烯(炔)基型双子座季铵盐的合成及其在酸性电镀镍上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光亮镀镍作为一种表面处理技术广泛地应用于五金电镀、电铸以及PCB线路板等领域。为获得光亮、整平的镍镀层,通常需要在瓦特液中加入光亮剂。光亮剂可以分为初级光亮剂、次级光亮剂和辅助光亮剂。
     本文首先合成了(E)-1,4-二(溴化-2,4-二甲基吡啶)-2-丁烯(1b)和(E)-1,4-二(溴化三乙基铵)-2-丁烯(1e)等13个可用作次级光亮剂的烯(炔)型双子座季铵盐,通过氢谱和碳谱表征了其结构。
     通过赫尔槽、扫描电镜、测厚仪、轮廓仪、螺旋应力仪、电化学工作站等测试手段研究了1b和1e等8种双子座季铵盐对镀层亮度、微观形貌、电沉积过程、镀液分散能力、覆盖能力及整平能力等的影响。其中,1b的综合性能是较好的。
     赫尔槽实验结果表明,镀液中添加微量的1b等整平剂,即可得到晶面平整的镀层,而极化曲线和循环伏安曲线的结果也从电化学角度支持了这一结论。亮度和内应力结果说明初级光亮剂糖精和1b等吡啶类双子座季铵盐的协同作用;分散能力的结果则表明了走位剂烯丙基磺酸钠和1e等烷基类双子座季铵盐的协同作用。
     极化曲线不但可以研究光亮剂的阴极行为,还能用来筛选最佳浓度范围,并且它筛选出的结果与正交试验的结果是吻合的。
     此外,还分别以1b等8种双子座季铵盐为基础,辅之以其它5种商品添加剂,运用正交分析方法筛选出了8例达到商品添加剂水平的光亮剂配方,经过对比后发现1b配方的综合性能最佳。
As a surface treatment, bright nickel-plating has widely been used in metal plating, electroforming, PCB circuit boards and other fields. Brightener is usually added into Watts bath for the acquisition of bright, leveling nickel coating. Brightener can be divided into three categories, including primary, secondary and auxiliary brightener.
     To begin with,14 quaternary ammonium Geminis with double (triple) bond were synthesized and characterized their structures by H1NMR and C13NMR in this thesis. These Geminis can be used as the secondary brightener. lb (E)-1,1'-(but-2-ene-1,4-diyl) bis(2,4-dimethylpyridinium) and le (E)-1,1'-(but-2-ene-l,4-diyl) bis (triethylammonium) are the representatives of these Geminis.
     Then, the effects of these Geminis above on the coatings'brightness, morphology, electrodeposition, and the bath's throwing, coverage, leveling power were studied by the Hull cell experiments, color separations, scanning electron microscopy, thickness gauge, profilometer, strain gauge, electrochemical workstation and other methods.lb has better overall performance than the other 7 brighteners.
     Furthermore, Hull cell test results showed that a flat crystal-surface could be obtained in the solutions with small amount of leveling additives like lb. Results of the polarization curves and cyclic voltammetry curves also supported this conclusion in the electrochemical view. In addition, the brightness and internal stress results gave evidence to the synergies of primary brightener such as saccharin and pyridine Geminis like 1b. Meanwhile, the throwing power results indicated the synergies between sodium allyl(a example of Walking Agent) and alkyl Geminis like le.
     Moreover, Brighteners'polarization on the cathode not only can be used to research the agents'cathode behaviors, but also can help to select the suitable agent concentrations. There is a coincidence between these concentrations with the orthogonal result.
     Finally,8 brightener formulas were optimized by orthogonal analysis. Every formula contained one Gemini and 5 other commercial additives. The formula containing lb was the best according to their overall performances.
引文
[1]丰志文.硫酸盐镀镍体系的研究[J].电镀与涂饰,2002,21(1):46-50.
    [2]沈品华.我国电镀行业主要镀种世纪回眸和现状[J].电镀与涂饰,2002,21(1):60-65.
    [3]封万起,刘淑兰.定向反射镜芯模电铸中的特殊性[J].2002,24(5):33-36.
    [4]覃奇贤,封万起.新型电铸镍电解液的研制[J].电镀与精饰,2002,24(5):13-16.
    [5]毛岩鹏.光亮镀镍液中有机物去除和镀镍漂洗废水的处理研究[硕士].山东大学,2007.
    [6]J. K. Dennis, T. E. Such. Nickel and Chromium Plating [M]. Woodhead Publishing,1993.
    [7]胡承刚,陈桧华,曾振欧,等.中间体DEP对镀镍层性能的影响[J].电镀与涂饰,2004,23(4):11-14.
    [8]张允城,胡如南,向荣.电镀手册[M].北京:国防工业出版社,1997.
    [9]高灿柱,鹿玉理.缓冲剂在电镀镍中的作用机理研究[A].中国电子学会电镀专业委员会第七届电镀年会[C].合肥:1998.
    [10]袁诗璞.代镍节镍工艺评述[J].电镀与涂饰,2008,(3):15-18.
    [11]陈正法.现代镀镍光亮剂与中间体浅谈[J].材料保护,2007,40(3):78-79,82.
    [12]王赫莹,李德高.镁及镁合金表面电镀镍工艺的研究[J].表面技术,2004,33(5):48-49,54.
    [21]王朝铭.镀镍光亮剂的选择与应用[A].表面工程技术创新研讨会[C].贵阳:2005.121-124.
    [14]李新梅,冯拉俊,李志勇.不同发展阶段的镍、铬电镀光亮剂的特性[J].材料保护,2001,34(12):5-7.
    [15]曹文沥.添加剂及其影响亮镍镀层的因素[J].江西化工,1996,(2):20-24.
    [16]袁诗璞.谈谈第四代镀镍光亮剂[J].电镀与涂饰,2001,20(4):44-50.
    [17]邓靖.镀镍光亮剂工艺研究报告[A].99中国电镀青年学术交流会[C].北京:1999.
    [18]高灿柱,耿佃正.光亮镀镍添加剂Q95的研究[J].山东化工,1998,(2):9-10.
    [19]陈桧华.光亮镀镍中间体DEP的电化学行为研究[硕士].广州:华南理工大学,2001.
    [20]沈品华.第四代镀镍光亮剂研制[J].腐蚀与防护,1999,20(12):539-542.
    [21]方景礼.电镀添加剂理论及应用[M].北京:国防工业出版社,2006.
    [22]M. Adamczyk, S. Rege. Microwave assisted sulfopropylation of N-heterocycles using 1,3-propane sultone[J]. Tetrahedron Letters,1998,39(52):9587-9588.
    [23]钟振声,冯振宁.吡啶烷氧基磺酸盐的简便合成及助镀性能[J].电镀与涂饰,2004,23(4):15-17.
    [24]J. C. Cameron. Acetylenic compositions and nickel plating baths containing same[P]. US4421611.
    [25]易祥榕.镁合金表面电沉积镍的研究[硕十].长沙:湖南大学,2007.
    [26]贺同强.电镀珍珠镍及其添加剂的研究[硕士].天津:天津大学,2006.
    [27]R. Ludwig, N. C. Lee, C. L. Fan, et al. Evaluation of two novel lead-free surface finishes[J]. Soldering & surface mount technology,2002,14(3):19-24.
    [28]刘淑兰,成口.红.室温电镀装饰铬的研究[J].电镀与精饰,1991,13(1):11-15.
    [29]高海丽,曾振欧.不同镀镍光亮剂的电化学性能比较[J].电镀与涂饰,2008,27(11):4-7.
    [30]关基尔斯.全球装饰防护性电镀发展趋势[J].汽车工艺与材料,2003,(7):1-4.
    [31]林其水.PCB电镀铜工艺和常见问题的处理[J].印制电路信息,2009,(4):46-49,62.
    [32]徐军,陈海峰.电镀镍金流程对焊接性能影响因素分析[A].2007中日电子电路秋季大会暨秋季国际PCB技术/信息论坛[C].深圳:2007.
    [33]黄清安.镀镍添加剂的研究现状[J].电镀与涂饰,1996,15(2):33-35.
    [34]K. Pluss, B. R. Demartin. (N-Substituted pyridyl)-alkyl sulfonic acid betaines as electroplating additives[P].US4148797.
    [35]郭崇武,易胜飞,李健强.低浓度滚镀光亮镍研究[J].电镀与精饰,2007,29(6):35-37.
    [36]K. Pluss, De Martin, B. Romano. Electroplating additives[P]. US4067785.
    [37]冯拉俊,樊菊红,雷阿利.电镀镍组合添加剂研究[J].贵金属,2006,27(3):30-34.
    [38]K. Pluss, B. R. De Martin. 1-Carboxymethyl-3-sulfoloweralkyl pyridinium betaine inner salts[P]. US4150232.
    [39]M. Mouanga, L. Ricq, G. Douglade. Influence of coumarin on zinc electrodeposition[J]. Surface and Coatings Technology,2006,201(3-4):762-767.
    [40]舒余德,张昭.电镀添加剂作用机理的发展概况[J].电镀与环保,1999,19(6):5-10.
    [41]郑筱梅.镀镍添加剂结构与平滑能力的相关性研究[J].材料保护,2000,33(3):3-5.
    [42]舒余德,张昭.电镀添加剂作用机理的发展概况[J].电镀与环保,1999,19(6):5-10.
    [43]黄树坤,章志源.1.4—丁炔二醇在镍电极上的吸附特性[J].湖南大学学报:自然科学版,1996,23(6):45-49.
    [44]储荣邦.光亮镀镍中如何正确使用十二烷基硫酸钠[J].电镀与环保,2004,24(5):13-16.
    [45]方战强,方战胜.表面活性剂在工业中的应用[J].日用化学品科学,2000,23(1):35-37.
    [46]李国斌,彭荣华.光亮镀镍液中杂质对镀层性能的影响与去除[J].材料保护,2002,35(8):57.
    [47]洪榕,邝少林.深孔镀镍工艺及其添加剂[J].电镀与涂饰,1996,15(4):2-6,17.
    [48]Gjorgje Stefanovic, S. Mihajlovic, M. Stefanovic. Some Reactions of 2-Butyne-1,4-Diol.[J]. J. Org. Chem.,1953,18(11):1601-1609.
    [49]E. Ryu, Y. Zhao. Efficient Synthesis of Water-Soluble Calixarenes Using Click Chemistry[J]. Org. Lett.,2005,7(6):1035-1037.
    [50]高灿柱.镀镍添加剂的研究进展[A].山东省表面工程协会第四届会员代表大会暨表面处理新技术交流会[C].济南:2004.
    [51]郑莹,高灿柱.炔醇类添加剂在光亮镀镍液中的阳极电化学反应[J].材料保护,2005,38(4):15-17.
    [52]JB/T 7704.1-1995.电镀溶液试验方法赫尔槽试验[S].
    [53]陈桧华.光亮镀镍中间体DEP的电化学行为研究[硕十].广州:华南理工大学,2001.
    [54]C. Nanev, L. Mirkova, S. Rashkov. Interferometric investigation of the kinetics of the levelling process during bright electroplating[J]. Electrodeposition and Surface Treatment,1975,34(4):471-482.
    [55]汀玉祥,周苏闽,潘成.Ni-P化学镀层对工件表面粗糙度的影响[J].表面技术,2007,36(3):76-77.
    [56]QB/T 3823-1999.轻工产品金属镀层的孔隙率测试方法[S].
    [57]卢旭东,邵忠财.化学镀Ni-P合金镀层孔隙率的影响因素[J].电镀与精饰,2007,29(6):1-3,19.
    [58]洪波.电沉积铜薄膜中织构与内应力的研究[博士].上海:上海交通大学,2008.
    [59]Z. Abdel-Hamid. Improving the throwing power of nickel electroplating baths[J]. Materials Chemistry and Physics,1998,53(3):235-238.
    [60]覃奇贤,刘淑兰.电镀液的分散能力和覆盖能力(Ⅰ)[J].电镀与精饰,2008,30(8):25-28.
    [61]JB/T 7704.6-1995.电镀溶液试验方法极化曲线测定[S].
    [62]覃奇贤,刘淑兰.分散能力和覆盖能力(Ⅱ)(续完)[J].电镀与精饰,2008,30(9):31-34.
    [63]黄丹峰.室温熔盐中锌电化学沉积及其成核规律的研究[硕士].新乡市:河南师范大学,2006.
    [64]袁诗璞.第十四讲——镀层的内应力与脆性[J].电镀与涂饰,2009,28(10):40-44.
    [65]何正平.高整平、高光亮、高深镀能力—镍光亮剂N-180[A].材料保护.第九届全国电镀与精饰学术年会[C].材料保护杂志社,2006.221-236.
    [66]Giuseppe Bellucci, Giancarlo Berti, Roberto Bianchini. Competing mechanistic pathways in the bromination of 1,3-butadiene with molecular bromine, pyridine-bromine complex, and tribromide ion[J]. J. Org. Chem.,46(11):2315-2323.
    [67]R. Gleiter, R. Merger, B. Nuber. Skipped Cyclic Ene- and Dienediynes.1. Synthesis, Spectroscopic Properties, and Reactions of a New Hydrocarbon Ring Family[J]. J. Am. Chem. Soc.,1992,114(23): 8921-8927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700