珩磨气动测量系统中磨头测量元件优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于“高档数控机床与基础制造装备”科技重大专项,主要研究高档数控珩磨机气动测量系统中磨头测量元件优化设计,通过对气动测量系统的静态实验研究和仿真分析,特别是通过气动测量主测喷嘴参数的优化设计,使气动测量装置具有相适应的测量范围和灵敏度,从而具有较大的实用性,并最终应用于高档数控珩磨机床的研究。
     传统气动量仪的参数设计主要采用经验估计,实验比对的方法。通过对空气动力学和流体力学的理论研究,和对气动测量系统的误差分析和传递函数的研究,建立气动量仪参数设计的理论模型。并通过计算机模拟仿真进一步优化气动量仪的设计参数,在理论上对气动测量系统的设计给出指导,然后通过实验验证,使气动测量能更好地应用于机械及各行业。
     在课题研究阶段,主要通过理论研究与仿真实验相结合的方法,通过对珩磨气动测量和气体动力学的研究,分析研究了差压式气动测量系统的特性,建立珩磨气动测量系统数学模型,研究差压式气动量仪在不同的工作状态,气体的流动状态(临界状态、亚临界状态)变化规律,及对应的压力—间隙函数关系,为研究珩磨气动测量和实验条件下的测量精度提供了有力的理论依据;分析了测量系统气阻、气容和气感与测量精度之间的关系,为旋转密封装置内腔设计,气路管道长度、内径设计提供依据;并研究了护板外圆与被加工孔壁之间的间隙以及喷嘴下沉量与护板包络圆直径对气动测量稳定性的影响,确定针对一定尺寸的孔进行磨头设计时,护板外圆直径、喷嘴下沉量等参数的设计原则。
     此外,利用流体仿真软件FLUENT对理论结果进行了验证,优化了差压式气动测量系统主、测量喷嘴的结构、尺寸参数并分析了气体流场形式、测量范围、测量精度之间的关系,提出测量元件设计原则;研究了测量压力与测量精度之间的关系,尝试建立不同压力下p s曲线族,并分析压力对曲线线性段位置的影响,提出根据珩磨加工余量和工件尺寸确定测量系统最佳压力的基本原则。
This topic comes from “high-end CNC machine tools and basic manufacturingequipment” major projects of science and technology, mainly high-end CNC honingmachine, the wheel head component of pneumatic measuring measurement systemoptimization design, through the static experiment and simulation of pneumaticmeasurement system, through pneumatic measurement parameter optimization designof the main measuring nozzle, make pneumatic measuring device adapted to themeasurement range and sensitivity, which have greater practicality, and ultimatelyused in high-end CNC honing machine.
     The traditional pneumatic measuring the parameters of design, using the methodof experience in estimation and experimental comparison. Theoretical research onthe aerodynamics and hydrodynamics, and pneumatic measurement system erroranalysis and study of the transfer function, to establish a theoretical model of thedesign of pneumatic measuring parameters. And by computer simulation to furtheroptimize the design parameters of the pneumatic measuring instrument, in theory,the design of pneumatic measurement system gives guidance, and then verified byexperiment, make pneumatic measurement can be better used in machinery and otherindustries.
     In the research stage, mainly the method of combining theoretical studies andsimulation experiments, through research of honing pneumatic measurement and gasdynamics, analysis of the characteristics of the differential pressure pneumaticmeasurement system to establish mathematical model honing pneumatic measurementsystem, research differential pressure pneumatic measuring in the different workingconditions, the gas flow state (critical state, sub critical state) variation, and thecorresponding pressure-the gap function relationship, for study honing pneumaticmeasurement and the measurement accuracy of the experimental conditions providestrong theoretical basis; the relationship between air resistance, the gas content andgas sense and measurement accuracy of the measuring system, design for cavity ofrotary seals, pneumatic pipe length, diameter; study the clearance of between thecircle and to be machined hole wall and nozzle subsidence guard the stability ofpneumatic measurement to determine the grinding head design for a certain size hole,the outer diameter of the shield, nozzle She parameters such as design principles.
     In addition, use the FLUENT of flow simulation software validation theoretical results and to optimize the differential pressure pneumatic measuring system thestructure of the main measurement nozzle, the size parameters, and analysis of the gasflow field in the form of the relationship between the measurement range and themeasurement accuracy, measuring element design principles is proposed; research therelationship between the measurement of pressure and measurement accuracy, try toestablish a family of curves under different pressures, and analyze the impact ofpressure on the location of the curve was linear segment, the basic principles of thebest pressure of measurement system what honing allowance and the size of the workpiece is proposed to determine.
引文
[1]刘玉初.气动量仪.机械工业出版社[M],1991.
    [2]杨燕勤,安志强,经树栋.进出口压力对喷射器性能影响的研究[J].矿山机械,2004(12):11-14.
    [3]何枫,姚朝晖,谢峻石.三维亚声速冲击射流流场的数值模拟[J].推进技术,2002,2(1):15-18.
    [4]刘军,王广林,潘旭东.滑阀内孔圆柱度误差气动测量系统的研究[J].控制与检测,2010,31(1):53-55.
    [5]邓善熙,赵前程.高精度球面的气动测量[J].工具技术,1998,32(7):37-39.
    [6]王凤伟,张辉,邓善熙等.微纳米级差压式气针传感器的研制[J].仪器仪表学报,2009,30(2):416-420.
    [7]赵帅,孙宝元,黄爱芹.基于FLUENT的喷嘴挡板机构的仿真实验[J].机床与液压,2006(2):189-191.
    [8]陈霞.气动量仪的研究[D].硕士学位论文,合肥:合肥工业大学,1999,1-3.
    [9]朱庆宝.一种新型智能气动测微仪的研究[J].仪器仪表学报,2000,21(2):191-193.
    [10]杨洪涛,吴天凤.智能气动测量系统的研究[J].煤矿机械,2003(2):21-23.
    [11]刘子香.精密气动测量系统的研究[D].硕士学位论文,武汉:武汉理工大学,2001,12-17.
    [12] Jang,J.S,Ji,S.W,Kang,B.S.Study on the measurement method of leakageflow-rate for pneumatic driving apparatus[C].2006SICE-ICASE InternationalJoint Conference,2006,4116-4120.
    [13] Zhang Hui,Chen Shan,Deng Shanxi,Wang Huiqing.Ultra-precision air-pin sensorand its dynamic characteristic research[C].Proceedings of the41st SICE AnnualConference,Vol.32,No.5,2002,2150-2155.
    [14] Wang,E.L.,Yiqian Wu,Talke,F.E...Tape asperity compliance measurement usinga pneumatic method[J].Digital Object Identifier,Vol.32,No.5,1996,3732-3734.
    [15]赵前程等.用于尺寸测量的气针式传感器初探[J].仪器仪表与传感器,No.5,1999,4-6.
    [16]朱正德.自动测量技术在珩磨中的应用[J].江苏机械制造与自动化,1998(4):17-22.
    [17]刘京国.气动量仪静特性曲线及其应用分析[J].太原科技,1997(1),19-21.
    [18]刘立伟,王道顺,李世全.数字化气动测量技术的研究与应用[J].液压气动与密封,2003(3):26-27.
    [19]王涛,彭光正,香川利春.小口径气动元件流量特性测量及合成方法[J].机械工程学报,2009,45(6):290-297.
    [20]陆馨盛,周洪编著.气动自动化系统的优化设计[M].上海科学技术文献出版社,2000.
    [21]唐海勇.基于气动测量的球径球度测量系统研究[D].硕士学位论文,合肥:合肥工业大学,2007,8-10.
    [22] Jang,J.S,Ji,S.W,and so on B.S.Study on the measurement method of leakageflow-rate for pneumatic driving apparatus[C].2006SICE-ICASE InternationalJoint Conference,2006,4116-4120.
    [23] Shanxi Deng.New Development to the Pneumatic Measurement Technic[C].1International Symposium on Instrumentation Science and Technology.Luoyang,China.1999.
    [24]刘旭葵,高凯,杨良明等.发动机缸孔在线气动测量系统[J].机械制造,2004,42(482):66-67.
    [25]邵向东,张勇,王广林等.回归分析法在气动测量中的应用[J].机械工程师,2002(9):50-52.
    [26]王慧清.高精度的中、小量程气动量仪的研究[D].硕士学位论文,合肥:合肥工业大学,2001,23-25.
    [27]王世清,朱林等.深孔加工技术[M].西北工业大学出版社,2003.
    [28]邓善熙,赵前程.高精度球面的气动测量[J].工具技术,1998,32(7):37-39.
    [29]李英新.楔式单闸板阀门锥度的气动测量系统研究[D],32-36.硕士学位论文,合肥:合肥工业大学,2009.
    [30]谭天.气动测量的应用与发展[J].世界制造技术与装备市场,1999(1),43-45.
    [31]陆馨盛,周洪编著.气动自动化系统的优化设计[M].上海:上海科学技术文献出版社,2000.
    [32]赵玉珊.气动测量技术在轮对尺寸自动测量机中的应用[J].液压与气动,2006(6)41-42.
    [33]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [34]刘志敏,叶怀储.气动量仪不确定度分析[J].计量与测试技术,2009,36(6):69-70.
    [35]倪勇.气动量仪的参数优化设计[D].硕士学位论文,合肥:合肥工业大学,2009,36-42.
    [36] Wang,E.L.,Yiqian Wu,Talke,F.E..Tape asperity compliance measurement usinga pneumatic method [J].Digital Object Identifier,Vol.32,No.5,1996,3732-3734.
    [37] Jeffery D.Flamm.Experimental Study of a Nozzle with Fluidic Injection for YawThrust-Vector Control [J].AIAA,1998,98-3255.
    [38] Shun Ji ENOMOTO, Roy YANAGI and Makoto SASAKI.Interal Flow Field andMass Rate of2DCD Ejector Nozzles [J].AIAA,1998,98-3157.
    [39]王林翔,阮晓东,赵长春等.复杂流道内的流场计算及其可视化研究[J].中国机械工程,1991(5).
    [40] Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning.A: Addison Wesley Reading.1989
    [41]牛贾瑞,杨慕升.零件内孔的高精度测量方法应用[J].山东理工大学学报,2009,23(3):29-35.
    [42]吴天凤,杨洪涛.基于气动测量原理的零件自动选配系统[J].工具技术,2007,41(1):101-104.
    [43] Sang-Hyena Lee and Tohru Mitani.Reactive Flow in Scramjet ExternalNozzle[J].AIAA,1999,99-0616.
    [44] D.Akihisa,G.Masuya.Effects of Integration of Scramjet into Airframe on EnginePerformance and Payload[J].Journal of Propulsion and Power,Vol.18,No.5,2002,1026-1032.
    [45]张克危.流体机械原理[M].北京:机械工业出版社,2000.
    [46] Liu,J., Wang,G.L,Xu, N.Study on automatic measurement of valve orificecharacteristic based on pneumatic flow method[J].Key Engineering materials,vol.392-394,2009,240-244.
    [47]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2005.
    [48]陈红玲,张银喜,郭燕莹.粘结磁性磨料的研究[J].太原理工大学学报,2001,32(5):533-535.
    [49]陈名海,刘宁,许育东.金属/陶瓷润湿性的研究现状[J].硬质合金,2002,19(4):199-205.
    [50] Mellott,J.Technological improvements in wells drilled with a pneumaticfluid[C].Proceedings of the2006IADC/SPE Drilling Conference,2006,1097-1103.
    [51] Zhang Hui,Chen Shan,Deng Shanxi.Ultra-precision air-pinsensor and itsdynamic characteristic research[C].Proceedings of the41st SICE AnnualConference,Vol.32,No.5,2002,2150-2155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700