低浓度毒死蜱对胚胎神经前体细胞分裂平面取向的影响及其远期细胞形态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机磷农药毒死蜱(Chlorpyrifos, CPF)的广泛使用引起了神经发育毒性,且从胚胎神经管到出生后神经发育阶段均为易受损期。许多研究报道了CPF对细胞增殖和分化的影响,但很少阐述CPF对神经细胞分裂过程的影响。本文研究低浓度CPF对胚胎神经前体细胞分裂平面取向的影响及其远期细胞形态效应。
     我们将5mg/kg/d CPF通过皮下注射(subcutaneous, sc)暴露于E7.5-11.5天孕鼠,在E12、E14和E16天时,制备胎脑组织石蜡切片在显微镜下测量脑室区(ventricular Zone,VZ)顶端前体细胞(apical progenitor cells, APs)和室下区(subvertricular zone, SVZ)中间前体细胞(intermediate progenitor cells, IPs)分裂平面的角度(即分裂平面与室表面的交角),分别统计水平分裂、倾斜分裂、垂直分裂的细胞数,同时计数脑室表层有丝分裂细胞数和总细胞数量及比例。另外,我们为了评估CPF对脑发育的远期细胞形态效应,观察分析CPF对出生后35天(postnatal days35, PND35)的子代鼠大脑皮层S1区、海马区和纹状体细胞形态的影响。
     实验结果发现,VZ区中APs在皮层发育期主要以垂直分裂为主;相反,在SVZ区中,大多数的IPs以水平分裂为主。在CPF暴露后,E12、E14、E16的APs形态正常,但细胞分裂平面发生了变化,倾斜分裂和水平分裂细胞数增加而垂直分裂细胞数减少。同时有丝分裂细胞数/室表层细胞总数的比率相对稳定。而在SVZ区中,CPF暴露对IPs分裂平面取向的影响较小,其主要的水平分裂无发生明显变化,而其他分裂模式与对照组比较也没有明显改变。我们的结果表明神经发育期暴露CPF后对VZ区APs有丝分裂平面取向具有影响,显示出垂直分裂向水平分裂转换的趋势,也表明了CPF暴露后使细胞有丝分裂由对称分裂向不对称分裂转变;另外,由于有丝分裂细胞与总细胞之间的比率相对稳定,明确了有丝分裂平面取向的改变不是由于有丝分裂细胞数的减少而引起的。
     研究子代鼠脑组织的实验结果发现,在海马区,CA1区平均厚度下降22.37%,CA3区平均厚度下降25.66%,而DG区平均厚度增加24.14%,与对照组比较,差异均有统计学意义(P<0.05);S1区胶质细胞/神经元比值由22.41%上升至34.23%;纹状体区神经元总数下降32.78%在总细胞中比率下降10.13%。这些研究结果证明,在未表现出全身性中毒的亚中毒阈剂量下,CPF在妊娠期的暴露,能引起子代鼠脑结构的细微损伤。
The widely used organophosphate insecticide, chlorpyrifos (CPF) has elicited developmental neurotoxicity, and vulnerable period arrangs from the neural tube stage to nuring stage. Many studies reported the toxicity effects of CPF exposure on cell proliferation and differentiation. However, there still lacks research works on the cell division procession. The present study designed to explore the effects of CPF exposure on cleavage plane orientation and its related long-term effects on brain morphology.
     We administered 5mg/kg of CPF sc daily on embryonic days (E)7.5-11.5. On E12, E14 and E16, we have measured the angles at which apical progenitor cells (APs) undergo cleavage in the ventricular zone (VZ) and intermediate progenitor cells (IPs) undergo cleavage in subventricular zone (S VZ) of the developing cerebrum, we counted respectively the cells number of vertical cleavage, oblique cleavage and horizontal cleavage; In addition, the mitotic/total cells ratio was also been assessed to obtain the whole view of VZ surface. To understand the long-term effects of cells morphology, on postnatal days (PND)35, quantitative morphologic examinations were measured in CA1, CA3, and dentate gyrus regions of the hippocampus, somatosensory cortex and stritum.
     In the experiment, we found that most of cleavage plane orientations are vertical cleavage in the VZ, while most IPs divide with a horizontal orientation in the SVZ. After CPF treatment on E12, E14 and E16, vertical cleavage plane is deduced and obique and horizontal cleavage plane are increased; At the same time, CPF prenatal treatment donot decre ase the VZ mitotic cells number; Furthermore, CPF donot affect the cleavage plane orientation of the IPs in the SVZ at E14 and E16. At all three neurogenesis stages, we observed cleavage orientation shift from vertical to horizontal, implied the effects of CPF to switch the mode of division from symmetric division to asymmetric division, for horizontal orientation is the clear evidence of asymmetric division. The ratio of mitotic cells/total cells was found unchange in VZ surface during whole neurogenesis, which proved the orientation shift not caused by mitotic decreasing.
     The results of CPF prenatal exposure on PND35, selective morphology impairments were observed. In the hippocampus, showing 22.3%,2566% thinning of the CA1 and CA3 layers. The dentate guys is enlarged 24.14%. In the somatosensory cortex, the ratio of glial/neuron is increased from 22.41% to 34.23%. In the striatum, CPF elicited the neuron/total cellular number ratio with fell off 10.13%. Even without obviously system toxicity, subtoxic dosage of CPF prenatal exposure could cause slight impairments of structure on the brain of the offsprings.
引文
[1]夏世钧.农药毒理学[M].化学工业出版社.2008.
    [2]Doherty JD. Screening pestcides for neuropathogenicity[J]. Biomed Biotechnol,2006,2006(3): 1-13.
    [3]Kaiser J.Hormesis:sipping froma poisoned chalice[J].Sciencce,2004,302(5644):376-379.
    [4]EPA.a review of the reference dose and reference concentration processes risk assessment[J]. Risk Assessment Forum Report,2002.
    [5]Colborn T. A case for revisiting the safety of pesticides:a closer look at neurodevelopment[J]. Environ Health Perspect,2006,114(1):10-17.
    [6]Whyatt RM, Barr DB. Measurement of organophosphate metalbolites in postpartum meconium as a potential biomarker of prenatal exposure:a validation study. Environ Health Perspect,2001, 109(4):417-420.
    [7]王京文,徐文,周航,苏一侃.杭州城区蔬菜地农药残留现状与评价[J].农业环境与发展,2009,26(3):83-85.
    [8]张毅.陕西省2007-2008年蔬菜中农药残留污染状况调查[J].口岸卫生控制,2009,14(2):22-27.
    [9]廖义军.广州地区农产品中有机磷农药残留调查[J].生态科学,2009,28(4):352-356.
    [10]CDC. National report onhuman exposure to envirmental chemicals. Atlanta, GA:Centers for Disease Control and Prevention.2001.
    [11]CDC. Second national report on human exposure to envirmental chemicals. NCEH publication no.02-0716 Atlanta, GA:Centers for Disease Control and Prevention. Available: http://www.cdc.gov/exposurereport.2003.
    [12]Davis DL, Ahmed AK. Exposures from indoor spraying of chlorpyrifos pose greater health risks to children than currently estimated[J]. Enviorn Health Perspect,1998,106(6):299-301.
    [13]Simon D, Helliwel S, Robards K. Analytical chemistry of chlorpyrifos and diuron in aquatic ecosystems [J]. Analytica Chimica Acta,1998,360(1-3):1-16.
    [14]王会平,伍一军.毒死蜱的神经毒性作用及机制[J].环境与职业医学,2008,25(3):314-318.
    [15]Slotkin TA. Guidelines for developmental neurotoxicity and their impact on organophosphate pesticides:a personal view from an academic perspective [J]. Neurotoxicology,2004,25(4): 613-640.
    [16]Roy TS, Seidler FJ, Slotkin TA. Morphologic effects of subtoxic chlorpyrifos exposure in developing rat brain:regionally selective alterations in neurons and glia[J]. Brain Res Dev Brain Res,2004,148 (2):197-206.
    [17]Roy TS, Sharma V, Seidler FJ, Slotkin TA. Quantitative morphological assessment reveals neuronal and glial deficits in hippocampus after a brief subtoxic exposure to chlorpyrifos in neonatal rats[J]. Brain Res Dev Brain Res,2005,115 (1):71-80.
    [18]Garcia SJ, Seidler FJ, Slotkin TA. Developmental Neurotoxicity Elicited by Prenatal or Postnatal Chlorpyrifos Exposure:Effects on neurospecific proteins indicate changing vulnerabilities[J]. Environ Health Perspect,2003,111(3):297-303.
    [19]Roy TS, Andrews JE, Seidler FJ, Slotkin TA. Chlorpyrifos elicits mitotic abnormalities and apoptosis in neuroepithelium of culture rat embryos[J]. Teratology,1998,58(2):62-68.
    [20]Aldridge JE, Levin ED, Seidler FJ, Slotkin TA. Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, invloving serotonergic mechanisms and resembling animal models of deprssion. Environ Health Perspect,2005,113 (5):527-531.
    [21]Icenogle LM, Christopher NC, Blackwelder WP,et al. Behavioral alterations in adolescent and adult rats causes by brief subtoxic exposure to chlorpyrifos during neurulation[J]. Neurotoxicol Teratol,2004,26(1):95-101.
    [22]蔡文琴.发育神经生物学[M].科学出版社,2007.
    [23]Takahashi T, Nowakowski RS, Caviness VS.Cell Cycle Parameters and Patterns of Nuclear Movement in the Neocortical Proliferative Zone of the Fetal Mouse[J]. Neuroscience,1993, 73(2):820-833.
    [24]Ueno M, Katayama K,Yamauchi H,et al. Cell cycle progression is required for nuclear migration of neural progenitor cells[J].Brain research,2006,1088(1):57-67.
    [25]Sauer FC. Mitosis in the neural tube[J]. Comp. Neurol.1935,62:377-405.
    [26]Hollyday M. Neurogenesis in the vertebrate neural tube [J]. Int Devl Neuroscience, 2001,19(2):161-173.
    [27]Dehay C, Kennedy H. Cell-cycle control and cortical development [J].Nature Reviews Neuroscience.2007,8(7):438-450.
    [28]金岩.小鼠发育生物学与胚胎实验方法[M].人民卫生出版社,2005.
    [29]Morrison SJ, Kimble J.Asymmetric and symmetric stem-cell divisions in development and cancer[J]. Nature,2006,441(29):1068-1074.
    [30]Ninkovic J, Gotz M. Siganling in Adult Neurogenesis:from Stem cell niche to neuronatl networks[J]. Current opinion in Neurobiology,2007,17(3):338-344.
    [31]Rappaport, R. Cytokinesis in animal cells[J].Int Rev Cytol,1971,31:169-213.
    [32]Wodarz A, Huttner WB.Asymmetric cell division during neurogenesis in Drosophila and vertebrates [J]. Mechanisms of Development,2003,120 (11):1297-1309.
    [33]Gonczy P. Mechanisms of spindle positioning:focus on flies and worms [J]. Trends in Cell Biology,2002,12(7):332-339.
    [34]McCarthy EK, Goldstein B. Asymmetric spindle positioning [J]. Current opinion in cell biology, 2006,18(1):79-85.
    [35]Kaltschmidt JA, Kaltschmidt CM, Davidson NH, et al. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system [J].Nat Cell Biol,2000,2(1):7-12.
    [36]Spana EP, Doe CQ.The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila[J]. Development,1995,121(10):3187-3195.
    [37]Cai Y, Yu F, Lin S, Chia W, Yang X. Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pI asymmetric divisions [J]. Cell,2003,112(1):51-62.
    [38]Fuse N, Hisata K, Katzen AL, Matsuzaki F. Heterotrimericg proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions[J]. Curr Biol,2003,13(11):947-954.
    [39]Albertson R, Doe CQ. Dlg,Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry[J].Nat Cell Biol,2003,5(2):166-170.
    [40]Schober M,Schaefer M,Knoblich JA. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts[J]. Nature,1999,402(6761):548-551.
    [41]Wodarz A, Ramrath A, Kuchinke U, Knust E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts[J].Nature,1999,402(6761):544-547.
    [42]Petronczki M, Knoblich JA. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila[J]. Nat Cell Biol,2001,3(1):43-49.
    [43]Kraut R, Chia W, Jan LY, Jan YN, Knoblich, JA. Role of inscuteable in orienting asymmetric cell divisions in Drosophila[J]. Nature,1996,383(6595):50-55.
    [44]Izumi Y, Ohta N, Itoh-Furuya A, et al. Differential functions of G protein and Buz/aPKC signaling pathways in Drosophila neumblast asymmetric division[J].Cell Biol,2004,164 (5):729-38.
    [45]Yu F, Morin X, Cai Y, Yang X, Chia W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization[J]. Cell,2000,100(4):399-409.
    [46]Nipper RW, Siller KH, Smith NR, Doe CQ, Prehoda KE. Galphai generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts[J]. Proc Natl Acad Sci,2007,104(36):14306-14311.
    [47]Parmentier ML, Woods D, Greig S,et al. Rapsynoid/Partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila[J]. J Neurosci,2000,20(14):RC84.
    [48]Schaefer M, Shevchenko A, Knoblich JA. A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila [J]. Curr Biol,2000,10(7):353-362.
    [49]Schaefer M, Petronczki M, Dorner D, Forte M, Knoblich JA. Heterotrimeric g proteins direct two modes of asymmetric cell division in the Drosophila nervous system [J]. Cell, 2001,107(2):183-194.
    [50]Chenn A, McConnell SK. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis[J]. Cell 1995,82(4):631-641.
    [51]Haydar TF, Ang E Jr, Rakic P.Mitotic spindle rotation and mode of cell division in the developing telencephalon[J]. Proc Natl Acad Sci,2003,100(5):2890-2895.
    [52]Zigman M, Cayouette M, Charalambous C, et al. Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina[J]. Neuron,2005,48(4):539-545.
    [53]Sanada K, Tsai LH.G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors [J]. Cell,2005,122(1):119-131.
    [54]Konno D, Shioi G, Shitamukai A,et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis[J]. Nat Cell Biol,2008,10(1):93-101.
    [55]Kosodo Y, Roper K, Haubensak W, Marzesco AM, Corbeil D, Huttner WB. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells[J]. EMBO,2004,23(11):2314-2324.
    [56]Noctor SC, Martinez-Cerdeno V, Kriegstein AR.Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis [J]. Comp Neurol,2008,508(1):28-44.
    [57]Imai F, Hirai S, Akimoto K,et al. Inactivation of aPKC lambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex[J]. Development,2006,133(9):1735-1744.
    [58]Heins N, Cremisi F, Malatesta P, et al. Emx2 promotes symmetric cell divisions and a multi-potential fate in precursors from the cerebral cortex. Mol Cell Neurosci[J].2001,18, 485-502.
    [59]Costa MR, Wen G, Lepier A, Schroeder T, Gotz M.Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex[J]. Development,2008,135(1): 11-22.
    [60]Shen Q, Zhong R, Jan YN, et al. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development[J],2002, 129(20):4843-4853.
    [61]Chen R, Chang PA, Wu YJ, et al. G protein [3-subunit interacts directly with neuropathy target esterase and forms an active complex[J]. Int Biochem Cell Biol,2007,39:124-132
    [62]班婷婷,常秀丽,周志俊.乐果急性染毒对大鼠海马抑制性神经递质的影响.复旦学报(医学版),2007,34(1):12-16.
    [63]崔红梅,周志俊.有机磷农药对星形胶质细胞的影响[J].国外医学,2008,35(1):10-14.
    [64]檀德宏,彭双清,吴英良,等.克百威预处理对毒死蜱神经细胞毒性的影响[J].环境科学研究,2009,22(7):828-832.
    [65]Slotkin TA, Tate CA, Cousins MM, Seidler FJ. Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlorpyrifos exposure[J]. Brain Res Dev Brain Res,2002,133(2):163-173.
    [66]Howard AS, Bucelli R, Jett DA, Bruun D, Yang D, Lein PJ. Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures [J]. Toxicol Appl Pharmacol,2005, 207(2):112-124.
    [67]Yang D, Howard A, Bruun D, Ajua-Alemanj M, Pickart C, Lein PJ. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase[J].Toxicol Appl Pharmacol,2008,228(1):32-41.
    [68]Lee WJ, Sandler DP, Blair A, Samanic C, Cross AJ, Alavanja MC.Pesticide use and colorectal cancer risk in the Agricultural Health Study[J]. Int J Cancer,2007,121(2):339-346.
    [69]Lee WJ,Colt JS, Heineman EF, McComb R, Weisenburger DD, Lijinsky W, Ward MH. Agricultural pesticide use and risk of glioma in Nebraska,United States[J].Occup Environ Med,2005,62(11):786-792.
    [70]Nomura DK, Durkin KA, Chiang KP, Quistad GB, Cravatt BF, Casida JE. Serine hydrolase KIAA1363:toxicological and structural features with emphasis on organophosphate interactions [J]. Chem Res Toxicol,2006,19(9):1142-1150.
    [71]Huttner WB, Kosodo Y. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system[J]. Curr Opin Cell Biol,2005,17(6):648-657.
    [72]Gotz M, Huttner WB. The cell biology of neurogenesis [J]. Nat Rev Mol Cell Biol,2005,6(10): 777-788.
    [73]Siller KH, Doe CQ. Spindle orientation during asymmetric cell division[J]. Nat Cell Biol,2009, 11(4):365-374.
    [74]Lake BB,Sokol SY.Strabismus regulates asymmetric cell divisions and cell fate determination in the mouse brain[J]. Cell Biol,2009,185(1):59-66.
    [75]Haydar TF, Ang E, Rakic P.Mitotic spindle rotation and mode of cell division in the developing telencephalon[J]. PNAS.2003,100(5):2890-2895
    [76]Miyata T,Kawaguchi A,Saito K,Kawano M,Muto T,Ogawa M.Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells [J]. Development,2004, 131(13):3133-3145.
    [77]Miyata T. Asymmetric cell division during brain morphogenesis [J]. Prog Mol Subcell Biol,2007,45:121-142.
    [78]Smart IH. Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex:a pilot study based on recording the number, location and plane of cleavage of mitotic figures[J]. Anat,1973,116(Pt 1):67-91.
    [79]Zamenhof S, Lajtha A. Malnutrition and brain development[J]. Handbook of Neurochemistry, 1985,9:151-172..
    [80]Zhong W, Chia W. Neurogenesis and asymmetric cell division[J]. Curr Opin Neurobiol,2008, 18(1):4-11.
    [81]Farkas LM, Huttner WB. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development[J]. Curr Opin Cell Biol,2008,20(6):707-715.
    [82]Attardo A, Calegari F, Haubensak W, Wilsch-Brauninger M, Huttner WB. Live imaging at the onset of cortical neurogenesis reverals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny[J]. PloS One,2008,3(6):e 2388.
    [83]Meyer A, Seidler FJ, Cousins MM, Slotkin TA. Developmental neurotoxicity elicited by gestational exposure to chlorpyrifos:when is adenylyl cyclase a target? [J]Environ Health Perspect,2003,111(16):1871-1876.
    [84]Meyer A, Seidler FJ, Aldridge JE, Tate CA, Cousins MM, Slotkin TA. Critical periods for chlorpyrifos-induced developmental neurotoxicity:alterations in adenylyl cyclase signaling in adult rat brain regions after gestational or neonatal exposure[J]. Environ Health Perspect,2004, 112(3):295-301.
    [85]Slotkin TA, Seidler FJ. Comparative developmental neurotoxicity of organophosphates in vivo: Transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems[J]. Brain Res Bull,2007,72(4-6):232-274.
    [86]Doe CQ. Neural stem cells:balancing self-renewal with differentiation[J]. Development,2008, 135(9):1575-1587.
    [87]Schwamborn JC, Knoblich JA. LIS1 and spindle orientation in neuroepithelial cells[J]. Cell Stem Cell,2008,2(3):193-194.
    [88]Toyoshima F, Nishida E. Spindle orientation in animal cell mitosis:roles of integrin in the control of spindle axis[J]. Cell Physiol,2007,213(2):407-411.
    [89]Slotkin TA, Seidler FJ. Developmental neurotoxicants target neurodifferentiation into the serotonin phenotype:Chlorpyrifos, diazinon, dieldrin and divalent nickel[J]. Toxicol Appl Pharmacol,2008,233(2):211-219.
    [90]Magnanti B,Carreira SC,Saunders M, et al. Chlorpyrifos and neurodevelopmental toxicity: Critical assessment and expert elicitation [J]. Toxicology Letters,2009,189:268-269.
    [91]Gupta RC. Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates[J]. Toxicol Mech Methods,2004,14(3):103-143.
    [92]Saulsbury MD,Heyliger SO,Wang KY, et al. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells [J]. Toxicology,2009,259 (1):1-9.
    [93]Slotkin TA. Developmental cholinotoxicants:nicotine and chlorpyrifos [J]. Environ Health Perspect,1999,107(1):71-80.
    [94]Slotkin TA. Cholinergic systems in brain development and disruption by neurotoxicants:nicotine, environmental tobacco smoke, organophosphates[J].Toxicol Appl Pharmacol,2004,198(2): 132-151
    [95]Garcia SJ, Seidler FJ, Crumpton TL, Slotkin TA.Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylylcyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells [J]. Brain Res, 2001,891(1-2):54-68.
    [96]Garcia SJ, Seidler FJ, Qiao D, Slotkin TA. Chlorpyrifos targets developing glia:effects on glial fibrillary acidic protein [J]. Dev Brain Res,2002,133(2):151-161.
    [97]赵玲玲,张洁.有机磷农药所致神经发育毒性及机制[J].国际病理科学与临床杂志.2008,28(1):72-76.
    [98]Aldridge JE, Meyer A, Seidler FJ, et al. Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure[J].Environ Health Perspect,2005,113(8):1027-1031.
    [99]Mikula S, Trotts I, Stone JM, Jones EG.Internet-enabled high-resolution brain mapping and virtual microscopy [J].NeuroImage,2006,35(1):9-15.Available:http://brainmaps.org/index.php? action=viewslides&datid=43.
    [100]王晓冬,汤乐民.生物光镜标本技术[M].科学出版,2007.
    [101]Slotkin TA, MacKillop EA, Ryde IT, Tate CA, Seidler FJ. Screening for developmental neurotoxicity using PC 12 cells:comparisons of organophosphates with a carbamate, an organochlorine, and divalent nickel. Environ Health Perspect,2007,115(1):93-101.
    [102]Garcia SJ,Seidler FJ,Slotkin TA. Developmental neurotoxicity of chlorpyrifos:targeting glial cells. Environ Toxicol Pharmacol,2005,19(3):455-461.
    [103]Qiao D, Seidler FJ, Abreu-Villaca Y, Tate CA, Cousins MM, Slotkin TA. Chlorpyrifos exposure during neurulation:cholinergic synaptic dysfunction and cellular alterations in brain regions at adolescence and adulthood. Brain Res Dev,2004,148(1):43-52.
    [104]Levin ED, Addy N, Baruah A, et al. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alternations[J]. Neurotoxicol Teratol,2002,24(6):733-741.
    [105]Brown NA,Fabro S.Quantitation of rat embryonic development in vitro A morphological scoring system [J]. Terarology,1981,24(1):65-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700