动态目标雷达回波实时模拟技术及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了对雷达系统的功能与性能进行全面验证,需要获得目标和环境具有遍历性和代表性的试验数据,但这往往因需要消耗巨大的时间和经济成本而难以实现,因此雷达回波模拟就成为雷达系统、特别是其信号处理系统研制过程中重要的验证测试手段。随着先进雷达工作体制及其信号处理技术的发展,雷达可观测并提取到微多普勒等许多更为精细的目标动态特征,这对雷达回波模拟技术也相应地提出了更高要求。如何高保真地实时模拟目标多维雷达特征信号以及环境杂波,并研制相应的雷达回波模拟器,就成为推动雷达技术发展的一项重要课题。本文针对此问题,对动态目标雷达回波模拟算法及其实现技术展开研究,并在此基础上研制成功了一个可用于雷达半实物仿真测试的回波模拟器。
     绪论部分首先阐明了本课题研究的背景和意义,概述了雷达回波模拟技术的研究背景、主要研究内容、关键技术及其发展趋势,然后介绍了雷达回波模拟技术所面临的问题与发展方向,最后给出了本文的主要研究内容。
     第二章对动态雷达目标的运动仿真方法和电磁散射的快速算法进行研究。首先对影响动态目标电磁散射计算精度的目标模型剖分、曲面散射、动态仿真和快速计算等关键环节进行了深入分析,提出了电磁计算动态目标模型面元剖分的准则。随后重点针对目标非刚体运动,对雷达电磁散射的快速计算方法进行研究,提出了动态目标雷达散射序列的插值算法,并推导了该方法的误差上界。针对大平板面元的全等分割算法的提出进一步提高了插值算法的效率并扩展了插值算法的应用范围,通过与直接采用原始算法比较该方法的计算量为原始算法的十分之一。最后针对采用平板面元逼近曲面给散射计算引入的“面元噪声”问题,提出了一种基于神经网络的修正方法,极大地提高了曲面的电磁计算精度。
     第三章对动态目标回波建模问题展开研究。首先系统分析了目标的运动形态对雷达特征的影响,并给出了高分辨相参雷达体制下点目标振动的显著性条件,该显著性条件为动态目标散射中心的提出提供了理论依据。在此基础上,提出了可用于动态目标雷达回波建模的动态散射中心模型。目标的动态散射中心模型既体现振动目标的高分辨结构特征,又可以体现目标的随机性动态特征,为进一步实现雷达信号的实时模拟提供了理论基础。
     第四章对应用超大规模集成电路(VLSI,Very Large Scale Intergrated)对回波实时模拟系统的设计与优化技术展开研究。首先应用多CORDIC(Coordinate Rotational Digital Computer)单元共享正切查找表优化方法,设计并实现了基于动态散射中心模型的目标回波模拟可复用IP(Intellect Property)核。随后针对杂波实时模拟问题,提出了一种基于球不变随机过程(SIRP,Sphere Invariance RandomProcess)的任意时长全相参可变参数K分布杂波模拟算法,并实现了杂波模拟可复用IP核。该IP核的研制解决了K-分布杂波随场景和环境变化所引起的频谱及尺度参数和形状参数的时变问题,极大地简化了雷达杂波生成系统的硬件结构。
     第五章针对某典型应用对本文提出的模拟方法和实现技术进行了应用研究,设计并实现了用于雷达半实物实时跟踪仿真系统的动态目标实时回波模拟器。首先分析了雷达半实物实时跟踪仿真系统的总体结构及其关键技术。然后设计并实现了以VLSI片上系统(SOC,System on Chip)为核心器件的雷达回波实时模拟器,它采用基于动态散射中心模型的目标回波模拟技术,并配合高速并行的系统结构和流水式的数据处理,具有良好的保真度、实时性与交互性。最后,将动态目标实时回波模拟器成功应用于某雷达半实物实时跟踪仿真系统。
In order to perform a comprehensive validation of function and performance for radar systems, ergodic and typical experiment data of targets and environments under different conditions are needed. However, it is usually time-consuming and costly, even unrealizable. Therefore, radar echo simulation is an important testing approach for advanced radar system design, especially for the signal processing system design. Due to the development of radar operating system and its signal processing techniques, it is possible to measure and extract many more elaborate dynamic features, e.g., micro-Doppler. Hence, the requirements for radar echo simulation technology accordingly rise. It is an important issue for radar system development to simulate target multi-dimension features and environment clutter in real-time operation with high precision and develop a corresponding radar echo simulator. Aiming at solving this problem, these dissertation studies echo simulation algorithms and implementation techniques for moving targets, and develop a radar echo simulator successfully, which can be used in Hardware-in-the-loop simulation.
     The background and significance of this work are presented in the introduction chapter. We first survey the background, contents, key techniques and their developing directions of radar echo simulation technology. An introduction of challenging difficulties and developing goals is then proposed. The main researching contents are given finally.
     In chapter 2, the motion simulation approaches for moving targets and the fast algorithms for electromagnetic scattering computation are studied. Firstly, we perform an in-depth analysis for key components which affect the precision of electromagnetic scattering computation, e.g., model partition, surface scattering, dynamic simulation, fast computation, etc. Secondly, fast algorithms for electromagnetic scattering computation are studied aiming at nonrigid body motion. An interpolation algorithm is proposed to compute scattering series for moving targets, and the error upper bounds of the algorithm are derived. Finally, a modified approach based on the neural network is introduced to decrease the“facet noise”, which is induced by approximating surface by flat facets. The computation precision is improved significantly.
     In chapter 3, the modeling of moving target echoes is studied. Firstly, a systemic analysis for the impacts of motion forms on radar signatures is performed, and vibration significance curves for high resolution radar are given. Based on this, a dynamic scatterer model is introduced to modeling radar echoes for moving targets. The model reflects both high resolution structural features of vibrating targets and stochastic features. It provides theoretical foundation for the implementation of radar echo simulation in real-time operation.
     In chapter 4, the design and optimization techniques based on very large scale integration (VLSI) in real-time echo simulation are studied. Firstly, applying the optimization method of multiple CORDIC units to share look-up table of tangent, we design a reusable intellect property (IP) for echo simulation based on dynamic scatter model. Secondly, aiming at real-time clutter simulation, a K-distributional clutter simulation algorithm is proposed based on the sphere invariance random process, which can simulate arbitrary time period, coherent, and variable parameter clutter. The reusable clutter generating IP is designed successfully.
     In chapter 5, the application of the proposed simulation and implementation techniques are studied in a typical scenario. An echo simulator is designed for hardware-in-the-loop simulation. Firstly, the global architecture and key techniques of radar tracking systems are analyzed. Secondly, an echo simulation system is designed and implemented using VLSI system on a chip (SOC) as the key components. The system possesses a high precision, real-time operation, and interaction, which are due to the simulation technique based on dynamic scatter model, high speed parallel system architecture, and pipelining data processing. Finally, the system is applied to a target tracking Hardware-in-the-loop simulation system.
引文
[1] Mittra R.Analytic Radar Target Modeling.AD 755854,Dec,1972
    [2]黄培康主编.雷达目标特征信号.北京:宇航出版社,1993年
    [3]罗宏.动态雷达目标的建模与识别研究[D].博士学位论文,北京:航天工业总公司,2000,4
    [4]张居凤,冯德军,王雪松等.雷达目标动态RCS仿真研究[M].系统仿真学报,2005,17(4):834-837
    [5] Youssef N N.Radar Cross Section of Complex Targets [J].Proceeding of the IEEE,1989,77(5)
    [6] W. Pauli, Theory of Relativity. New York: Pergamon Press, 1958.
    [7] C. Yeh,“Reflection and transmission of electromagnetic waves by moving dielectric medium,”J. Appl. Phys., vol. 36, pp. 3513–3517, 1965.
    [8] S. W. Lee and Y. T. Lo,“Reflection and transmission of electromagneticwaves by moving uniaxially anisotropic medium,”J. Appl. Phys., vol. 38, pp. 870–875, 1967.
    [9] S. W. Lee and R. Mittra,“Scattering of electromagnetic waves by a moving cylinder in free space,”Canadian J. Phys., vol. 45, pp. 2999–3007, 1967.
    [10] D. Censor,“Scattering of electromagnetic waves by a cylinder moving along its axis,”Microw. Theory Techn., vol. MTT-17, pp. 154–158,1969.
    [11] D. De Zutter and J. Van Bladel,“Scattering by cylinders in translational motion,”IEE Microw., Opt. Antennas, vol. 1, pp. 192–196, 1977.
    [12] R. Borghi, F. Gori, M. Santersiero, F. Frezza, and G. Schettini,“Plane wave scattering by conducting cylinder near a plane surface: a cylindrical wave approach,”J. Opt. Soc. Amer. A, vol. 13, pp. 483–493, 1996.
    [13] M. Idemen and A. Alkumru,“Influence of the velocity on the energy patterns of moving scatterers,”J. Electromagn. Waves and Appl., vol. 18, pp. 3–22, 2004.
    [14] G. N. Tsandoulas,“Low-frequency diffraction by mowing conducting strips,”J. Opt. Soc. Amer., vol. 59, pp. 1357–1360, 1969.
    [15] J. D. Hunter,“High-frequency diffraction by a moving conducting strip,”IEEE Trans. Antennas Propag., vol. 20, pp. 792–794, 1972.
    [16] K. C. Lang,“Diffraction of electromagnetic waves by a moving impedance wedge,”Radio Sci., vol. 6, pp. 655–663, 1971.
    [17] P. De Cupis, P. Burghignoli, G. Gerosa, and M. Marziale,“Electromagneticwave scattering by a perfectly conducting wedge in uniform translational motion,”J. of Electromagn. Waves Appl., vol. 16, pp. 345–364, 2002
    [18] G. N. Tsandoulas,“Electromagnetic diffraction by a moving wedge,”Radio Sci., vol. 3, pp. 887–893, 1968.
    [19] R. H. Ott and G. Hufford,“Scattering by an arbitrarily shaped conductor in uniform motion relative to the source of an incident spherical wave,”Radio Sci., vol. 3, pp. 857–861, 1968.
    [20] D. De Zutter,“Fourier analysis of the signal scattered by objects in translational motion, part I and II,”Appl. Sci. Res., vol. 36, pp. 169–241, 1980.
    [21] Rius J M,Ferrando M,Jofre L.GRECO: Graphical Electromagnetic Computing for RCS Prediction in Real Time [J].IEEE Trans. on A P,1992,41(9)
    [22] Valakis J L.XPATCH: A High-Frequency Electromagnetic Scatering Prediction Code and Environment for Complex Three Dimension Objects [J].IEEE AP Magazine,1994,36(1)
    [23] Bhalla R,Ling H.A Fast Algorithm for Signature Prediction and Image Formation Using the Shooting and Bouncing Ray Technique [J].IEEE Trans. on AP,1995,43(7)
    [24] Chuang C W,Moffat D L.Natural Resonance of Radar Target Via Prony’s Method and Target Discrimination [J].IEEE Trans. on AES-12,19 76
    [25] Jain V K,Sarkar T K,Weiner D D.Rational Modeling by Pencil-of-Function Method [J].IEEE Trans. on ASSP,31(3),1983
    [26] Sinclare G . The Transmission and Reception of Elliptically Polarized Waves.Proc. of IRE,1950,38(2)
    [27] Kennaugh E M,Cosgriff D L.The Use of Impulse Response in Electromagnetic Scattering Problems.In 1958 IRE National Conf. Record,Part1:72-77
    [28] Morgan M A.Singularity Expansion Representation of Fields and Current in Transient Scattering.IEEE Trans. on AP,1984,32:466-473
    [29] Chamberlain N F.Radar Target Identification of Aircraft Using Polarization Diverse Feature [J].IEEE Trans. on AES,1991,27(1)
    [30] Steedly W M,Moses R L.High Resolution Exponential Modeling of Fully Polarized Radar Returns [J].IEEE Trans. AES,1991,27(5):459-469
    [31]陈曾平.雷达目标结构特征识别的理论与应用,长沙:国防科技大学博士论文,1994
    [32]肖顺平.宽带极化雷达目标识别的理论与应用,长沙:国防科技大学博士论文,1995
    [33]王雪松.宽带极化信息处理的研究[博士学位论文,长沙:国防科技大学电子科学与工程学院,19 99 .6
    [34] McCune B P,Drazorich R J.Radar with Sight and Knowledge.Defense Electronics,15(8),1983
    [35] Roth K R,et. al..The Kiernan Reentry Measurements System on Kwajalein A toll,AD-A214150,1989
    [36] Scott Hudson,Demetri Psaltis.Correlation Filters for Aircraft Identification From Radar Range Profiles [J].IEEE Trans. on AES,1993,29(3):741-748
    [37] Smith C R,Goggans P M.Radar Target Identification [J].IEEE Antennas and Propagation Magazine,1993,35(2):27-37
    [38] Roth K R,et. al..The Kiernan Reentry Measurements System on Kwajalein A toll,AD-A214150,1989
    [39] Crawford J F,Pearson J R.Ground Based Radar Interoperability and Interface Requirements for the Ballistic Missile Defense of Conus,A IAA 9 3-4070
    [40]罗宏,马骏声,黄培康等.导弹目标再入雷达特征信号分析与目标识别[A].中国宇航学会第三届返回与再人学术会议,1998,10
    [41]罗宏,郑建平,马勇辉等,XXXX型号典型TBM目标特性研究技术方案论证,199 7
    [42] Blaricum M L,Mittra.A Technique for Extracting the Poles and Residues of a System Directly from Its Transient Response [J].IEEE Trans. on AP,1975,23(6):777-781
    [43] J W Odendaal, E Barnard, C W I Pistorius. Two-dimensional superresolution radar imaging using the MUSIC algorithm [J]. IEEE Trans on Antennas Propagate (S0018-926X), 1992, 42(10): 1386-1391.
    [44] Yuanxun Wang, Hao Ling. A Frequency-Aspect Extrapolation Algorithm for ISAR Image Simulation Based on Two-Dimensional ESPRIT [J]. IEEE Trans on Geoscience and Remote Sensing (S0196-2892), 2000, 38(4): 1743-1748.
    [45] Baum C E . On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problem,.Interaction Note 88,AFWL,1971
    [46] Van Blaricum M L,Mitra R.A Technique for Extracting the Poles and Residues of a System Directly from Its Transient Response [J].IEEE Trans. on AP-23,1 975
    [47] Jain V K,Sarkar T K,Weiner D D.Rational Modeling by Pencil-of-Function Method [J].IEEE Trans. on ASSP,31(3),1983
    [48] Hua Y B,Sarkar T K.Generalized Pencil-of Function Method for Extracting Poles of an EM System from Transient Response [J].IEEE Trans. on AP,1989,37(2):229-234
    [49] Tseng F I,Sarkar T K.Deconvolution of the Impulse Response of a Conducting Sphere by the Conjugate Gradient Method [J].IEEE Trans. on AP,1987,35(1):105-110
    [50] Tseng F I,Sarkar T K.Experimental Determination of Resonant Frequencies by Transient Scattering from Conducting Spheres and Cylinders [J].IEEE Trans. on AP,1984,32(9):914-918
    [51] Ramm A G.Extraction of Resonances from Transient Fields [J].IEEE Trans. on AP,1985,33(2):223-226
    [52] Henderson T L.Geometric Methods for Determining System Poles from Transient Response [J].IEEE Trans. on ASSP,1981,29(5):982-988
    [53] Moffatt D L,et al.Natural Responses via Rational Approximations [J].IEEE Trans. on AP,1977,25(5):657-660
    [54] Brittingham J N,et al.Poles Extraction from Real-Frequency Information [J].Proc. IEEE 1985,68(1):13-19
    [55] Ksienski D A.Pole and Residue Extraction from Measured Data in the Frequency Domain Using Multiple Data Sets.Radio Science,1985,20(1):13-19
    [56] Repjar A G,Ksienski A A.Object Identification from Mutifrequency Radar Return.Radio and Elec. Engineer,1975,45(4):161-167
    [57] Lin Y T,Ksienski A A.Identification of Complex Geometrical Shapes by Means of Low-Frequency Radar Return.Radio and Elec. Engineer,1976,46(10):472-486
    [58] Chevalier L,Bobillot G.Radar Target and Aspect Angle Identification.Proc. of 4th Int’1 Joint Conf. on Patten Recognition,1978:398-400
    [59] Burg J P.Maximum Entropy Spectral Analysis.Paper presented at the 37th Ann. Int'1 Meeting,Soc. of Explor.,Oct,1967
    [60]庄钊文,刘永祥,黎湘.目标微动特性研究进展.电子学报,第3期2007年3月
    [61]陈行勇,微动目标雷达特征提取技术研究[D].工学博士论文2006,6
    [62]孙照强,鲁耀兵,李宝柱,彭军宽带信号及其特征的微多普勒提取技术研究.系统工程与电子技术2008,11
    [63]周明俊,陆军,高贵,匡纲要.基于RCS精确预估的机动目标切片仿真方法.计算机应用研究,- 2009,7
    [64]胡卫东,郁文贤,郭桂蓉.机载高分辨雷达目标回波的数据仿真.现代雷达,1996,9
    [65]李斌,姚康泽,王岩,慈林林,万建伟.基于微动分析和Chirplet分解的ISAR成像.信号处理,2009,2
    [66]余卜一.基于磁盘阵列的雷达回波模拟器的研制.工学硕士论文, 2006,4
    [67]李方岩.毫米波雷达中频模拟信号源数据产生部分的研究.工学硕士论文, 2008,6
    [68] Capon J.High Resolution Frequency-Wavenumber Spectral Analysis.Proc. IEEE,1969,57
    [69] Nuttal A H.Spectral Analysis of Univariate Process with Bad Data Points via Maximum Entropy and Linear Predictive Technique,Naval Underwater System Center Tech. Rep. 5203,1976
    [70] Pisarenko V F , The Retrieval of Harmonics from a Covariance Function.Geophys. J. Roy. Astron. Soc.,1973,33(2):347-366
    [71] Schmidt R,Multiple Emitter Location and Signal Parameter Estimation.RADC Spectrum Estimation Workshop Record,1979
    [72] Cadzow J A,et al.Singular Value Decomposition Approach to Time Series Modeling.Proc. IEEE,1983,81(3)
    [73] Chen V C . Micro-Doppler effect of micro-motion dynamics : a review[A] . Proceedings of SPIE on Independent Component Analyses ,Wavelets,and Neural Networks[C].Orlando,USA:PIE Press,2003.240-249.
    [74] Chen V C,Li F,Ho S,Wechsler H.Micro-doppler effect in radar-phenomenon,model and simulation Study [J].IEEE Trans on AES,2006,42(1):2-21.
    [75] Camp W W ,Mayhan J T,O’Donnell R M.Wideband radar for ballistic missile defense and range Doppler imaging of satellites [J].Lincoln Laboratory Journal,2000,12(2):267-280.
    [76] Harmon S M,Thomson J A.Agile multiple pulse coherent ladar for range and micro-Doppler measurement[A] . Proceedings of SPIE on Laser Radar Technology and ApplicationsⅢ[C].Orlando,USA:SPIE Press,1998.259-269
    [77] Rihaczek A W,Hershkowitz S J.Radar Resolution and Complex-Image Analysis[M].Boston:Artech House,1996.24 -155.
    [78] Nalecz M,An drianik R R,Wojtldewicz A.Micro-Doppler analysis of signal received by FMCW radar [A] . Proceedings of International Radar Symposium[C].Dresden,Germany:IEEE Press. 2003.231-235.
    [79] Marple S L.Sharpening and bandwidth extrapolation techniques for radar micro-Doppler feature extraction[A ].Proceedings of International Conferenceon Radar[C].Adelaide,Australia:IEEE Press,2003.166-l70.
    [80] Alfred B G,William E K.Development of coherent laser radar at Lincoln Laboratory [J].Lincoln Laboratory Journal,2000,12(2):383-396.
    [81] Barbaross S.Doppler-rate filtering for detecting moving targets with synthetic aperture radars[A].Proceedings of the SPIE on Millimeter Wave and Synthetic Aperture Radar[C ].Orlando, USA:SPⅢPress,1989.140-147.
    [82] Ling H.Exploitation of micro-Doppler and multiple scattering phenomena for radar target recognition [R].Austin,USA:The University of Texas at Austin,2004.
    [83] Cai C J,Lju w x,Fu J S.Empirical mode decomposition of micro-Doppler signature [A].Proceedings of International Conference on Radar [C]. Washington,USA:IEEE Press,2005.895-899.
    [84] Greneker E F,Geisheimer J L,Asbell D.Extraction of micro-Doppler data from vehicle targets at x-band frequencies [A].Proceedings of SPIE on Radar Sensor Technique [C].Orlando,USA:SHE Press,2001.1-9.
    [85] Chen K,Huang Y,and Zhang J.Microwave life detection systerns for searching human subjects under earthquake rubble or behind barrier [J].IEEE Trans on Biomedical Engineering,2000,27(1):1052-1064.
    [86]王菁,周建江.一种基于GTD模型的目标散射中心提取方法.系统工程与电子技术. Vol. 30 No. 11 Nov. 2008
    [87]代大海,王雪松,邢世其,肖顺平.全极化散射中心提取与参数估计:P.ESPRIT方法.电子与信息学报.Vo1.30 No.8 Aug.2008
    [88] Fuller D F,Terzuoli A J,and Collins P J,et a1.Approach to object classification using dispersive scattering centres [J] IEE Proc. Radar Sonar Navig ,2004,151(2):85—90.
    [89]周剑雄.光学区雷达目标三维散射中心重构理论与技术[D].工学博士学位论文,2006,4
    [90]罗宏.动态雷达目标的建模与识别研究[D].博士学位论文,北京:航天工业总公司,2000,4
    [91] Knott E F,et al.阮颖铮等译.雷达散射截面.北京:电子工业出版社,1988:129-133
    [92]韩明华.光学区复杂目标RCS特征信号计算及实验研究[D].国防科技大学硕士论文[C],1999
    [93] Hatem M , Pavlos L . Comparative Study of Lateral Profile Knife-EdgeDiffraction and Ray Tracing Technique Using GTD in Urban Environment [J].IEEE Trans. on Vehicular Technology,1999,48(1):255-261
    [94] Kouyoumjian R G,Pathak P H.A Uniform Geometrical Theory of an Edge in a Perfectly Conducting Surface.IEEE Proc. 1974,62(11):1148-1461
    [95] Albani M,Capolino F,Maci S.Diffraction at the Vertex of a Quarter Plane [A].IEEE AP-S International Symposium,2004,(2):1991-1994
    [96] Lawton M C,McGeehan J P.The Application of a Deterministic Ray Launching Algorithm for the Prediction of Radio Channel Characteristics in Small-Cell Environments [J].IEEE Trans. on Veh. Technology,1994,43:955–969
    [97] Kanatas A G,Kountouris I D,Kostaras G B,et al.A UTD Propagation Model in Urban Microcellular Environments [J].IEEE Trans. on Veh. Technology,1997,46:185–193
    [98] Ling H,Chou R C,Lee S W.Shooting and Bouncing Rays: Calculating the RCS of an Arbitrarily Shaped Cavity [J].IEEE Trans. on Antennas and Propagation,1989,37:194–205
    [99] Chen S H,Jeng S K.An SBR-Image Approach for Radio Wave Propagation in Indoor Environments with Metallic Furniture [J].IEEE Trans. on Antennas and Propagation,45(1):1997,98–106
    [100] Rius J M,Jofre C.High Frequency RCS of Complex Radar Targets in Real Time [J].IEEE Trans. on AP,1993,41(9):1308-1319
    [101] Wang S,Xiong Q, Jiang A P.Simulation of the RCS Range Resolution of Extremely Large Target [J].Wuhan University Journal of Natural Sciences,2005,10(2):410-412
    [102] Namiki T.A new FDTD Algorithm Based on Alternating Direction Implement Method [J].IEEE Trans. on Microwave Theory Tech.,1999,47:2003-2007
    [103]李世智.电磁辐射与散射问题的矩量法.北京:电子工业出版社,1985
    [104] Namiki T.A new FDTD Algorithm Based on Alternating Direction Implement Method [J].IEEE Trans. on Microwave Theory Tech.,1999,47:2003-2007
    [105] Lu C C,Chew W C.Fast far-field approximation for calculating the RCS of large objects [J].Microwave Opt. Tech. Letter,1995,8(5):238–241
    [106] Boag A.A Fast Physical Optics (FPO) Algorithm for High Frequency Scattering [A].IEEE Trans. on Antennas and Propagation,2004,52(1):197-204
    [107] Hall J M,Bunting Charles,West J.A Modified Fast Far Field Approximation for Improving Speed and Accuracy in Electromagnetic Scattering Computation[A].IEEE 1-4244-0123-2,2006:4011-4014
    [108] Hall J M,Bunting Charles,West J.A Novel Grouping Strategy for the Modified Fast Far Field Approximation Which Further Improves Speed and Accuracy [A].IEEE 1-4244-0123-2,2006:4019-4022
    [109] Wang W B,Xu J P.Analyzing Wide-Band Behavior of Wire Antennas on Large Platforms with Fast PO-MoM Techniques [A].IEEE APMC2005 Proceedings,2005
    [110] Wang J,Nie Z P,Hu J,et al.CRWG FMA-PO RCS Simulation Tool Based on ANSYS Geometrical Modeling [A].IEEE 0-7803-9433-X,2005
    [111] Cui T J,Chew W C,Chen G,et al.Efficient MLFMA, RPFMA, and FAFFA Algorithms for EM Scattering by Very Large Structures [J].IEEE Trans. on Antennas and Propagation,2004,52(3):759-770
    [112] Lu C C,Chew W C.Fast far-field approximation for calculating the RCS of large objects [J].Microwave Opt. Tech. Letter,1995,8(5):238–241
    [113] Liu Z J,Carin L.MLFMA-Based Quasi-Direct Analysis of Scattering from Electrically Large Targets [J].IEEE Trans. on Antennas and Propagation,2003,51(8):1877-1882
    [114] Bleszyski E,Bleszyski M,Jaroszewicz T.AIM: Adaptive Integral Method Compression Algorithm for Solving Large Scale Electromagnetic Scattering and Radiation Problems [J].Radio Sci.,1996,31:1225-1251
    [115] Canning F X.Solution of the IML Form of Moment Method Problems in 5 Iterations [J].Radio Sci.,1995,30(5):1371– 1384
    [116] Wagner R L , Chew W C . A Study of Wavelets for the Solution of Electromagnetic Integral Equations [J] . IEEE Trans. on Antennas and Propagation,1995,43(8):802-810
    [117] Rokhlin V.Rapid Solution of Integral Equations of Classical Potential Theory [J].J. Comput. Phys.,1985,60:187–207
    [118] Rokhlin V.Rapid Solution of Integral Equations of Scattering Theory in Two Dimensions [J].J. Comput. Phys.,1990,86:414–439
    [119] Coifman R,Rokhlin V,Wandzura S.The Fast Multipole Method for the Wave Equation: A Pedestrian Prescription [J] . IEEE Trans. on Antennas and Propagation Magazine,1993,35(3):7-12
    [120] Lu C C,Chew W C.A Multilevel Algorithm for Solving Boundary Integral Equations of Wave Scattering [J].Microwave Opt. Tech. Lett.,1994,7(10):466–470
    [121] Song J M,Chew W C.Multilevel Fast-Multipole Algorithm for Solving Combined Field Integral Equations of Electromagnetic Scattering [J].Microwave Opt. Tech. Lett.,1995,8(1):14–19
    [122] Song J M,Lu C C,Chew W C.Multilevel Fast Multipole Algorithm for Electromagnetic Scattering by Large Complex Objects [J].IEEE Trans. on Antennas and Propagation,1997,45:1488–1493
    [123] Wu F,Zhao Y J,Oo Z Z,et al.Parallel Fast Algorithm for Large-Scale Electromagnetic Scattering [A].Proc. of the 7th International Conference on High Performance Computing and Grid in Asia Pacific Region,2004
    [124] Weinmann F.Ray Tracing with PO/PTD for RCS Modeling of Large Complex Objects [J].IEEE Trans. on Antennas and Propagation,2006,54(6):1797-1806
    [125] W. Pauli, Theory of Relativity. New York: Pergamon Press, 1958.
    [126] C. Moeller, The Theory of Relativity, 2nd ed. London, U.K.: Oxford University Press, 1972A.
    [127] B.L Michielsen,G.C.Herman,A.T.de Hoop,and D.De Zutter,”Three-dimensional relativistic scattering of electromagnetic waves by an object in uniform translation motion,”J.Math.Phys.,vol.22,no.11,pp.2716-2722,Nov.1981.
    [128] J.Cooper,”Scattering of electromagnetic fields by a moving boundary: the one-dimensional case,”IEEE Trans.Antennas Propagat., vol. AP-28, no.6,pp. 791-795, Nov.1980.
    [129] R.C.Costen and D.Adamson,”Three dimensional derivation of the electrodynamic jump conditions and momentum-energy laws at a moving boundary,”Proc. IEEE, vol.53, no.9, Sept.1965.
    [130] J. Van Bladel, Relativity and Engineering. New York: Springer-Verlag, 1984.
    [131] A. A. Tzikas, D. P. Chrissoulidis, and E. E. Kriezis,“Relativistic bistatic scattering by a uniformly moving random rough surface,”IEEE Trans. Antennas Propag., vol. AP-34, pp. 1046–1052, 1986.
    [132] V. Twersky,“Relativistic scattering of electromagnetic waves by moving obstacles”J. Math. Phys. , vol. 12, pp. 2328-2341, 1971.
    [133] D. Censor,“Scattering by time varying obstacles ,”J. Sound Vibration, vol. 25, no. 1, pp. 101-110, 1972
    [134] Van Bladel J.Electromagnetic Fields in the Presence of Rotating Bodies [J],Proc. IEEE,1976,64(3):301-318
    [135] A.L. Maffett, Topics for a Statistical Description of Radar Cross Section, New York : Wiley, 1989.
    [136] S.A. Stanhope, E. Keydel, W. Williams, R. Sieron and V. Rajlich, "Statistical Modeling of Complex Target Radar Cross Section with the Beta ProbabilityDensity Function," Algorithms for Synthetic Aperture Radar Imagery VI, Edmund G. Zelnio, Editor, SPEE, Volume 3721, April 1999, pp. 632-643.
    [137] Byron M. Welch, William D. Muller and Brian M. Kent, "Air Force Research Laboratory Advanced Compact Range RCS Uncertainty Analysis for General Target," IEEE Magazine Antennas Propagat. June 2003.
    [138] W.B. Gordon, "Statistical Moments of Radar Cross Section," IEEE Trans. Antennas Propagat., vol. AP-41, pp. 506-507, April 1993.
    [139] Rajan Bhalla, John Moore, Patti Ryan, Vincent J. Velten, Eric Branch“Modeling Target Variability using the SBR Technique”2005 IEEE.
    [140] Dr. George L. Bair, AIRBORNE RADAR SIMULATION, Camber. Corporation, Dallas ,Texas,1996,
    [141] Dr. George L. Bair, ADVANCES IN AIRBORNE RADAR SIMULATION, Camber Corporation,SimuIationS ystemsD ivision,ht p:// m.ca mber.com
    [142] George L.Bair,PhD,David M.Hall forth,Air borne Radar Desktop Trainer,Camber Corporation,Modern Radars Demand Sophisticated Signal Simulation, MSN, May 1990
    [143] Sevgi,L.;Sanal,S.,Surface wave HF radar Simulator,Radar97 (Conf,Publ.No.449), 1997, Pe(s):181184
    [144] Eskelinen, E.; Ruuskanen, P.: Rasanen, U.; Kaleton, M. --B., Low cost simulator for basic radarg ignals IEEE Aero space and Electronics Systems MagazineVolume:9 Issue :6 ,June1994,P age(s):7- 11
    [145] Packer,R.J.,Computer modelling of advanced radar techniques:the Advanced Radar Simulator for Electronic Warfare Systems, IEE Colloquiu mon, 1991,P age(s ):7/1-7/6
    [146] Bair, G.L, Johnston D. A., Advances in realtime radar simulation, IEEE Region 5 Conference 1988: 'Spanning the Peaks of electrotechnology', 1988,Page(s):23 -31
    [147] W. P. Pala, H. J. Bilow, W. B. Gordon, D. A. Zolnick, S. A. Zuro, and V. W. Strasser,“Integral Radar Target Signature Model,”NRL Memorandum Report 6187, Naval Research Laboratory, Washington, DC, April 1988.
    [148]陈洪源,戴庆芬.高精度全可编程雷达视频回波模拟仪,电讯技术,Oct. 1994, Vol. 3 4 , NO. 5: 1-6
    [149]王振荣。薛丽华等.一种通用型PD雷达目标模拟器,现代雷达,1995年6月第3期:85-91
    [150] Ni Yuanghua; Cue Julian, Simulation system for carrier--borne electrbnic scanning radar on target,environment,j mming and detecting performance,'R adar,1996 Proceedings.,CIE International Conference of 1996 Page(s ):554-557
    [151]任丽香,韩秋月,宽带下视雷达信号模拟器的研制,北京理工大学学报,Vol. 17, NO . 6 ,Dec. 1997,:743-747
    [152]朱仙焰,龙腾等.雷达中频视频信号模拟的一种实现方法及研究,系统工程与电子技术,1999,V ol.2 1,N O.1 1:3 4-37
    [153]李耽,任丽香,龙腾,单脉冲雷达目标航迹的实时视频模拟器,北京理工大学学报, Feb.1999,Vol.19,No.1:68-72
    [154]刘峰,沈福民,一种雷达目标与杂波环境信号模拟器,西安电子科技大学学报,Jun. 1997, Vol. 24, NO. 2: 290-296
    [155]吴信岚,杨润亭,面向对象的程序设计在机载雷达模拟器软件中的应用,现代雷达,1999年6月,第3期:50-56
    [156]陈建春.一种基于DDS技术实现的雷达信号模拟器,系统工程与电子技术,2000,Vo l. 2 2 , No. 2: 50-52
    [157]高梅国,韩秋月.多功能雷达视频信号模拟器,系统工程与电子技术,2000,Vol. 22 , NO. 2: 38-40
    [158]川单涛,王越等,多体制雷达视频信号模拟器设计,火控雷达技术,2000年3月第29卷:8-11
    [159]陈卫东,王东进等.主动导引头毫米波目标模拟器,现代雷达,2001年2月第1期: 6 1~64
    [160]陈硫磷,盛莉.射频目标仿真系统在测控雷达实验鉴定中的应用,现代雷达,2001年4月第2期:18~22
    [161]杨尚军.雷达模拟器气象杂波的建模与仿真.工学硕士论文,2006,11
    [162]喻春曦.雨杂波下单脉冲低角跟踪雷达测角精度改善方法研究.工学硕士论文,2009,6
    [163]陈金明.雷达杂波建模与仿真.工学学硕士论文,2010,1
    [164]罗艳红.雷达海杂波统计特性分析与仿真.工学硕士论文,2007,8
    [165]孙礼文,模拟雷达回波杂波背景的一种数字式杂波源实现方法,电讯技术,Aug. 1994, Vol. 34; No. 4: 29 .33
    [166]万海,刘源,双瑞利分布的时空二维杂波模拟,电子学报108~111 Sep. 1994, Vol. 22 No. 9: 108~111
    [167]王胜,范红旗,高峰,付强基于SOPC技术的雷达信号回波中频模拟器研制,现代雷达,第28卷第10期2006年10月P93-97
    [168] De Zutter D.Doppler Effect from a Transmitter in Translational Motion [J].Microwaves Optical Acoustics,1979,3(2)
    [169] Sengupta D L,Senior T B A.Electromagnetic Scattering by Rotating Objects [A].In Proc. URSI Symp. Electromagn. Wave Theory,1977:314-315
    [170] Lahaie I J,Sengupta D L.Scattering of Electromagnetic Waves by a Slowly Rotating Rectangular Metal Plate [J].IEEE Trans. on Antennas and Propagation,1979,27(1):40-46
    [171] Bor S S,Yang T L,Yang S Y.Radar Cross-Sectional Spectra of Rotating Multiple Skew-Plated Metal Fan Blades by Physical Optics/Physical Theory of Diffraction, Equivalent Currents Approximation.J. Appl. Phys. pt. 1,1992,31(5A):1549–1554
    [172] Yang T L,Bor S S.Comparison of Monostatic Doppler and Radar Cross-Section Spectra by Rotating Multiple Skew-Plated Metal Fan Blades [J].Int. J. Electron.,1992,72(4):659–668
    [173] K. C. Lang,“Diffraction of electromagnetic waves by a moving impedance wedge,”Radio Sci., vol. 6, pp. 655–663, 1971.
    [174] Harmon S M,Thomson J A.Agile multiple pulse coherent Radar for range and micro-Doppler measurement [A] . Proceedings of SPIE on Laser Radar Technology and Applications [C].Orlando,USA:SPIE Press,1998.259-269.
    [175] Marple S L.Sharpening and bandwidth extrapolation techniques for radar micro-Doppler feature extraction [A].Proceedings of International Conference on Radar[C].Adelaide,Auslalia:IEEE Press,2003.166-l70.
    [176]唐松,刘其中.雷达散射截面计算中的面元噪声研究[J].西安电子科技大学学报(自然科学版) 2003年8月第30卷第4期.
    [177] Hastriter,Larkin M,Chew W C.Comparing Xpatch, FISC, and ScaleME Using a Cone-Cylinder [A].IEEE AP-S International Symposium,2004,(2):2007-2010
    [178] Rius J M,Ferrando M,Jofre L.GRECO Graphical Electromagnetic Computing for RCS Prediction in Real Time [J].IEEE Antennas and Propagation Magazine,1993,35(2):7-17
    [179] Rius J M,Vall-Ilossera M,Salazar C,et al.Shaped Reflector Antenna Analysis by Graphical Processing Methods [J].Applied Computational Electromagnetic Society Journal,1999,14(2):45-51
    [180] Bhalla R,Ling H L, Wu S,et al.Bistatic Scattering Center Extraction Using the Shooting and Bouncing Ray Technique [A] . Proc. Of SPIE–The International Society for Optical Engineering,1999,3721:612-619
    [181] Elking D M,Roedder J M,Car D D,et al.A Review of High-Frequency Radar Cross Section Analysis Capabilities at McDonnell Douglas Aerospace [J].IEEE Antennas & Propagation Magazine,1995, 37(1):33-42
    [182]王光芦,徐明.飞机振动信号中周期分量的识别.首届全国航空航天领域中的力学问题学术研讨会(下册).P193-196
    [183]王光芦.飞机飞行振动预计技术现状与发展.航空工程进展.2010.3.P74-82.
    [184] Albani M,Capolino F,Maci S.Diffraction at the Vertex of a Quarter Plane [A].IEEE AP-S International Symposium,2004,(2):1991-1994
    [185] Ho M.Numerical Simulation of Scattering of Electromagnetic Waves From Traveling and/or Vibrating Perfect Conducting Planes [J].IEEE Trans. on Antennas and Propagation,2006,54(1):152-156
    [186] Pouliguen P , Lucas L , Muller F , et al . Calculation and Analysis of Electromagnetic Scattering by Helicopter Rotating Blades [J].IEEE Trans. on Antennas and Propagation,2002,50(10):1396-1408
    [187] Sengupta D L,Senior T B A.Electromagnetic Scattering by Rotating Objects [A].In Proc. URSI Symp. Electromagn. Wave Theory,1977:314–315
    [188] Rius J M,Ferrando M,Jofre L.GRECO: Graphical Electromagnetic Computing for RCS Prediction in Real Time [J].IEEE Trans. on A P,1992,41(9)
    [189] Valakis J L.XPATCH: A High-Frequency Electromagnetic Scatering Prediction Code and Environment for Complex Three Dimension Objects [J].IEEE AP Magazine,1994,36(1)
    [190] Ling H,Chou R C,Lee S W.Shooting and Bouncing Rays: Calculating the RCS of an Arbitrarily Shaped Cavity [J].IEEE Trans. on Antennas and Propagation,1989,37:194–205
    [191] De Cupis P,Gerosa G,Schettini G.EM Scattering by Uniformly Moving Bodies [A].The 29th European Microwave Conference,Munich,1999:32-35
    [192] Knott E F,et al.阮颖铮等译.雷达散射截面.北京:电子工业出版社,1988:129-133
    [193]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M] .北京:清华大学出版社,2005 :1012103.
    [194]董长虹. Matlab神经网络与应用[M] .北京:国防工业出版社,2007 :1212124.
    [195]杨子宾,王晓蕾,张伟星,李萍.基于径向基函数神经网络的探空仪湿度传感器曲线拟合.气象科技,2010,4
    [196]赵维江.复杂目标雷达截面计算方法研究.工学博士论文,1999,6
    [197]高飞.加载宽带天线和复杂目标RCS研究.工学博士论文,2000,1
    [198]袁广军.复杂目标电磁特性计算.工学硕士论文,2007,3
    [199]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M] .北京:电子工业出版社,2005 :1162119.
    [200]范子强,方振平.超机动飞机的非线性飞行控制研究[J].北京航空航天大学学报,2000,26(4):404-407
    [201]熊治国,孙秀霞,胡孟权.超机动飞行自抗扰控制律设计与仿真[J].系统仿真学报,2006,18(8):2222-2226
    [202]罗成.航空发动机附件裂纹故障原因分析与维修对策研究.工学硕士论文, 2009,11
    [203] M. E. Bechtel, Short pulse target characteristics. Atmospheric effects on radar target identification and imaging, H.E.G.Jesle (ed.). Bosten/Holland: ReidelPublishing, 1976. 3-53
    [204]郭雷.宽带极化雷达目标识别的理论与应用,长沙:国防科技大学博士论文,2006
    [205] Bhalla R,Ling H L, Wu S,et al.Bistatic Scattering Center Extraction Using the Shooting and Bouncing Ray Technique [A] . Proc. Of SPIE–The International Society for Optical Engineering,1999,3721:612-619
    [206] Bhalla R,Ling H.A Fast Algorithm for Signature Prediction and Image Formation Using the Shooting and Bouncing Ray Technique [J].IEEE Trans. on AP,1995,43(7)
    [207] M.I.Skolnik, Radar Handbook, McGraw-Hill Publishing Company, 1990.
    [208] Knott E F, Shaeffef J F, Tuley M T著,阮颖铮等译.雷达散射截面-预估、测量和减缩.北京:电子工业出版社, 1988. 102-280.
    [209]葛德彪.电磁逆散射原理.西安:西北电讯工程学院出版社,1987
    [210]郑学合.振动对步进频率合成距离像的影响分析.制导与引信,1997,9
    [211]吕静静,许家栋.宽带雷达动态目标建模及仿真研究.计算机仿真,2006,7
    [212] M. E. Bechtel, Short pulse target characteristics. Atmospheric effects on radar target identification and imaging, H.E.G.Jesle (ed.). Bosten/Holland: Reidel Publishing, 1976. 3-53
    [213] Michaelp P.Hurst. Scattering Center Analysis via Prony’s Method. IEEE Trans on AP, 1987, 35(8):986-988
    [214] L. C. Potter, D.-M. Chiang, R. Carriere, and M. J. Gerry. A GTD-based parametric model for radar scattering. IEEE Trans. Antennas Propagat., 1995,43(10): 1058-1067
    [215] M. J. Gerry, et al. A parametric model for synthetic aperture radar measurements. IEEE Trans. Antennas Propagat., 1999, 47(7):1179–1188
    [216] L. C. Potter, R, L. Moses. Attributed Scattering Centers for SAR ATR. IEEE TRANS. IMAGE PROCESSING, 1997, 6(1):79:91
    [217] Yeliz Akyildiz, Randolph L.Moses. A Scattering Center Model for SAR Imagery.SAR image analysis, modeling, and techniques II; Proceedings of the Conference, Sept. 1999. 76-85
    [218]黄培康等.雷达目标特性.电子工业出版社, 2005
    [219]郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别.国防科大出版社,1996
    [220]何松华.高距离分辨率毫米波雷达目标识别的理论与应用.国防科技大学博士学位论文, 1993
    [221]黄培康等.雷达目标特征信号.宇航出版社,1993
    [222]刘永坦等.雷达成像技术.哈尔滨工业大学出版社,1999
    [223]孙真真.基于光学区雷达目标二维像的目标散射特征提取的理论及方法研究[D].博士学位论文,国防科技大学,2001,4
    [224] Keller J B.The Geometric Theory of Diffraction.Symposium on Microwave Optics,Eaton Electronic Research Lab.,McGill Univ.,Montreal,Can.,June,1953
    [225] Kouyoumjian R G,Pathak P H.A Uniform Geometircal Theory of Diffraction for an Edge in a Perfectly Conducting Surface.Proc. IEEE,1974,62(11):1448-1461
    [226] Potter L C,Chiang D M.A GTD-Based Parametric Model for Radar Scattering [J].IEEE Trans.on AP,1995,43(10):1058-1066
    [227] Potter L C.Moses R L.Attributed Scatering Centers for SAR ATR [J].IEEE Trans on Image Processing,1997,16(1):79-91
    [228] Carriere R,Moses R L.High Resolution Radar Target Modeling Using a Modified Prony Estimator[J].IEEE Trans. on AP,1992,40(1):13-18
    [229] Bhalla R,Moore R,Ling H.A Global Scattering Center Representation of Complex Targets Using the Shooting and Bouncing Ray Technique [J].IEEE Trans. on AP,1997,45(12):1850-1856
    [230] Bhalla R,Ling H,Moore R,et al.3D Scattering Center Representation of Complex Targets Using the Shooting and Bouncing Ray Technique: A Review [J].IEEE Antennas and Propagation Magazine,1998,40(5):30-39
    [231]周剑雄.光学区雷达目标三维散射中心重构理论与技术[D].工学博士论文,国防科技大学,2006,4
    [232] Jiajin Lei, Chao LU. Target Classification Based on Micro-Doppler signatures[C], Proceedings of IEEE International Conference on Radar, Washington(USA), May 2005,179-183.
    [233] Yinan Yang, Jiajin Lei, Wenxue Zhang, Chao Lu. Target Classification and Pattern Recognition Using Micro-Doppler Radar Signatures[C]. Seventh ACISInternational Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, Las Vegas(USA), June 2006:213-217.
    [234] Jiajin Lei, Pattern Recognition Based on Time-Frequency Distributions of Radar Micro-Doppler Dynamics[C].SNPD/SAWN 2005, May 2005:14-18.
    [235] M. J. Gerry, et al. A parametric model for synthetic aperture radar measurements. IEEE Trans. Antennas Propagat., 1999, 47(7):1179–1188
    [236] L. C. Potter, R, L. Moses. Attributed Scattering Centers for SAR ATR. IEEE TRANS. IMAGE PROCESSING, 1997, 6(1):79:91
    [237] Yeliz Akyildiz, Randolph L.Moses. A Scattering Center Model for SAR Imagery. SAR image analysis, modeling, and techniques II; Proceedings of the Conference, Sept. 1999. 76-85
    [238] A. V. Merwe, M.J. Gerry, L.C. Potter, I.J. Gupta. Feature estimation performance evaluation using the Cramér-Rao variance bound. Proceedings of the 1997 South African Symposium on Communications and Signal Processing, Sept.1997. 19-22
    [239] Andrew Kim, Sinan Dogan, et al. Attributing Scatterer Anisotopy for Model Based ATR. Multidimensional Systems and Signal Processing Confrence, 2003
    [240] J.Bertrand. Dimensionalized wavelet transform with application to radar imaging. Proc. IEEE ICASSP-91,1991
    [241] J.P. Ovarlez. Analysis of SAR images by multidimensional wavelet transform. IEE Proc., Radar Sonar Navig., 2003
    [242] L.Vignaud. Wavelet-relax feature extraction in radar images. IEE Proc. Radar Sonar Navig, 2003, 150(4):242-246
    [243]贺思三.雷达成像中的非理想散射现象分析.硕士论文,国防科学技术大学研究生院,2005年11月
    [244] Andrew J.Kim, John W.Fisher, Anlan S.Willsky. Detection and Analysis of Anisotropic Scattering in Sar Data. Multidimensional Systems And Signal Processing, 2003. 49-82
    [245]Π.T.图契科夫主编.飞行器的雷达特性.马清海等译. 1988
    [246] Peter N. Stoyle. ISAR Image Interpretation. Non-Cooperative Air Target Identification Using Radar, NATO RTO Meeting Proceedings. Mannheim, Germany. Apr. 1998
    [247] Borden, B. Reduction of radar image artifacts caused by target inlets. SPIE, 3462:35-41
    [248] Brett Borden. Mathematical problems in radar inverse scattering. Institute of Physics Publishing, Inverse Problems 2002(18)
    [249] Brett Borden. Method for Appraising Radar Image Artifacts. IEEE Trans onAES,2000, 36(1):320-326
    [250] Victor C.Chen, Hao Ling. Time-Frequency Transforms for Radar Imaging andSignal Analysis. Boston: Artech House, 2002
    [251] Chen, V.C, Shie Qian. Joint time-frequency transform for radar range-Doppler imaging. IEEE Transactions on Aerospace and Electronic Systems, 1998,34(04):486-499
    [252] Shie Qian, Dapang Chen. Signal representation using adaptive normalized Gaussian functions. Signal Processing, 1994, 36(1):1-11
    [253]姜斌,和湘,王宏强,黎湘.改进的Log-Normal分布杂波仿真方法.电光与控制,2006,6
    [254]姜斌;和湘;黎湘;王宏强;郭桂蓉.一种改进的Weibull分布杂波仿真方法.中国工程科学,2007,1
    [255] Ali Moghaddar, Eric K.Walton. Time-Frequency Distribution Analysis of Scattering from Waveguide Cavites. IEEE Trans on AP, 1993, 41(3):677-680
    [256] Keshab K. Parhi,“VLSI Digital Signal Processing Systems Design and Implementation”. China Machine Press.2003.10.
    [257] M.Renfors and Y.Neuvo,“The maximum sampling rate of digital filters under hardware speed constraints,”IEEE Trans. on Circuits and Systems, vol. CAS-28, no.3, pp.196-202, March 1981.
    [258] M. Lam,“Software pipelining: an effective scheduling technique for VLIW machine,”in Proc. of the ACM SIGPLAN Conference on Programming Language Design and Implementation, (Atlanta), pp. 318-328, June 1988.
    [259] CUI Wei, LI Chenshu, SUN Xin. FPGA Implementation of Universal Random Number Generator. ICSP’04 Proceedings.
    [260]王胜,范红旗,高峰,付强基于SOPC技术的雷达信号回波中频模拟器研制,现代雷达,第28卷第10期2006年10月P93-97
    [261]王胜,范红旗,石志广微动复杂目标雷达散射截面计算方法,现代雷达,第30卷第6期2008年6月P32-39
    [262]王胜,石志广,范红旗基于目标电磁散射特性的雷达回波信号实时模拟系统的研制,电路与系统学报,第14卷第4期2009年8月P127-130
    [263] Mohamed M.EL Said, M.I. Elnasry. An Improved Rom Compression Technique for Direct Digital Frequency Synthesizers. 2002 IEEE: V-437 V-440
    [264] Jakeman E.Pusey P N .A model for non-Rayley sea clutter 1976
    [265] Ward K D.Watts S Radar sea clutter 1985
    [266] Oliver, C. J. Tough, R. J. A. On The Simulation of Correlated K-Distributed Random Clutter. Opt. Acta, 1986, 33(3): 223-250.
    [267] Vershik A M.Some characteristic properties of gaussian stochastic processes[J].Theory of Pmb and Its Appl,1964,9(3):353-356
    [268] Yao k. A representation theorem and its application to spherically invariant random processes [J].IEEE Trans on Information theory,1973,19(5):600—608
    [269] E. Conte, M. Longo, and M. Lops. Modelling and simulation of non-Rayleigh radar clutter. IEE Proceedings, Part F: Radar and Signal Processing, vol. 138, pp. 121-130, 1991.
    [270]杨俊岭,吕韶昱,万建伟.一种新的相干K-分布模型及其在海杂波仿真中的应用.系统仿真学报,2007,19(2):250-253,260.
    [271] AV奥本海姆,R W谢弗.离散信号处理哪.北京:科学出版社,2000.
    [272] H.Brehm and W.Stammler,“Description and generation of spherically invariant speech-model signals,”Signal Process.,vol.12,(2),pp.119-141,1987.
    [273] Huixuan Gao,“Statistical Computing”, Peiking university Press, Beijing, 1996.
    [274] M.Sekine, T.Musha, Y.Tomita, T.Hagisawa, T.Irabu, and E.kiuchi,“On Weibull distributed weather clutter,”IEEE Tans. On Aerospace and Electronic Systems, vol. AES-15, pp.824-828,1979.
    [275]邓焕,金荣华,陈俊,谢磊,曾晓洋;郭亚炜.基于振荡器的高性能真随机数发生器.固体电子学研究与进展,2007,8
    [276] E.Jakeman and P.Pussey,“A model for non-Rayleigh sea echo,”IEEE Trans. on Antennas and Propagation, vol. AP-24,pp.806-814,1976.
    [277] S. Watts and K.Ward,“Spatial correlation in K-distributed sea clutter,”IEE Proc.F, Commun., Radar ,Signal Process.,vol. 134,(6), pp. 526-532, 1987.
    [278] C. Hawkes and S. Haykin,“Modeling of clutter for coherent pulsed radar,”IEEE Trans. on Information Theory ,vol. IT-21, pp. 703-707,1975.
    [279] W. Szajnowski,“The generation of correlated Weibull clutter for signal detection problems,”IEEE Trans. on Aerospace and Electronic Systems, vol. SES-13, pp. 536-540, 1977.
    [280] P.Peebles,“The generation of correlated lognormal clutter for radar simulation,”IEEE Trans. on Aerospace and Electronic Systems, vol. AES-7, pp. 1215-1217, 1971.
    [281] A. Farina, A. Russo, F. Scannapieco, and S. Barbarossa,“Theory of radar detection in corherent Weibull clutter,”IEE Proc. F, Commun., Radar, Singnal Process., vol.134,(2), pp. 174-190, 1987.
    [282] E. Conte, G. Galati, and M. longo,“Exogenous modeling of non-Gaussian Clutter,”J. IERE, vol. 57, (4), pp. 151-155, 1987.
    [283] A. Farina, A. Russo, and F. Studer,“Coherent radar detection in log-normal clutter,”IEE Proc. F, Commun., Radar, Signal Process., vol.133,(1), pp. 39-54,1986.
    [284] De Zutter D.Doppler Effect from a Transmitter in Translational Motion [J].Microwaves Optical Acoustics,1979,3(2)
    [285] De Zutter D.Fourier Analysis of the Signal Scattered by Three-Dimensional Objects in Translational Motion [J].Application Sci. Res.,1980,36:241-269
    [286] Harfoush F,Taflove A,Kariegsmann G A.A Numerical Technique for Analyzing Electromagnetic Wave Scattering from Moving Surfaces in One and Two Dimensions[J].IEEE Trans. on Antennas and Propagation,1989,37(1):55-63
    [287] Van Bladel J.Relativity and Engineering.New York-Berlin: Springer-Verlag,1984
    [288] Van Bladel J.Electromagnetic Fields in the Presence of Rotating Bodies [J].Proc.of IEEE,1976,64(3):301-318
    [289] Pouliguen P , Lucas L , Muller F , et al . Calculation and Analysis of Electromagnetic Scattering by Helicopter Rotating Blades [J].IEEE Trans. on Antennas and Propagation,2002,50(10):1396-1408
    [290] Sengupta D L,Senior T B A.Electromagnetic Scattering by Rotating Objects [A].In Proc. URSI Symp. Electromagn. Wave Theory,1977:314-315
    [291] Lahaie I J,Sengupta D L.Scattering of Electromagnetic Waves by a Slowly Rotating Rectangular Metal Plate [J].IEEE Trans. on Antennas and Propagation,1979,27(1):40-46
    [292] Bor S S,Yang T L,Yang S Y.Radar Cross-Sectional Spectra of Rotating Multiple Skew-Plated Metal Fan Blades by Physical Optics/Physical Theory of Diffraction, Equivalent Currents Approximation.J. Appl. Phys. pt. 1,1992,31(5A):1549-1554
    [293] Yang T L,Bor S S.Comparison of Monostatic Doppler and Radar Cross-Section Spectra by Rotating Multiple Skew-Plated Metal Fan Blades [J].Int. J. Electron.,1992,72(4):659-668
    [294] Bhalla R,Ling H,Moore R,et al.3D Scattering Center Representation of Complex Targets Using the Shooting and Bouncing Ray Technique: A Review [J].IEEE Antennas and Propagation Magazine,1998,40(5):30-39
    [295] Mittra R.Analytic Radar Target Modeling.AD 755854,Dec,1972
    [296] Boag A.A Fast Physical Optics (FPO) Algorithm for High Frequency Scattering [A].IEEE Trans. on Antennas and Propagation,2004,52(1):197-204
    [297] Hall J M,Bunting Charles,West J.A Modified Fast Far Field Approximation for Improving Speed and Accuracy in Electromagnetic Scattering Computation[A].IEEE 1-4244-0123-2,2006:4011-4014
    [298] Hall J M,Bunting Charles,West J.A Novel Grouping Strategy for the Modified Fast Far Field Approximation Which Further Improves Speed and Accuracy [A].IEEE 1-4244-0123-2,2006:4019-4022
    [299] Wu F,Zhao Y J,Oo Z Z,et al.Parallel Fast Algorithm for Large-Scale Electromagnetic Scattering[A].Proc. of the 7th International Conference on High Performance Computing and Grid in Asia Pacific Region,2004
    [300] Youssef N N.Radar Cross Section of Complex Targets [J].Proceeding of the IEEE,1989,77(5)
    [301] Valakis J L.XPATCH: A High-Frequency Electromagnetic Scatering Prediction Code and Environment for Complex Three Dimension Objects [J].IEEE AP Magazine,1994,36(1)
    [302] Rius J M,Ferrando M,Jofre L.GRECO: Graphical Electromagnetic Computing for RCS Prediction in Real Time[J].IEEE Trans. on AP,1992,41(9)
    [303] Rius J M,Ferrando M,Jofre L.GRECO Graphical Electromagnetic Computing for RCS Prediction in Real Time[J].IEEE Antennas and Propagation Magazine,1993,35(2):7-17
    [304] Rius J M,Jofre C.High Frequency RCS of Complex Radar Targets in Real Time [J].IEEE Trans. on AP,1993,41(9):1308-1319
    [305] Lee S W,Wang H T G,Labarre G.Near-field RCS Computation.Appendix in the Mannual for NcPTD-1.2,Lee S W writer.Champaign,IL:DEMACO,1991
    [306] Lee S W,Baldauf J E,Kipp R A.Cpatch overiew.Description of Capability of Code Cpatch Developed by DEMACO,1994
    [307] Chen V C,Li F,Ho S S,et al.Aanalysis of Micro-Doppler Signatures[J].IEE Proc. on Radar, Sonar, and Navigation,2003,150(4):271-276
    [308] Chen V C,Lin C T,Pala W P.Time-Varying Doppler Analysis of Electro- magnetic Backscattering from Rotating Object [A].IEEE Conf. on Radar,2006:24-27
    [309] J.W. Odendaal, E. Barnard, C.W.I. Pistorius. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Trans. Antennas Propagat, 1994, 42(10): 1386-1391
    [310] J. Li and P. Stoica. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans. Signal Processing, 1996, 44(6): 1469–1484
    [311] K. T. Kim, H. T. Kim. Two-dimensional scattering center extraction based onmultiple elastic modules network. IEEE Trans. Antennas Propagat, 2003, 51(4):848-861
    [312] S. Y. Wang, S. K. Jeng. A deterministic method for generating a scattering-center model to reconstruct the RCS pattern of complex radar targets. IEEE Trans on Electromagnetic Compatibility, 1997, 39(4):315-323
    [313] E. J. Hughes, M. Leyland. Using multiple genetic algorithms to generate radar point-scatterer models. IEEE Trans. Evolutionary Computation, 2000, 4(2):147-163
    [314] G. Bettini, A. Bicci et al. Cluster model: a new procedure for the computation of E.M. scattering from radar targets. Proceedings of the 1996 IEEE Radar Conference , May 1996. 351-356
    [315] S. Simpson, P. Galloway, C. Bell. Complex target signature generation. Proceeding of ICSP’96. 485-488
    [316] A.Moghaddar, Y.Ogawa and E.K.Walton, "Estimation the time-delay and frequency decay parameter of scattering components using a modified MUSIC algorithm ,"IEEE Trans.Antennas Propagat,vol.42 ,pp .14 12-1418,O ct.19 94
    [317] J.W.Odendaal and P.A.V.Jaarsveld, "Parameter estimation of frequency-dependent scaterers using super resolution techniques," Microwave Optical Tech.Lett.,vol.10 ,pp .71 -74,Oct.1995 .
    [318] L.C.Poter,D .M.Chiang,R .Carriere and M .J.Gerry,"A GTD-based parametric model for radar scattering," IEEE Trans. Antennas Propagat,vol.43 ,pp .10 58-1067,Oct.19 95.
    [319] Q.Li,E.J.Rothwell, K.M.Chen and D.P.Nyquist" Scatering center analysis of radar targets using fitting scheme and genetic algorithm ,"IEEE Trans. Antennas 207,Feb.1996.
    [320] M.McClurr, R.C.Qiu and L.Carin," On the super resolution identification observables from Scattering swept-frequency data," IEEE Trans .Antennas Propagat., vol. of 45,pp .631-641,A pr.
    [321] BlaricumM L, Mitra R.A Technique for Extracting the Poles and Residues of a System Directly from Its Transient Response, IEEE Trans. On AP, 1975, 23(6):77 7-781.
    [322] Kumaresan R ,Tufts D W ,Estimating the Parameters of Exponentially Damped Signalsin Noise and Pole-Zero Modeling,IEEE Trans.on ASSP,19 82,30 (6):833-840.
    [323] Hurst M P and Mittra R ,Scatering Center Analysis via Prony's Method,IEEE Trans A P,1987,35 (8):986-988.
    [324] Steedly W M and Moses R L ,High Resolution Exponential Modeling of Fully Polarized Radar Returns,IEEE Trans A .E.S.,1 991,27 (5):459-469.
    [325] Carriere R, Moses R L, High Resolution Radar Target Modeling Using aModified Prony Estimator, IEEE Trans.A .P.,19 92,40 (1):13-18.
    [326] Sacchini J J , Steedly W M,Moses R L ,T wo-Dimensional Prony Modeling and Parameter Estimation,IEEE Trans Signal Processing,1993,41 (11):3127-3137.
    [327] Steinberg B D , Microwawe Imaging of Aircraft, Proc.IEEE,19 88,76 (12).
    [328] Steinberg B D, Experimental Localized Radar Cross Section of Aircraft, Proc. IEEE, 1989, 77(5):663-669.
    [329] Tseng F I ,Sarkar T K ,Deconvolution of the Impulse Response of a Conducting Sphere by the Conjugate Gradient Method, IEEE Trans. A .P. 19 87,35 (1) :105- 110
    [330] Tseng F I ,Sarkar T K ,Experimental Determination of Resonant Frequencies by Transient Scattering from Conducting Spheres and Cylinders,IEEE Trans. A. P . ,1984, 32 (9):914-918.
    [331] Ramm A G , Extraction of Resonances from Transient Fields. IEEE Trans .A P,1985 , 33 (2 ):2 23-226.
    [332] Keller J B, The Geometric Theory of Diffraction, Symposium on Microwave Optics, Eaton Electronic Research Lab., McGill Univ., Montreal, Can,June1953.
    [333] Keller J B, Geometrical Theory of Diffraction, J. Opt. Soc. Am., 1962, 52(9):116-130.
    [334] Kouyoumjian R G ,Pathak P H ,A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface, Proc. IEEE, 1974,62(11):1448-1461.
    [335] Poter L C , Da-Ming Chiang, A GTD-Based Parametric Model for Radar Scattering, IEEE Trans. on A .P., 1995,43(10):1058-1066.
    [336] Da-Ming Chiang, Parametric Signal Processing Techniques for Model Mismatch and Mixed Parameter Estimation, Ph. Dissertation, Ohio State University ,1996.
    [337] R. Bhalla, J. Moore, H. Ling. A global scattering center representation of complex targets using the shooting and bouncing ray technique. IEEE Trans. Antennas Propagat, 1997, 45(12): 1850–1856
    [338] R. Bhalla, H. Ling, et al. 3D scattering center representation of complex targets using the shooting and bouncing ray technique: a review. IEEE Antennas and Propagat Magazine, 1998, 40(5): 30-39
    [339] Rajan Bhalla, Hao Ling. A fast algorithm for signature prediction and image formation using the shooting and bouncing ray technique. IEEE Antennas and Propagation Society International Symposium, 1994. AP-S. Digest. 1990-1993
    [340] Tony Savides, Barry Dwolatzky. Radar simulation using the shooting and bouncing ray technique. IEEE Canadian Conference on Electrical and Computer Engineering, May , 2003. 307-310
    [341] Hao Ling, Ri-Chee Chou, Shung-Wu Lee. Shooting and bouncing rayscalculating the RCS of an arbitrarily shaped cavity. IEEE Trans on AP, 1989,37(2):194-205
    [342]谷萩隆嗣编伊藤秀男野口孝树藤原洋著“VLSI与数字信号处理”科学出版社北京
    [343] Delano R H.A Theory of Target Glint or Angular Scintillation in Radar Tracking[J].Proc. of IRE,1953,41(12):1778-1784
    [344] Gubonin N S.Fluctuatino of the Phase Front of the Wave Reflected from a Complex Target[J].Radio Engineering and Electronic Physics,1965,5(10):718-728
    [345] Borden B H,Mumford M L.A Statistical Glint/Radar Cross Section Target Model[J].IEEE Trans. on AES,1983,19(5):781-785
    [346] Sandhu G S,Saylor A V.A Real-Time Statistical Radar Target Model[J].IEEE Trans. on AES,1985,21(4):490-507
    [347] Tullsson B E . Monopulse Tracking of Raleigh Targets: A Simple Approach[J].IEEE Trans. on AES,1991,27(3):520-531
    [348] J.E. Volder,“The CORDIC Trigonometric Computing Technique,”IRE Trans. Electronic Comput., vol. EC-8, 1959, pp. 330-334.
    [349] J.S. Walther,“A Unified Algorithm for Elementary Functions,”in AFIPS Spring Joint Comput. Conf., 1971, pp. 379-385.
    [350] Thomson D.Riseborough S.Evaluation of a Weather Clutter Simulation[J].IEE Proc of Radar,Sonar andNavigation,2001,148(3):l19-129.
    [351] Ellonen I,Kaarna A.Rain Clutter Filtering from RadarData with Slope Based Filter[C]//Proc of the 3rd European Radar Conference,,2006:25-28.
    [352]邢姗姗,李侠,蔡万勇,等.云雨动杂波模拟及其在雷达性能检验中的应用[J].现代雷达,2006,28(9):27-31.
    [353]文仲辉.导弹系统分析与设计[M] .北京:北京理工大学出版社,1989. 179-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700