H, Zhu Z, et al. Study on thermally conductive ESBRvulcanizates. Polymer Bulletin2011;67(6):1091-1104.
    [183] Li S, Qi S, Liu N, et al. Study on thermal conductive BN/Novolac resincomposites. Thermochimica Acta2011;523(1-2):111-115.
    [184]解挺,林子钧,陈刚,等. Cu粉含量对PTFE基复合材料导热性能影响的数值分析.金属功能材料2010;17(2):52-56.
    [185]汪雷,材料与结构的传热性能优化设计:[硕士学位论文],西安:西北工业大学;2006.
    [186]邱玉琳,梁基照. LDPE/石墨复合材料导热系数模拟与实测值的比较.塑料科技2009;37(8):38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700