CdTe量子点对人正常肝细胞HL-7702的细胞毒性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点由于其具有独特的光学特性,在离体细胞标记、活体细胞成像、细胞结构与受体标记、免疫荧光标记、活体动物荧光显微成像和寻找药物靶点等生物医药领域具有广阔的应用前景。随着量子点的应用,人体暴露机会日益增加,其安全性问题也日益受到关注。
     本研究以人正常肝细胞HL-7702为模型,研究TGA包覆的CdTe量子点对HL-7702细胞的细胞毒性。采用MTT法检测CdTe量子点对细胞增殖的影响;单细胞凝胶电泳和琼脂糖凝胶电泳检测CdTe量子点对细胞DNA损伤情况;PI单染法检测CdTe量子点对细胞周期的影响;AO/EB双荧光染色法和AnnexinⅤ- FITC/PI双染流式细胞术检测CdTe量子点对细胞凋亡的影响。结果表明:CdTe量子点可抑制HL-7702细胞的增殖,随着作用时间的延长,细胞存活率下降并存在剂量-效应关系;CdTe量子点可引起细胞DNA损伤,随着浓度的增加,DNA损伤率逐渐增高;CdTe量子点可影响细胞周期进程,出现S期和G2/M期阻滞;CdTe量子点可诱导细胞凋亡。
     本研究对探讨CdTe量子点对人正常肝细胞的毒性及其作用机制具有重要理论意义,同时为量子点的安全性评价提供有价值的实验依据。
Quantum dots (QDs) are now becoming widely used in biotechnology and medical applications because of their unique optical properties. Consequently, the professional and public exposure to QDs is supposed to increase dramatically in the coming years. Therefore, QDs are attracting considerable and increasing concern of the public and government worldwide. In this study, we selected human liver HL-7702 cell line as cell model, cytotoxicity of CdTe QDs was measured by MTT assay, DNA damage was detected by SCGE assay and gel electrophoresis, changes of cell cycle were observed by flow cytometry after PI staining, cell apoptosis was examined by AO/EB double fluorescent dye staining and AnnexinⅤ-FITC/PI dying methods. The results of this study were shown as follow:
     1. Cytotoxicity of HL-7702 cells treated with CdTe QDs
     MTT assays were performed to examine the viability of HL-7702 cells treated with various doses of CdTe QDs (0, 6.25, 12.50, 25.00 and 50.00μg/mL). Our results revealed that CdTe QDs induced a time-dependent increase in cytotoxicity. When HL-7702 cells were exposed to CdTe QDs for 6 h, there were no obvious changes in cell viability compared with control group (P > 0.05). After 12 h of exposure, with the increase of exposure dosage, the survival rate rose first, and then fell. After 24 h of exposure, QDs caused a decrease in cell metabolic activity that was significant at 12.50-50.00μg/mL groups (P < 0.05 or P < 0.001). When HL-7702 cells were exposed to CdTe QDs for 48 h, with the increase of exposure dosage, cell viability significantly decreased (P < 0.001). CdTe QDs could increase cell inhibitory rate to about 55% after been treated with 50μg/mL CdTe QDs for 24 h. And after 48 h of exposure at the same dose, CdTe QDs exerted more toxic effect by decreasing the cell viability to approximately 80%. The results suggest that CdTe QDs had the inhibitory effect on the proliferation of HL-7702 cells.
     2. DNA damage in HL-7702 cells treated with CdTe QDs
     DNA damage was measured by the single cell gel electrophoresis (SCGE). Our results showed that in the comet assay, after 24h of exposure, with the increase of exposure dosage, the rate of DNA damage was significantly increased(P < 0.05), and the length of comet tail was elevated. At the dose of 12.5, 25 and 50μg/mL, CdTe QDs can cause significant DNA damage compared with control group (P < 0.05). It indicated that the rate of DNA damage induced by CdTe QDs was in a dose-dependent manner.
     Gel electrophoresis was used to detect the DNA fragment. After 12 and 24 h of exposure, an obvious and continual tape was seen in agarose gel electrophoresis. When HL-7702 cells were treated with CdTe QDs for 48 h, no tailing tapes were found at both 6.25 and 12.5μg/mL exposure groups in agarose gel electrophoresis. No typical DNA ladder was observed in all groups.
     3. Cell cycle changes of HL-7702 cells treated with CdTe QDs
     Flow cytometry with PI staining was performed to detect the cell cycle changes. We analyzed the cell cycle phases by collecting more than 10 000 cells and classified them into G0/G1, S or G2/M phases of cell cycle. The results showed that as the dosage of CdTe QDs increased, the percentage of G0/G1 phase cells were significantly decreased (P < 0.001), while the percentage of S and G2/M phases cells were significantly increased (P < 0.001), which indicated that CdTe QDs can induce S and G2/M phases arrest in HL7702 cells.
     4. Apoptosis in HL-7702 cells induced by CdTe QDs
     AO/EB double fluorescent dye staining and FCM with AnnexinⅤ-FITC/PI dying methods were performed to examine apoptosis. The results of AO/EB staining showed that distinctive cell apoptosis could be observed by fluorescence microscope after exposure to CdTe QDs. When HL-7702 cells were exposed to 6.25μg/mL CdTe QDs for 24 h, cell apoptotic rate increased to 20%, and there was significant difference compared with control groups (P < 0.001). As the dosage of CdTe QDs increased, cell apoptotic rate only increased slightly and necrotic rate increased significantly.
     The results of flow cytometry showed that when HL-7702 cells were exposed to 6.25μg/mL CdTe QDs for 24 h, cell apoptotic rate increased to 24%, and there was significant difference compared with control groups (P < 0.001). But there was no significantly difference in apoptotic rate between 12.5μg/mL and 50μg/mL CdTe QDs group. In this study, two methods were applied to detect cell apoptosis and both indicated that CdTe QDs could induce apoptosis in HL-7702 cells.
     In conclusion, CdTe QDs could inhibit cell viability, induce DNA damage, cause S and G2/M phases arrest and induce cell apoptosis in HL-7702 cells.
引文
[1]白春礼.纳米科技及其发展前景[J].科学通报, 2001, 46:89-92.
    [2]张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社, 1994.
    [3] HOOD E. Nanotechnology: looking as we leap[J]. Environ Health Perspect, 2004, 112(13): A740-A749.
    [4] HASSAN M H A. Small things and big changes in the developing world[J]. Science, 2005, 309(5731): 65-66.
    [5] SERVICE R F. Nanomaterials show signs of toxicity[J]. Science, 2003, 300(5617): 243.
    [6] DOWLING A, CLIFT R, and GROBERT N. Nanoscience and nanotechnologies: Opportunities and uncertainties[R]. London: The Royal Society & the Royal Academy of Engineering Report, 2004.
    [7] ZHANG Q W, KUSAKA Y, ZHU X Q, et al. Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation[J]. J Occup Health, 2003, 45(1): 23- 30.
    [8] FERIN J. Material properties of MMVFs and their time-depedent failure in lung environments[J]. Inhal Toxic, 2001, 13: 1117-1149.
    [9] OBERDORSTER G, FINKELSTEIN J N, JOHNSTON C, et al.Acute pulmonary effects of ultrafine particles in rats and mice[J]. Res Rep Health Effinst, 2000, 96: 5-74.
    [10]李倩,唐萌,班婷婷,等.不同尺寸Fe2O3纳米粒子的细胞毒性及氧化作用研究[J].中国公共卫生, 2005, 21(5): 589- 591.
    [11] TSUJI J S, MAYNARD A D, HOWARD P C, et al. Forum series: Research Strategies for Safety Evaluation of Nanomaterials, Part IV: Risk Assessment of Nanoparticles[J]. Toxicological Sciences, 2006, 89(1): 42-50.
    [12] OBERDORSTER G, OBERDORSTER E, OBERDORSTER J.Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles[J]. Environ Health Perspect, 2005, 113(7): 823–839.
    [13] BALBUS J M, MAYNARD A D, COLVIN V L, et al. Meeting report: Hazard Assessment for nanoparticles–report from an interdisciplinary workshop[J]. Environ Health Perspect, 2007, 115(11): 1654-1659.
    [14] AUFFAN M, DECOME L, ROSE J, et al. In vitro interactions betweenDMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study[J]. Environ Sci Technol, 2006, 40(14): 4367-4373.
    [15] WANG J X, ZHOU G Q, CHEN C Y, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration[J]. Toxicol Lett, 2007, 168(2): 176-185.
    [16]王国斌,肖勇,陶凯雄,等.纳米级四氧化三铁的药物动力学和组织分布研究[J].中南药学, 2005, 3(1): 5-7.
    [17] DABBOUSI B O, MIKULEC F V, HEINE J R, et al. (CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites[J]. J Phys Chem B, 1997, 101(46): 9463–9475.
    [18] HINES M A, GUYOT-SIONNEST P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals[J]. J Phys Chem, 1996, 100: 468–471.
    [19] BRUCHEZ M J,MORONNE M,GIN P, et a1.Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013- 2016.
    [20] CHAN W C W, NIE S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018.
    [21] GAO X, CUI Y, LEVENSON R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat Biotechnol, 2004, 22(8): 969-976.
    [22] GAO X, YANG L, PETROS J A, et al. In vivo molecular and cellular imaging with quantum dots[J]. Curr Opin Biotechnol, 2005, 16(1): 63- 72.
    [23] CHAN WCW, MAXWELL D J, GAO X H, et al. Luminescent quantum dots for multiplexed biological detection and Imaging[J]. Current Opinion in Biotechnology, 2002, 13(1): 40- 46.
    [24] DAHAN M, LEVI S, LUCCARDINI C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking[J]. Science, 2003, 302(5644): 442-445.
    [25] JAISWAL J K, MATTOUSSI H, MAURO J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates[J]. Nature Biotechnol, 2003, 21: 47–51.
    [26] FISCHER B R, EISHER H J, STOTT N E, et al. Emission intensity dependence and single-exponential behavior in single colloidal quantum dotfluorescence lifetimes[J]. J. Phys. Chem. B, 2004, 108: 143–148.
    [27] LUCCARDINI C , TRIBET C , VIAL F, et al . Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule[J]. Langmuir, 2006, 22 (5): 2304-2310.
    [28] MATTHEAKIS L C, DIAS J M, Choi Y J, et al. Optical coding of mammaliancells using semiconductor quantum dots[J]. Anal Biochem, 2004, 327(2): 200- 208.
    [29] GOLDMAN E R, ANDERSON G P, TRAN PT, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays[J]. Anal Chem, 2002, 74(4): 841 -847.
    [30] SCHROEDTER A , WELTER H, ERITJA R, et al. Biofunctionalization of silica-coated CdTe and gold nanocrytals[J]. Nano Lett, 2002, 2(12): 1363 -1367.
    [31] HOPPE K, GEIDEL E, WELLER H, et al. Covalently bound CdTe nanocrystals[J]. Phys Chem Chem Phys, 2002, 4(10): 1704 -1706.
    [32] CLAPP A R, MEDINTZ I L, MAURO J M, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors[J]. J Am Chemical Society, 2004, 126: 301-310.
    [33] MEDINTZ I L, CLAPP A R, MATTOUSSI H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nat Mater, 2003, 2(9): 630-638.
    [34] WANG S P, MAMEDOVA N, KOTOV N A, et al. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates [J]. Nano Letters, 2002, 2(8): 817-822.
    [35] WU X, LIU H, LIU J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature Biotechnol, 2003, 21: 452.
    [36] LIDKE D S, NAGY P, HEINTZMANN R, et al. Quantum dot ligands provide new insights into erbB /HER receptor mediated signal transduction[J]. Nature Biotechnol, 2004, 22(2): 198 -203.
    [37] AKERMAN M E, CHAN W C, LAAKKONEN P, et al. Nanocrystal targeting in vivo[J] . Proc Natl Acad Sci USA, 2002, 99(20): 12617-12621.
    [38] KIM S, LIM Y T, SOLTESZ E G, et al. Near-infrared fluorescent type IIquantum dots for sentinel lymph node mapping[J]. Nat Biotechnol, 2004, 22(1): 93-97.
    [39] MORGAN N Y, ENGLISH S, CHEN W, et al. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots[J]. Acad Radiol, 2005, 12 (3): 3132-3231.
    [40] GOLDMAN E R, CLAPP A R, ANDERSON G P, et al. Multiplexed toxin analysis using four colors of quantum dot fluorreagents[J]. Anal Chem, 2004, 76 (3): 684-688.
    [41] HAN M Y, GAO X H, SU J Z, NIE S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nature Biotechnol, 2001, 19(7): 631-635.
    [42] BAKALOVA R, OHBA H, ZHELEV Z, et al. Quantum dots as photosensitizers[J]. Nat Biotechnol, 2004, 22 (11): 1360-1361.
    [43] SAMIA A C, CHEN X, BURDA C. Semiconductor quantum dots for photodynamic therapy[J]. J Am Chem Soc, 2003, 125 (51): 15736-15737.
    [44] LOU Y, SAMIA A C S , COWEN J, et al . Evaluation of the photo-induced electron relaxation dynamics of Cu1.8S quantum dots[J]. Phys Chem Chem Phys, 2003, 5 (6): 1091-1095.
    [45] TSAY J M, TRZOSS M, SHI L X, et al. Singlet Qxygen production by peptide-coated quantum dots-photosensitizer conjugates[J]. Am Chem Soc, 2007, 129: 6865-6871.
    [46] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709): 538- 544.
    [47] LOVRIC J, CHO S J, WINNIK F M, et al. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death[J], Chem Biol, 2005, 12(11): 1227-1234.
    [48]殷海荣,唐萌,夏婷,等.量子点(CdTe)诱导小鼠腹腔巨噬细胞凋亡与线粒体膜电位的影响[J].南开大学学报, 2008, 41(3): 5-9.
    [49] CHAN W H, SHIAO N H, LU P Z. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondria-dependent pathways and inhibition of survival signals[J]. Toxicology Letters, 2006, 167: 191-200.
    [50]王丽萍,郑一凡,杨军,等.碲化镉量子点对人脐静脉内皮细胞的细胞毒性和遗传毒性研究.第十届中国科协年会论文集(三)[C].2008.
    [51] LOVRIC J, BAZZI H S, CUIE Y, et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots[J]. J Mol Med, 2005, 83(5): 377-385.
    [52] SHIOHARA A, HOSHINO A, HANAKI K, et al. On the cyto-toxicity caused by quantum dots[J]. Microbiol Immunol, 2004, 48(9): 669-675.
    [53] HOSHINO A, FUJIOKA K, OKU T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification[J]. Nano Lett, 2004, 4(11): 2163-2169.
    [54] GUO G N, LIU W, LIANG J G, et al. Probing the cytotoxicity of CdSe quantum dots with surface modification[J].Mat Lett, 2007, 61(8): 1641-1644.
    [55] SELVAN S T, TAN T T, YING J Y. Robust, non-cytotoxic,silica-coated CdSe quantum dots with efficient photoluminescence[J]. AdvMater, 2005, 17(3): 1620-1625.
    [56] CHANG E, THEKKEK N, YU W W, et al. Evaluation of quantum dot cytotoxicity based on intracellular uptake[J]. Small, 2006, 2(12): 1412-1417.
    [57] CHOI A O, CHO S J, DESBARATS J, et al. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastomacells[J]. Nanobiotechnology, 2007, 5: 1.
    [58] DERFUS A M, CHAN C W, BHATIA S N. Probing the cytotoxicity of semiconductor quantum dots[J]. Nano Lett, 2004, 4(1): 11-18.
    [59] HOSHINO A, HANAKI K I, SUZUKI K, et al. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body[J]. Biochemical and Biophysical Research, 2004, 314: 46-53.
    [60] BALLOU B, LAGERHOLM B C, ERNST L A, et al. Noninvasive imaging of quantum dots in mice[J]. Bioconjugate Chem, 2004, 15(1): 79-86.
    [61] FISCHER H C, LIU L C, PANG K S, CHAN W C W. Pharmacokinetics of nanoscale quantum dots: In vivo distribution, sequestration, and clearance in the rat[J]. Adv Funct Mater, 2007, 16(10): 1299-1305.
    [62] YANG R H, CHANG L W, WU J P, et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment[J]. Environ Health Perspect, 2007, 115(9): 1339-1343.
    [63] CHEN Z, CHEN H, MENG H, et al. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots[J]. Toxicology and Applied Phamacology,2008, 230: 364-371.
    [64] GOPEE N V, ROBERTS D W, WEBB P, et al. Migration of intradermally injected quantum dots to sentinel organs in mice[J].Toxicological Sciences, 2007, 98(1): 249-257.
    [65] ROBE A, PIC E , LASSALLE H P, et al. Quantum dots in axillary lymph node Mapping :biodistribution study in healthy mice[J]. BMC Cancer, 2008, 8: 111.
    [66]柏杉山,李清钊,刘克明,等.硫化镉量子点与常规硫化镉对小鼠遗传毒性的比较研究[J].生态毒理学报, 2008, 3(1): 59-65.
    [67]季雷华,高素莲,张斌.量子点的合成、毒理学及其应用[J].环境化学, 2008, 27(5): 679-683.
    [68] GEYS J, NEMMAR A, VERBEKEN E, et al. Acute toxicity and prothrombotic effects of quantum dots :impact of surface charge[J]. Environ Health Perspect, 2008, 116(12): 1607-1613.
    [69] DUBERTRET B, SKOURIDES P, NORRIS D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles[J]. Science, 2002, 298(5599): 1759-1762.
    [70] ZHANG Y B, CHEN W, ZHANG J, et al. In vitro and in vivo toxicity of CdTe nanoparticles[J]. J Nanosci Nanotechnol, 2007, 7(2): 497-503.
    [71] KIRCHNER C, LIEDL T, KUDERA S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles[J]. Nano Lett, 2005, 5(2): 331-338.
    [72] RYMAN-RASMUSSEN J P, RIVIERE J E, MONTEIRO-RIVIERE NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes[J]. J Invest Dermatol, 2007, 127(1): 143-153.
    [73] HARDMAN R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors[J]. Environ Health Perspect, 2006, 114: 165-172.
    [74]殷海荣,唐萌,夏婷,等.量子点CdTe对RAW264.7细胞凋亡和脂质过氧化水平的影响[J].中国现代医学杂志, 2008, 18(18): 2593-2596.
    [75] GREEN M, HOWMAN E. Semiconductor quantum dots and free radical induced DNA nicking[J]. Chem Commun, 2005, (1): 121-123.
    [76] LIANG J G, HE Z K, ZHANG S S, et al. Study on DNA damage induced by CdSe quantum dots using nucleic acid molecular[J]. Talanta, 2007, 71:1675-1678.
    [77]衡正昌,李蕊,张遵珍.用彗星试验区别凋亡细胞与普通DNA链断裂损伤细胞[J] .卫生研究, 2001, 30 (3): 149.
    [78]姜泊主编.细胞凋亡基础与临床[M].北京:人民军医出版社出版, 1999, 266.
    [79] ROSER S, POOL-ZOBEL B L, RECHKEMMER G. Contribution of apoptosis to responses in the comet assay[J]. Mutat Res, 2001, 497 (12): 169.
    [80] ZHOU B B S, ELIEDGE S J. The DNA damage response: putting checkpoints in perspective[J]. Nature, 2000, 408(6811): 433
    [81] ABRAHAM RT. Cell cycle checkpoint signaling through the ATM and ATP kinases[J]. Genes Dev, 2001, 15 (17): 2177-2196.
    [82] PACHECO, S E , MASHAYEKHI H, JIANG W, et al. DNA damage effects of nanoparticles in breast cancer cells. Proceedings of the American Association for Cancer Research Annual Meeting. 2007, 48: 827.
    [83] ZHANG T T,STILWELL J L, GERION D, et al. Cellular effect of high dosesof silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements[J] .Nano Letters, 2006, 6(4): 800-808.
    [84] CHO S J, MAYSINGER D, JAIN M, et al. Long-term exposure to CdTe quantum dots causes functional impairments in live cells[J]. Langmuir, 2007, 23(4): 1974-1980.
    [85]杨靖辉,常林,唐朝枢.金属硫蛋白-心血管细胞保护剂[J].北京大学学报(医学版), 2002, 34(5): 482-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700