光纤动态应变传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自光纤传感器问世以来,由于其具有高可靠性、抗腐蚀、不受电磁干扰、复用能力强、传输损耗低、传输距离长等传统电式传感器无法比拟的优点而备受关注,成为近几十年发展最快的传感器技术之一。相对于其它光纤传感器而言,光纤珐珀传感器在体积、分辨率、精度、动态范围以及实现方式等方面优势明显,是发展最为成熟、应用最为广泛的光纤传感器之一,在传感领域显示了良好的应用前景。随着研究的深入,人们对光纤珐珀传感器件的微型化、轻量化、耐高温能力、易燃易爆等恶劣环境下可靠性等方面提出了新的迫切要求。光纤珐珀传感器的微型化成为光纤传感领域的国际前沿研究热点之一。
     本课题是国家自然科学重点基金项目(批准号:60537040)“新一代微纳光纤传感器基础研究”的一部分。导师饶云江教授及其团队于2006年在国际上首次提出了一种封闭型微光纤珐珀传感器结构并成功地利用157nm准分子激光器在光纤上实现了该传感器。本课题就是以这种封闭型微光纤珐珀传感器为基础,对它的应变基础特性进行实验研究并探索其应用。主要工作和成果如下:
     I.概述了157nm准分子激光微加工技术和基于该技术制作的封闭型微光纤珐珀传感器。研究了反射率对光纤珐珀传感器的反射信号强度以及干涉条纹对比度的影响。提出了结合镀膜和157nm准分子激光微加工技术的封闭型光纤珐珀传感器制作方法,经实验验证,基于此方法制作的传感器具有反射功率高、对比度强等优点。
     II.研究了该封闭型微光纤珀传感器在常温下的应变特性以及温度特性。研究结果表明,这种新结构的微光纤珐珀传感器具有良好的线性应变传感特性(线性系数达0.9992)和温度不敏感性(灵敏度为0.001nm/℃),可望用于制作常规应变传感器,应用于健康监测领域。
     III.研究了实时应变传感器系统的实现方法,设计了一套光源,采用双光路干涉强度自补偿方法,实现了微光纤珐珀传感器应变信号的解调。
Ever since the appreance of fiber sensor, it has become a fastest developing industry of fiber passive device and aroused researchers’wide concern due to its high realibility, immunity to electromagnetic interference, capacity of multiplexing, low attenuation and long distance transmission. Among various fiber sensors, fiber Fabry-Perot (F-P) interferometer is one of the most mature fiber sensors, widely used in a large number of applications, and it will have a wonderful prospect in sensing field. As significant efforts been exerted to fabricate small, light, and high-temperature-resistant sensors and sensors which could work in flammable environment, the microstructure sensor has become one of the hot research spots.
     A novel self-closed micro-fiber F-P sensor was proposed by our project team under the guidance of Pro. Yunjiang Rao in 2006, and was successfully fabricated by a 157nm excimer laser on the end face of fiber. This dissertation is based on the self-closed fiber F-P sensor, its basic strain property was studied and its applications were explored. The main work and accomplishments were as follows
     1. The 157nm excimer laser micro-machining technique and the process of fabricating self-closed micro-fiber F-P sensor were described. Computer simulation indicated that the signal quality could be improved by increasing the reflectivity of fiber ends in the F-P cavity. This thesis presents a self-enclosed micro extrinsic fiber-optic Fabry- Pérot Interferometric (MEFPI) sensor, fabricated by laser micro-machining a hole on the end surface of a single-mode pure silica fiber and then coated by a Cr film and finally spliced to another coated fiber by using a fusion splicing machine. This type of sensor has the advantages of high reflective signal level, good visibility, insensitive to temperature change, et al. and is quite suitable to precise strain measurement.
     2. The basic strain property of this sensor in the range of 0με-550μεunder room temperature, and temperature property in the range of -20℃-110℃were studied. The experiment result showed the novel structure fiber F-P sensor employed good strain linear response (linearity of 0.9992) and insensitivity to temperature (sensitivity of 13.8pm/℃). It could be used as a regular strain sensor, applied in healthy monitoring of large buildings such as high way, bridge and dam.
     3. Demodulation system for dynamic strain signal was studied, by using the self-calibrated interferometric-intensity-based method (SCIIB). The experimental results showed self-calibration dual channel intensity demodulation system could be used to develop simple, low cost, miniature, reliable and sensitive detecting systems.
引文
[1]周智,欧进萍.土木工程智能健康监测与诊断系统.传感器技术,2001,20(11):1-4
    [2] J. G. Chase, L. R. Barroso, Hwang Kyu-Suk. LMS-based structural health monitoring methods for the ASCE benchmark problem. American Control Conference, 2004, 5:4201-4206
    [3] L. Meyyappan, M. Jose, P. Silva, Fuzzy-neuro system for bridge health monitoring. Fuzzy Information Processing Society, 22nd International Conference of the North American, 2003(6):8-13
    [4] F. Elaldi, An overview for structural Recent Advances in Space Technologies. health monitoring of composites in aerospace applications, Proceed of 2nd International Conference, 2005,6(4):309-314
    [5]黄尚廉,陈伟民,饶云江,朱永,符欲梅.光纤应变传感器及其在结构健康监测中的应用.测控技术,2004,23(5):1-4
    [6]肖斌,高振玲.从应变计现状看电阻式传感器的前景.华北航天工业学院学报.2000,10(2):21-23
    [7]孙建民,杨清梅.传感器技术.北京:清华大学出版社,北京交通大学出版社,2005
    [8]古明,徐郁峰.差动式传感器在大跨度混凝土斜拉桥应变及温度测试中的应用.广东公路交通,2002,3:15-18
    [9]李少慧,宁雅农等.光纤传感器.武汉:华中理工大学出版社,1997
    [10]靳伟,阮双深等.光纤传感技术新进展.北京:科学出版社,2005
    [11] M. D. Todd, G. A. Johnson, B. A. Althouse, S.T.Vohra. Flexural Beam-Based Fiber Bragg Grating Accelerometers. IEEE Photonics Technology Letters, 1998,10(11): 1605-1607
    [12] Andrew J. Willshire, Pawel Niewczas, Lukasz Dziuda, et al. Dynamic Strain Measurement Using an Extrinsic Fabry-Perot Interferometric Sensor and an Arrayed Waveguide Grating Device. IEEE Transactions On Instrumentation And Measurement,2004,53(1): 4-9
    [13] J. S. Sirkis, T. A. Berkoff, R. T. Jones, et al. In-Line Fiber Etalon (ILFE) Strain Sensor Fiber Optic, J. Lightwave Technol.1995,13(7): 1256-1263
    [14] I.Bennion, J. A.R.Williams, L.Zhang, K.Sugden, et al. UV-written in fiber Bragg gratings. Opt. Quantum Electron, 1996, 28: 93-135
    [15] RaoYunjiang. In-fiber Bragg grating sensors. Mears Sci & Technol, 1997, 8 (2): 355-375
    [16] Y. J. Rao. Fiber Bragg grating sensors: principles and applications, in: K. T. V. Grattan, B. T. Meggitt(Eds.), Optical Fiber Sensor Technology, 1998. 2:355-389
    [17] M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin. Thermally-compensated bending gauge using surface-mounted fiber gratings. Int. J. Optoelectron. 1994, 9: 281-283
    [18] M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin. Disrimination between strain and temperature effects using dual-wavelength fiber grating sensors. Electron. Lett. 1994, 30 (13): 1085-1087
    [19] R. L. Idriss, M. B. Kodindouma, et al. Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges. Smart Mater. Struct. 1998, 27 (7): 209-216
    [20] Froggatt M., Moore J. Distributed measurement of static strain in optical fiber with multiple Bragg gratings at nominally equal wave-lengths. Applied Optics, 1998, 37(10):1741-1746
    [21] Y. J.Rao, et al. Characteristics of novel long-period fiber grating written by focused high-frequency CO2 laser pulses. Asia-Pacific Optical and Wireless Communication, Proc.SPIE, 2001, 4581: 327-333
    [22] Y. J.Rao, Y. P. Wang, Z. L.Ran, et al. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. Lightwave Technology. 2003, 21 (5): 1320-1327
    [23] Y. J. Rao, T. Zhu, Z. L. Ran, Y. P. Wang, J. Jiang, A. Z. Hu. Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication. Optics Communications, 2004, 229 (1): 209-221
    [24] Y. J. Rao, Y. P. Wang, T. Zhu, Z.L.Ran, X.K.Zeng. Simultaneous measurement of transverse load and temperature using a single long-period fiber grating element. Chinese Physics Letters, 2003, 20 (1): 72-75
    [25]梁铨廷.物理光学.机械出版社,1981
    [26] C. E. Lee, H. F. Taylor. Interferometric optical fiber sensors using internal mirrors. Electronics Letters, l988, 24 (4): 193-194
    [27] V. Bhatia, K. A. Murphy et al. Recent developments in optical-fiber-based extrinsic Fabry-Perot interferometric strain sensing technology. Smat Mater. Struct, 1995, 24 (4): 246-251
    [28] C. E. Lee, W. N. Gibler, R. A. Tkins, H. F. Talyor. In-Line Fiber Fabry-Perot Interferometer with High-Reflectance Internal Mirrors. Journal of Lightwave Technology, 1992, 10 (10): 1376-1379
    [29] C. E. Lee, H. F. Taylor. Fiber-Optic Fabry-Perot Temperature Sensor Using a Low-Coherence Light Source. Journal of Lightwave Technology, 1991, 9 (1): 129-134
    [30] P. Choque, F. Juneau, J. Bessette. New generation of Fabry-Perot fiber optic sensors for monitoring of structures. Proceedings of. SPIE, 2000, 3986: 418-426
    [31] L. C. Guanderson. Fiber optic sensor applications using Fabry-Perot interferometry. Proceedings of SPIE, 1990, 1267: 194-204
    [32] A. Wang, et al. Self-Calibrated Interferometric/Intensity Based Optcal Fiber Sensors. Journal of Lightwave Technology, 2001, 19 (10): 1495-1501
    [33] S. M. Musa. Real-Time Signal Processing and Hardware Development for a Wavelength Modulated Optical Fiber Sensor System. Dissertation of the degree of Doctor of Philosophy to the Faculty of the Virginia Polytechnic Institute and State, 1997
    [34]孙吉勇.基于可调法珀腔解调的光纤法珀应变仪的理论研究.重庆大学(硕士学位论文),2002
    [35] S. A. Meller. Extrinsic Fabry-Perot Interferometer System Using Wavelength Modulated Source. Dissertation of the Master to the Faculty of the Virginia Polytechnic Institute and State University, December, 1996
    [36] D. K. Mynbaev, L. L. Scheiner. Fiber-Optic communications technology.Prentice Hall,2000.
    [37]赵雷,陈伟民,章鹏.光纤法布里-珀罗传感器光纤端面反射率优化.光子学报,2007,36(6):1008-1012
    [38]朱永等.提高光纤F-P应变传感器输出信号质量的方法研究.光子学报,2004,33(5)
    [39]蒋蓁,罗均,谢少荣.微型传感器及其应用.北京,化学工业出版社,2004
    [40] Xiaopei Chen, Fabin Shen, Anbo Wang, Zhuang Wang, Yan Zhang. Novel Fabry-Perot fiber optic sensor with multiple applications. Proc. of SPIE Vol. 5590 111-121
    [41]王维,饶云江,唐庆涛,邓明,朱涛,程光华.飞秒激光加工的微型光纤法布里-珀罗干涉传感器.中国激光,第34卷,第12期,2007,12:1660-1664
    [42]孙晓慧,周常河,余昺鲲.飞秒激光加工最新进展.激光与光电子学进展,2004,41(9):37-45
    [43]楼祺洪.准分子激光及其在微细加工中的应用.电子器件,1994,17(2):13-19
    [44]刘莹,王强,李小兵.准分子激光加工工艺参数优化.南昌大学学报,2005,27(1):1-4
    [45]刘文波.准分子激光加工应用研究.武汉工业大学(硕士学位论文),1997
    [46] K. P. Chen, P. R. Herman, R. Tam and J. Zhang. Rapid long-period grating formation in hydrogen-loaded fibre with 157nm F2-laser radiation. Electronics Letters, 2000, 36 (24): 2000-2001
    [47] V. R. Machavaram, C. J. Tuck, M. C. Teagle, R. A. Badcock, and G. F. Fernando, Laser micro-machined and acid-etched Fabry-Perot cavities in silica fibres, Proc. of SPIE, 2006, 6038: 1-12
    [48]潘凯,吴世法,孙伟等,热拉伸和化学腐蚀相结合制备弯曲光纤探针.物理学报,2003,52(05):1190-06
    [49] Zhang Xianda. Modern Signal Processing. Beijing: Tsinghua University Press, 2002. 65-151
    [50] Y. J. Rao, X. J. Wang, T. Zhu, et al. Demodulation algorithm for frequency-division- multiplexed fiber-optic Fizeau strain sensor networks. Acta Optica Sinica, 2006, 26 (7): 997-1000
    [51] Yunjiang Rao. Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors. Optical Fiber Technology, 2006, (12) :227~237
    [52] V. Bhatia, M. B. Sen, K. A. Murphy, and R.O. Claus,“Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurement,”Electron. Lett., 32, 247-249 (1996)
    [53] Anbo Wang,et al.Self-calibrating Optical fiber Pressure, srtain and temperature sensors. Contniuation of U.S.Patent application Ser.No.08/904.315,filed,Jun,31,1997
    [54] H.Xiao, P.G.Duncan, J.Deng, et al.Thin silica diaphragm-based SCIIB fiber optic acoustic sensors. Part of SPIE Conference on Harsh Environment Sensors,SPIE 1999 Vol.3852,:36-45
    [55] Anbo Wang,Hai Xiao,J.Wang,et al. Self-calibrated interferometric-intensity-based optical fiber sensors. Journal of lightwave technology, 2001, Vol.19, No.10:1495-1501
    [56]孙军强,黄德修,李再光.掺铒光纤放大器的最佳光纤长度和增益特性.光通信技术,1994,18(1):26-30
    [57]郭玉彬,菊池和朗.基于光纤Bragg光栅的掺铒光纤激光器.中国激光,2000,27(7):521-525.
    [58] C Randy Grles, Emmanuel Desurvire. Modeling Erbrum-Doped Fiber Amplifiers. Journal of Lightwave Technology,1991,9(2):271-283
    [59] B. Pedersen, A. Bjarklev, J. H. Povlsen, et al.The design of erbrum-doped fiber amplifiers. Lightwave Technology,1991,9(9):1105-1112
    [60] Rajiv Ramaswami,Kumar N Sivarajan.Optical Networks.BeiJing:China Machine Press, 2004 ,101-110
    [61]张宝富,谭笑,蒋慧娟.光纤通信系统原理与实验教程.北京:电子工业出版社,2003,43-44
    [62]原荣.光纤通信.北京:电子工业出版社,2002,290-330
    [63]杨杞.光纤法布里-珀罗应变传感器的研究.大连理工大学(硕士学位论文),2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700