脉冲电流作用下球墨铸铁固态石墨化的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对水冷金属型离心铸造法生产球墨铸铁管高温退火中存在的高温耗能、易变形等问题,本文将脉冲电流处理技术用来加速球墨铸铁的固态石墨化过程。首先从理论上探讨了脉冲电流作用时球墨铸铁的固态石墨化行为,然后通过实验验证了理论研究结果的正确性,从而系统地阐述了脉冲电流作用下球墨铸铁的固态石墨化机理。
     理论研究表明,对铸态球墨铸铁进行脉冲电流处理,在渗碳体周围产生的位错塞积使其自由能增加而稳定性降低,渗碳体石墨化的驱动力增加,为渗碳体的快速石墨化提供了有利的热力学条件。本文建立了电流密度与渗碳体分解速率和石墨形核率的理论关系式,表明脉冲电流密度增加,渗碳体的石墨化进程加快。脉冲电流通过增加渗碳体的不稳定性系数和时间指数、降低碳原子在奥氏体中的扩散激活能来提高渗碳体的分解速率,通过降低石墨的形核势垒、缩短形核孕育期、增加石墨的形核位置来提高石墨的形核率,通过增加扩散前置系数、降低扩散激活能来提高碳原子在奥氏体中的扩散系数。石墨数量的增加缩短了碳在奥氏体内的扩散距离,促使碳原子快速转变成石墨,从而加速渗碳体的石墨化过程。
     实验发现,与未经脉冲电流处理相比,在920℃保温3min的同时施加300V、15Hz、3min的脉冲电流处理后,组织中渗碳体的含量降低了11%,新生石墨的数量增加了2%,新生石墨主要在奥氏体晶界形核并长成球状。室温下施加j_((max)≈1.67kA·mm~(-2)的脉冲电流处理后,组织中渗碳体的含量比未加脉冲电流处理时降低了12%,新生石墨的数量比未加脉冲电流处理时增加了3%,新生石墨主要在渗碳体附近形核并长成球状。这一结果表明,无论是在高温还是在室温对球墨铸铁施加脉冲电流,都能加速渗碳体的石墨化过程。实验结果验证了脉冲电流可加速球墨铸铁固态石墨化过程的理论分析。采用电子探针分析表明,脉冲电流处理后奥氏体基体中碳的分布变得更加均匀,证实了脉冲电流可加强碳原子在奥氏体内的扩散能力,与理论分析结果一致。
     本文系统研究了不同脉冲电流处理参数下球墨铸铁的固态石墨化过程。结果表明,脉冲电流作用下渗碳体的石墨化过程必须有温度做保证才能发挥电流的辅助作用。在高温施加低密度脉冲电流或在室温进行高密度脉冲电流处理,随着电流密度的增大、脉冲电流频率的加快和脉冲处理时间的延长,渗碳体的石墨化进程加快。在电压为3000V、电容为800μF的高密度脉冲电流处理下,球墨铸铁在13s内温度达到1100℃,渗碳体实现了快速石墨化。当球墨铸铁在920℃保温3min的同时施加参数为800V、20Hz、3min的脉冲电流时,渗碳体的石墨化过程基本完成。与完全消除渗碳体的正常高温石墨化相比,脉冲电流处理下,渗碳体石墨化的时间缩短了7min,温度降低了60℃。
     本文研究了脉冲电流作用下球墨铸铁的基体组织转变行为。结果发现,在球墨铸铁的高温石墨化中施加脉冲电流使空冷时铁素体的转变量增多,珠光体的量减少,珠光体的片层间距减小。
     本文的研究工作为应用脉冲电流促进球墨铸铁固态石墨化提供了理论和实验依据。
To the spherical graphite iron pipe made by hydrocooling metallic centrifugal casting, the high-temperature annealing is employed to remove the cemenite of the as-cast pipes, which leads to high energy consumption and the pipe distortion. In the paper, the pulse current treating technique was designed to accelerate the solid-state graphitization of spherical graphite iron. Firstly, the solid-state graphitization of spherical graphite iron by electropulsing was studied by the way of theory. The vality of theoretical research results was verified by the way of experimental technique. The mechanism of solid-state graphitization of spherical graphite iron under the effect of pulse current was formulated systematically.
     The theoretical research results show that the free energy of cementite increases by the pulse current due to the dislocation pile-up around the cementite, which makes the stability of the cementite reduced. The driving force for the graphitization of cementite by electropulsing increase, which create favorable thermodynamic condition for the quick graphitization of cementite. In the paper, the theoretical relationship between the dissolution rate of cementite, nucleation rate of graphite and the pulse current density was established. With the increase of pulse current density, the graphitization of cementite was accelerated. The dissolution rate of cementite was increased by increasing the unstability coefficient and time exponent, decreasing the diffusion activation energy. The nucleation rate of the graphite is increased by reducing the potential barrier of the graphite nucleation, shortening the incubation time of the graphite nucleation and increasing the nucleation site of the graphite. The diffusion coefficient of carbon increases by increasing diffusion preposition coefficient and reducing diffusion activation energy by the pulse current. The increased graphites shorten the diffusion distance of carbon in austenite and the carbon atom transform to the graphite quickly. So the graphitization of cementite is accelerated by the pulse current.
     The experimental results show that the content of cementite is decreased by 11% and the content of neonatal graphite is increased by 2% when the pulse current with the parameter of 300V、15Hz、3min was employed at 920°C compared with the unelectropulsing treating. The neonatal graphite nucleates at the austenite grain boundary. The content of cementite is decreased by 12% and the content of neonatal graphite is increased by 3% when the pulse current with j_(max)≈1.67kAmm~(-2) was employed at room-temperature compared with the unelectropulsing treating. The neonatal graphite nucleates near the cementite. These results showed that the graphitization of cementite is accelerated no matter the pulse current is employed at high temperature or at room temperature, which proves the theoretical analysis result that the pulse current can accelerate the solid state graphitization in spherical graphite iron. The electron probe analysis showed that the distribution of carbon becomes more homogeneous in the austenite after electropulsing treating, which declares that the pulse current can accelerate the carbon diffusion ability in the austenite. The experimental results agree well with the theoretical analysis results.
     The solid-state graphitization by the pulse current with different parameter was analysed theoretically. The results showed that secondary action of the pulse current to accelerate the graphitization of cementite can be displayed when the temperature is high enough. When the high density pulse current was applied at room-temperature and low density pulse current was employed at high temperature, with the increase of pulse current density, pulse current frequency and pulse current treating time, the graphitization of cementite is accelerated. The quick graphitization of cementite can be realized when the sample was heated to 1100℃in 13s by the pulse current with 3000V、800μF. The graphitization of cementite was finished basically when the pulse current with 800V、20Hz was employed at 920℃for 3 min. Compared with the normal graphitization for removing cementite completely, the time of high temperature graphitization was shortened about 7min, the temperature was decreased about 60℃.
     In the paper, the matrix structure transition of spherical graphite iron by the pulse current was studied. The results showed that the content of ferrite was increased, the content of perlite was decreased and the lamellar distance of perlite was decreased when the pulse current was employed during high temperature graphitization.
     The research work creates theoretical and experimental evidence for using electropulsing to accelerate solid state phase graphitization of spherical graphite iron.
引文
[1]王静松,薛庆国,王建中等.脉冲电场处理对铁液凝固过程石墨化的影响[J].铸造,2001,50(11):677-679.
    [2]曹丽云,王建中刘兴江等.脉冲电场GCR钢球化退火组织的影响[J].金属热处理,2001,26(11):6.
    [3]房贵如,王云昭.现代球墨铸铁的诞生、应用及技术发展趋势[J].现代铸铁,2000,1:3-12.
    [4]成时举.铁素体球铁终硅量探讨[J].球铁,1990,(3):61-153.
    [5]大桥正昭.Materials Competition[J].铸物,1983,(2):71-72.
    [6]Munira.Development of ferritic SG iron utiliozing high manganese pigiron[J].The Foundryman,1989,82:24-27.
    [7]C.F.Wilford,J.A.Behring.A New Teehniche for Producting As-Cast Ductile Iron[J].Modern Cast,1992,(5):32-34.
    [8]田永生.铸态铁素体球铁薄壁件的试生产[J].铸造,1998,(6):41-42.
    [9]陈其善.Si、Mn对厚断面铸态铁素体球铁组织及机械性能的影响[J].铸造技术,1995,(2):10-13.
    [10]任善之.大型厚壁球铁铸件生产现状及展望.98全国球铁年会技术论文,1998:12.
    [11]饶群章.铬铸态球铁曲轴的初步研究[J].球铁,1984,(2):6-13.
    [12]Wallace.D.Huskonen.Foundry Developments[J].Foundry,1966,94(10):194-196.
    [13]J.F.Janowak,R.B.Gundlach.Development of a Ductile Iron for Commercial Austempering[J].Transactions of AFS,1983,97:377-388.
    [14]罗伦科.大断面球铁曲轴纵横向曲样对比实验[J].铸造技术,1993,(5):6-7.
    [15]彭元亨.英国发动机铸铁件的生产与质量控制[J].铸造,1983,(6):49-56.
    [16]陈正德.铸态球铁曲轴[J].球铁,1988,(1):57-151.
    [17]杨盅亮.Sb、Re及Bi在铸态珠光体球铁中的应用[J].球铁,1987,(1):7-13.
    [18]王克远.国外铸铁的发展[J].球铁,1988,(1):1-7.
    [19]曾大本,唐靖林.我国铸铁铸造技术的回顾及展望[J].铸造,2002,51(4):196-200.
    [20]刘庆星.离心铸管[M].北京:机械工业出版社,1994.
    [21]陆文华.铸铁及其熔炼[M].北京:机械工业出版社,1981.
    [22]K.Ⅱ布宁著.铸造结构[M].北京:机械工业出版社,1977.
    [23]Hans Conrad.Effects of electric current on solid state phase transformations in metals[J].Materials Science and Engineering A,2000,287:227-237.
    [24]A.S.Keh,W.C.Leslie,Stadelmaier,W.Austin.Structures and Properties of Engineering Materials[J].Mater.Sci.Res.,1963,1:208.
    [25]H.Conrad,Y.Chen,H.A.Lu,P.Liaw,R.Viswanathan,K.L.Murty,E.Simonen,D.Frear.Microstructures and Mechanical Properties of Aging Materials[M].TMS.Warrendale,PA,1993:279.
    [26]R.A.Johnson,P.Liaw,R.Viswanathan,K.L.Murty,E.Simonen,D.Frear.Microstructures and Mechanical Properties of Aging Materials[M].TMS.Warrendale,PA,1993:357.
    [27]Hiroshi Mizubayashi,Ting Hao,Hisanori Tanimoto.Low temperature crystallization of amorphous alloys under electropulsing[J].Journal of Non-Crystalline Solids,2002,312:581-584.
    [28]Zhensheng Xu,Zuhan Lai,Yongxian Chen.Effect of electric current on the recrystallization behavior of cold worked α-Ti[J].Scripta Metallurgica,1987,(22):187-190.
    [29]J.L.M.Li.H.Margolia.Recrystallization,Grain Growth and Textures[M].ASM.Metals Park.1996:45.
    [30]Misra A K.Novel solidification technique of metals and alloys under the influence of applied potential[J].Metallurgical Transactions A,1985,16(7):1354-1357.
    [31]Misra A K.Misra technique applied to solidification of cast iron[J].Metallurgical Transactions A,1986,17:358-360.
    [32]顾根大,安阁英.电场作用下Sn-5%Bi合金的胞晶生长[J].机械工程学报,1989,27:187.
    [33]Ahmed S,Bond R,Mckannan E.Solidification processing superalloy in an electric field[J].Journal of Applied Manufacturing Systems,1991,4(2):25-29.
    [34]Ahmed S,Mckannan E.Control of gamma' morphology in nickel base superalloys through alloy design and densification processing under electric field[J].Materials Science and Technology,1994,10(11):941-946.
    [35]Schwarz K E.Electrolytic migration in liquid and solid metals[M].Edwards Brothers,1945.
    [36]Kakeshita Tomoyuki,Fukuda Takashi.Martensitic transformation in some ferrous and non-ferrous alloys under high magnetic field[C].The 3rd International Symposium on Electromagnetic Processing of material[ac]Nagoya:[sn],2000:584-589.
    [37]T.Kakeshita,K.Shimizu,T.Saburi,W.C.Johnson,J.M.Howe,D.E.Laughlin;W.A.Soffa(Eds.).Solid-Solid phase Transformations[M].TMS,Warrendale,PA,1994:817-822.
    [38]大冢秀幸.磁场对相变形核的影响[J].金属材料研究,1999,25(2):63.
    [39]Hideyuki Ohsuka,Ya Xu,Jong-Kyo Choi,Yukihiro Oishi,Teruyuki Mural,Hitoshi Wada[C].The 3rd International Symposium Electromagnetic Processing of Materials,2000:596.
    [40]Fokina E' A,Kaletin A Y,Olesov V N,Smirnov L V,Kaletina Y V.Influence of permanent magnetic field on pearlitic transformation and reversible temmpor brittleness in steels[J].Fiz Metal Metalloved,1995,79(4):110-118.
    [41]任福东,许伯钧,彭会芬,谷南驹.9SiCr钢磁场等温淬火新工艺的研究[J].金属热处理,1993,5:23-27.
    [42]Shimotomai M,Maruta K.Aligned two-phase structures in Fe-C alloys[J].Scripta Materialia,2000,42(5):499-503.
    [43]孙中继.耐磨铸铁的磁场热处理[J].金属热处理,1981,(1):33.
    [44]Seki M,Kawamura H,Sanokawa K.Natural convection of mercury in a magnetic field paralel to the gravity[J].Journal of Heat Transfer,Transactions ASME,1979,101(2):227-232.
    [45]贺幼良,杨院生,胡壮麒.电磁场作用下的金属凝固与成形[J].材料导报,2000,14(7):3-7.
    [46]Utech U P,Fleming M C.Thermal convection in metal crystal growth:effect of a magnetic field[J'].Trans.Metal.Soc.AIME.,1965,233:156.
    [47]Uhlmann D R,Seward T P,Chalmers B.The efect of magnetic fields on the structure of metal alloy castings[J].Trans.Metall.Soc.AIME.,1966,236(4):527-531.
    [48]Asai S.Effects of electric and magnetic forces on the solidified structures[J].Trans.ISIJ.,1978,64(1):34-41.
    [49]Umeda T.Effects of direct magnetic field on solidified structure[C].ISIJ ed.Report of the 11th meetin of Solidification Committee.Joint.Soc.,On rion and steel basic research.,1975.
    [50]Morando R,Blloni H,Cole G S.The development of macrostructure in ingot of increasing size[J].Met Trans..1970.1(5):1407-1412.
    [51]班春燕.磁场作用下铝合金的微观结构[J].东北大学学报(自然科学版),2002,8(23):779-782.
    [52]时海芳,顾春雷,刘晴.直流磁场对Al-Cu合金定向凝固组织的影响[J].有色金属,2003,55(1):13-17.
    [53]Kishida Yutaka,Takeda Kouichi,Miyoshino Ikuto,Takenchi Eiichi.Anisotropic effect of magnetohydrodynamics on metal solidification[J].ISIJ International.,1990,30(1):34-40.
    [54]Vives Charles.Perry Christian.Effects of magnetically damped convection during the controlled solidification of metals and alloys[J].International Journal of Heat and Mass Transfer,1987,30(3):479-496.
    [55]Langenberg F C,Pestel G,Honeycutt C R.Grain refinement of steel ingots by solidification in a moving electromagnetic field[J].Trans.Metall.Soc.AIME.,1961,221:993-1000.
    [56]Johnston W C,Kolter G R,Tiller W A.Trans.Metall.soc[M].TMS-AIM,.1963.
    [57]Takahashi T,Tiller W A.Study of nucleation process in liquid Bi and Bi-Te alloys using nuclear magnetic resonance(nmr) technique[J].Acta Metallurgica,1969,17(5):657-667.
    [58]Bassyouni T A.Effect of electromagnetic forces on aluminum cast structure[J].Light Metala,1983,33(12):733-742.
    [59]Tyler Derek E,Lewis Brian G,Renschen Patrick D.Electromagnetic casting of copper alloys[J].Journal of Metal,1985,37(9):51-53.
    [60]Vives C.Electromagnetic refining of aluminum alloys by the CREM process:Part Ⅰ:Working principle and metallurgical results[J].Metall.Trans.B.,1989,20(5):623-629.
    [61]Kobayashi SumioI,shimura Susumu,Yoshihara Masahiro.Factors affecting equiaxed zone generation in electromagnetic stirring[J].Transactions of the Iron and Steel Institute of Japan,1988,28(11):939-944.
    [62]Ohno A,Motegi T,Shimizu T.Formation of eqniaxed crystals in ammonium chloride-water model and Al alloy ingots by electromagnetic stitting[J].Journal of the Japan Institute of Metals,1982,46(5):554-563.
    [63]张奎,刘国钧,徐俊.电磁搅拌法连铸半固态铝合金及其凝固组织分析[J].中国有色金属学报,2000,2:47-50.
    [64]李树索,赵爱民等.半固态过共晶Al-Si合金显微组织中近球形相形成机理的研究[J].金属学报,2000,36(5):545-549.
    [65]毛卫民,李树索等.电磁搅拌对过共晶Al-Si合金中初生Si长大过程和形貌的影响[J].材料科学与工艺,2001,9(2):117-121.
    [66]LI Qiu-shu,LIU Li-qiang,ZHAI Qi-jie.Analysis of graphite morphology of gray cast iron in pulse magnetic field[J].Journal of Iron and Steel Research,2005,12(2):45-48.
    [67]吴存有,李廷举,温斌等.强磁场对球墨铸铁退火处理的影响[J].大连理工大学学报,2004,44(4):514-517.
    [68]H.Conrad,A.F.Sprecher.Dislocations in Solids[M].Elsevier,Amsterdam.The Netherlands,1989:497.
    [69]Tang D W,Zhon B L,Cao H,He G H.Thermal stress relaxation behavior in thin films under transient laser-pulse heating[J].J Appl Phys.,1993,73:3749.
    [70]Nabarro F R.Theory of Crystal Dislocation[M].Oxford Clarendon Press,1967,529.
    [71]R.E.Hummel.Electromigration and related failure mechanisma in integrated circuit interconnects[J].International Materials Reviews,1994,39:97-111
    [72]V.Y.Kravchenko.Influence of electrons on the deceleration of dislocations in metals[J].Soy.Phys.Sol.State.,1966,8(3):740-745.
    [73]K.M.Klimov,G.O.Shnyrev,I.I.Novikov.Electroplasticity of metals[J].Soy.Phys.—Dokl,1975,219:787-788.
    [74]K.Okazaki,M.Kagawa,H.Conrad.Additional results on the electroplastic effect in metals[J].Scr.Metall.,1978,13:277-280.
    [75]K.Okazaki,M.Kagawa,H.Conrad.A study of the electroplastic effect in metaLs[J].Scr.Metall.,1978,12:1063-1068.
    [76]K.Okazaki,M.Kagawa,H.Conrad.Effects of strain rate,temperature and interstitial content on the electroplastic effect in titanium[J].Scr.Metall.,1979,13:473-477.
    [77]S.K.Varma,L.R.Comwell.The electroplastic effeet in aluminum[J].Scr.Metall.,1979,13:733-738.
    [78]K.Okazaki,M.Kagawa,H.Conrad.An evaluation of the contribution of skin,pinch and heating effects to the electroplastic effect in titanium[J].Mater.Sci.Eng.,1980,45:109-116.
    [79]R.S.Timsit.Remarks on recent experimental observations of the electroplastie effect[J].Scr.Metall.,1981,15:461-464.
    [80]V.L.Silveira,M.F.Porto,W.A.Mannheimer.Electroplastic effect in copper subjected to low density current[J].Scr.Metall.,1981,15:945-950.
    [81]A.F.Sprecher,S.L.Mannan,H.Conrad.On the mechanisms for the electroplastic effect in metals[J].Acta Metall.,1986,34:1145-1162.
    [82]O.A.Troitskii,V.I.Spitsyn,M.M.Moiseenko,V.P.Lyashenko,N.K.Dyadyura,Y.V.Baranov,V.I.Poznanskii,V.N.Opimakh,N.E.Kir'yanchev.Electroplastic deformation of tungsten[J].Dokl.Akad.Nauk.SSSR.,1987,295:1114-1119.
    [83]H.Conrad,A.F.Sprecher.The electroplastic effect in metals In:F.R.N.Nabarro.Dislocations in Solids[M].Amsterdam:Elsevier Science Publishers,1989,499-541.
    [84]V.D.Klyushnikov,LV.Ovehinnikov.On the constitutive relations of electroplasticity[J].Isv.Akad.Nauk.SSSR MTT.,1990,25(5):89-96.
    [85]I.V.Ovchinnikov.Electroplasticity effect and the determination of ultimate plastic strain[J].Moscow Univ.Mech.Bull.,1992,47:8.
    [86]W.Cao,H.Conrad.Effects of stacking fault energy and temperature on the electroplastic effect in fcc metal.Micromechanics of Advanced Materials[M].TMS Publications,Warrendale.1995:225-236.
    [87]C.T.Stanton,C.S.Coffey,F.Zerilli.Investigation of the electroplastic effect using optical and conventional techniques[J].J.Mater.Res.,1995,10(2):258-260.
    [88]Michel I.Molotskii.Theoretical basis for electro-and magnetoplasticity[J].Materials Scienc and Engineeering A,2000,287(2):248-258.
    [89]S.J.Livesey,X.Duan,R.Priestner,J.Collins.An electroplastic effect in 31/4%silicon steel[J].Scripta Materialia,2001,44(5):803-809.
    [90]H.Conrad.Thermally activated plastic flow of metals and ceramics with an electric field or current[J].Mater.Sci.Eng.A.,2002,322:100-107.
    [91]H.Conrad,N.Karam,S.Mannan.Effect of electric current pulses on the recrystallzation of copper[J].Scripta Metall,1983,17(3):411.
    [92]H.Conrad,N.Katam,S.Mannan.Effect of prior cold work on the influence of electric current pulses on the recrystallization of copper[J].Scripta Metall,1984,18:275.
    [93]H.Conrad,N.Karam,S.Mannan,A.F.Sprecher.Effect of electric current pulses on the recrystallization kinetics of copper[J].Scripta Metall,1988,22(2):235.
    [94]H.Conrad,Z.Guo,A.F.Sprecher.Effects of high intensity electric field and current on the annealing response of Ni_3Al[M].Indianapolis:TMS Symposium in Intermetallic Compounds,1989.
    [95]Z.S.Xu,Z.H.Lai,Y.X.Chen.Effect of electric current on the recrystallization behavior of cold worked α-Ti[J].Scripta Metall,1988,22:187.
    [96]Zhuohui Xu,Guoyi tang,Shaoquan Tian,Jianchao He.Research on the engineering application of multiple pulses treatment for recrystallization of fine copper wire[J].Materials Science and Engineering A, 2004,24(5):300-306.
    [97]Yizhou Zhou,Suhong Xiao,Jingdong Guo.Recrystallizad microstructure in cold worked brass produced by electropulsing treatment[J].Materials Letters,2004,58:1948-1951.
    [98]S.H.Xiao,J.D.Guo,S.D.Wu,G.H.He,S.X.Li.Recrystallization in fatigued copper single crystals under electropulsing[J].Scripta Materialia,2002,46:1-6.
    [99]刘志义,刘冰,邓小铁,雷毅.脉冲电流对2091铝锂合金再结晶动力学的影响[J].中国有争金属学报,2000,10(6):37.
    [100]Z.H.Lai,H.Conrad,Y.S.Chao,S.Q.Wang,J.Sun.Effect of electropulsing on the microstructure and properties of iron-based amorphous alloys[J].Scripta Metall,1989,23(3):305-310.
    [101]腾功清,晁月盛,赖祖涵,董林.Fe_(78)B_(13)Si_9非晶合金纳米晶化的新方法[J].科学通报,1994,39(11):974-976.
    [102]H.Mizubayashi,R.Takemoto,Y.Seki.Collective motion of many atoms in amorphous alloys induced under passing electric current[J].Materials Science and Engineering A,1996,217:384-387.
    [103]Y.Z.Zhou,W.Zhang,B.Q.Wang,G.H.He,J.D.Guo.Grain refinement and formation of ultrafine grained microstrueture in a low-carbon steel under electropulsing[J].J.Mater.Res.,2002,17(8):2105-2111.
    [104]Y.Z.Zhou,W.Zhang,M.L.Sui,D.L.Li,G.H.He,J.D.Guo.Formation ofa nanostructure in a low-carbon steel under high current density electropulsing[J].J.Mater.Res.,2002,17(5):921-924.
    [105]Y.Z.Zhou,S.H.Xiao,J.D.Guo,G.H.He.Effect of electropulsing on microstructure and properties of cold worked brass[J].J.Mater.Res.,2002,16(4):375-378.
    [106]W.Zhang,M.L.Sui,Y.Z.Zhou,D.X.Li.Evolution of microstructures in materials induced by eletropulsing [J].Micron.,2003,34:189-198.
    [107]Z.H.Lai,Y.S.Chao,H.Conrad,K.Sun.Hyperfine structure changes in iron-base amorphous alloys produced by high current density electropulsing[J].Mater.Res.,1995,10(4):900-906.
    [108]Nakada M,Shiohara Y,Flemings M C.Modification of Solidification Structures by Pulse Electric Discharging[J].ISIJ International.,1990,30(1):27-33.
    [109]Li Jianming,Li Shengli,Lin Hantong et al.Modification of Solidification Structures by Pulse Electric Discharging[J].Scripta Metallurgica et Materialia,1994,31(12):1691-1694.
    [110]Barnak J P,Spreeher A F,Conrad H.Colony(grain) Size Reduction in Eutectic Pb-Sn Castings by Electroplusing[J].Scripta Metallurgica et Materialia,1995,32(6):879-884.
    [111]鄢红春,何冠虎,周本濂等.脉冲电流对Sn-Pb台金凝固组织的影响[J].金属学报,1997,33(4):352-358.
    [112]S.Corre,T.Duffar,M.Bernard et al.Numerical simulation and validation of the Peltier pulse marking of solid/liquid interfaces[J].Journal of Crystal Growth,1997,180(3):604-614.
    [113]王建中.电脉冲孕育处理技术研究及液态金属团簇结构假说[D].北京:北京科技大学,1998.
    [114]何树先,王俊,孙宝德等.高密度脉冲电流对过共晶Al-Si合金凝固组织的影响[J].中国有色金属学报,2002,12(2):275-278.
    [115]丘永福,高德民,陈磊,张洪军,李仁兴,戚飞鹏,翟启杰.脉冲电流对AZ91镁合金凝固组织和力学性能的影响[J].特种铸造及有色合金,2007,27(8):633-635.
    [116]Fan Jinhui,Chen Yu,Li Renxing,Zhai Qijie.Effect of Pulse Electric Current on Solidification Structure of Austenitic Stainless Steel[J].Journal of Iron and Steel Research International,2004,11(6):37-39.
    [117]范金辉,李仁兴,华勤,李祖齐,富知愚,翟启杰.脉冲电流对过共晶灰铸铁凝固组织的影响[J].钢铁研究学报,2004,16(5):59-62.
    [118]Liao Xiliang,ZhaiQijie,Chen Wenjie,GongYongyong.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J].Acta Materialia,2007,55:3103-3109.
    [119]Liao Xiliang,Zhai Qijie,Song Changjiang et al.Effect of electric current pulse on stability of solid/liquid interface of Al-4.5wt%Cu alloy during directional solidification.[J].Material Science and Engineering A,2007,466:56-60.
    [120]Conrad H,White J,Cao W D.Effect of electric current pulse on fatigue characterizes of polycrystalline [J].Mater Sci Eng A.,1991,145(1):11.
    [121]V.V.Levitin,S.V.Loskutov.The effect of a current pulse on the fatigue of titanium alloy[J].SOl/d State Communications,2004,131:181-183.
    [122]周亦胄,周本濂,郭晓楠,何冠虎.脉冲电流对45钢损伤的恢复作用[J].材料研究学报,2000,14(1).
    [123]O.A.Troitskii,Problemy Prochnosti.Left bracket Specific Features of Plastic Deformation of Metal When Current is Passed Through a Specimen right bracket[J].Elektronnaya Obrabotka Materialov,1975,7(7):14-19.
    [124]O.A.Troitskii,N.V.Sokolov,V.Spitsyn.Left bracket Electroplastic Drawing of Metastable Austenitic Steel right bracket[J].Elektronnaya Obrabotka Materialov,1980,96(6):63-66.
    [125]O.A.Troitskii,V.L Spitsyn,N.V.Sokolov,V.G.Ryzhkov.Application of high-density current in plastic working of metals[J].Physica Status Solidi Applied Research,1979,52(1):85-93.
    [126]O.A.Troitskii.Pressure shaping by the application of a high energy[J].Mater.Sci.Eng,1985,75:37-50.
    [127]田昊洋,唐国翌,丁飞,徐卓辉,姜雁斌.镁合金丝材的电致塑性拉拔研究[J].有色金属,2007,59(2):10.
    [128]Zhuohui Xu,Guoyi Tang,Shaoquan Tian,Fei Ding,Hao Tian.Research of electroplastic rolling of AZ31Mg alloy strip[J].Journal of Materials Processing Technology,2007,182(2):128-133.
    [129]O.A.Troitsldi,Y.A.Perlovich,V.N.Sikorov,B.A.Kruglov,A.L.Kostyshev,Y.V.Nikitenko,I.A.Lipyanko,M.G.Isayenkova.Features of texture formation in copper during electroplastic rolling[J].Phys.Met.Metall.,1991,71(5):176-180.
    [130]Yao K F,Wang J,Zheng M,Yu P,Zhang H.A research on electroplastic effects in wire drawing process of an austenitic stainless steel[J].Scripta Mater.,2001,45(5):533-539.
    [131]J.Zhang,G.Y.Tang,Y.J.Yan,W.Fang.Effect of current pulses on the drawing stress and properties of Cr17Ni6Mn3 and 4J42 alloys in the cold-drawing process[J].Journal of Materials Processing Technology,2002,(120):13-16.
    [132]Guoyi.Tang,Mingxin.Zheng,Yonghua.Zhu,Jie.Zhang,Wei.Fang Qun.The application of the electroplastic technique in the cold-drawing of steel wires[J].J.Mater.Proc.Technol.,1998,84:268-270.
    [133]Guoyi.Tang Jin.Zhang,Mingxin.Zheng,JieZhang,Wei.Fang,Qun.Li.Experimental study of electroplastic effect on stainless steel wire 304L[J].Materials Science and Engineering A,2000,281:263-267.
    [134]Guoyi.Tang,Jin.Zhang,Yunjie Yah,Huihua Zhou,Wei.Fang.The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire[J].Journal of Materials Processing Technology,2003,137:96-99.
    [135]D.Yang,H.Conrad.Influence of an electric field in the plastic deformation of polycrytalline NaCl at elevated temperature[J].Acta Mater,1998,46(6):1963.
    [136]W.Cao,A.F.Sprecher,H.Conrad.Effect of strain rate on the electroplastic effect in Nb[J].Scripta Metall,1989,23(1):151.
    [137]A.F.Sprecher,S.L.Mannan,H.Conrad.On the temperature rise associated with the electroplastic effect in titanium[J].Scripta Metall,1983,176:769.
    [138]J.Languillaume,G.Kapelski,B.Baudelet Cementite dissolution in heavily cold drawn pearlitic steel wires[J].Acta mater,1997,45(3):1201-1212.
    [139]冯端.金属物理学[M].北京:科学出版社,1987:460.
    [140]刘志义,刘冰,邓小铁等.脉冲电流对2091Al-Li合金超塑性变形机理的影响[J].金属学报,2000,36(9):944-951.
    [141]董晓华,候东芳,李尧.直流脉冲电流对7475铝合金超塑性变形中位错运动的影响[J].机械工程材料,2005,29(2):17-20.
    [142]张伟,隋曼龄,周亦胄,何冠虎,郭敬东,李斗星.高密度电脉冲下材料微观结构的演变[J].金属学报,2003,39(10):1009-1108.
    [143]刘宗昌,任慧平,宋义全.金属固态相变教程[M].北京:冶金工业出版社,2003:38
    [144]H.Conrad,A.F.Sprecher.Dislocations in Solids[M].Amsterdam.1989:497.
    [145]秦荣山.电脉冲作用下的非平衡转变研究[D].沈阳:中国科学院金属研究所,1996.
    [146]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社,2004:128.
    [147]程开甲,程漱玉.论位错的稳定存在[J].稀有金属材料与工程,2000,31(2):81-83.
    [148]Y.Z.Zhou,R.S.Qin,S.H.Xiao,G.H.He,B.L.Zhou.Reversing effect of electropulsing on damage of 1045steel[J].J.Mater.Res.,2000,15:1056.
    [149]郝石坚.现代铸铁学[M].北京:冶金工业出版社,2004,355.
    [150]冯端.金属物理学[M].北京:科学出版社,2000,119.
    [151]刘渤然,张彩培,赖祖涵.冷轧态Al-Li-Cu-Mg-Zr合金在脉冲电流作用下超塑形变中的位错形态[J].材料研究学报,2000,14(2):218-220.
    [152]Hiroshi.Mizubayashi,Ting Hao,Hisanori Tanimoto.Low temperature crystallization of amorphous alloys under electropulsing[J].Journal of Non-Crystalline Solids,2002,312:581-584.
    [153]Z.H.Lai,H.Conrad,G.Q.Teng,Y.S.Chao.Nanocrystallization of amorphous Fe-Si-B alloys using high current density electropulsing[J].Materuals Science and Engineering A,2000,287:238-247.
    [154]方俊鑫,陆栋.固体物理学[M].上海:科学技术出版社,2003,172.
    [155]Huntington H B,Nowick A S,Burton J J eds;Diffusion in solid:Recont Developments[M].New York Academic,1974:303.
    [156]R.A.Johnson,P.Liaw,R.Viswanathan,K.L.Murty,E.Simonen,D.Frear.Microstructures and Mechanical Properties of Aging Materials[M].TMS,Warrendale,PA,1993:357.
    [157]刘志义.铝锂合金电致高速超塑性[D].沈阳:东北大学博士学位论文.1993
    [158]Zhijian Shen,Mats Johnsson,Zhe Zhao et al.Spark Plasma Sintering of Alumina[J].J.Am.SOc.,2002,85(8):1921-1927.
    [159]Yang W,Wang W,Suo Z.Cavity and Dislocation Buckling in Electron Wind[J].J.Mech.Phys.Solids,1994,42(6):897-911.
    [160]周亦胄.金属材料在脉冲电流作用下的裂纹愈合和超细晶化[D].沈阳:中国科学院金属研究所.
    [161]冯端.金属物理学(第一卷)[M].北京:科学出版社,1987:515.
    [162]赵海东,柳百成.球墨铸铁件铁素体与珠光体形成的数值模拟[J].铸造技术,2006,27(5):434-438.
    [163]Lacaze J.Peadite Growth in Cast Irons:a Review of Literature Data[J].Inter.J.of Cast Metal Res.,1999,11:431-436.
    [164]S.H Xiao,Y.Z Zhou,J.D Guo,S.D Wu,G.Yao,S.X Li,G.H.He,B.L.Zhou.The effect of high current pulsing on persistent slip bands in fatigued copper single crystals[J].Materials Science and Engineering A,2002,332:351-355.
    [165]Y.Z.Zhou,W.Zhang,B.Q.Wang,G.H.He,J.D.Guo.Grain refinement and formation of ultrafine grained microstructure in a low-carbon steel under electropulsing[J].J.Mater.Res,2002,17(8):2105-2111.
    [166]Y.Z.Zhou,W.Zhang,M.L.Sui,D.L.Li,G.H.He,J.D.Guo.Formation of a nanostructure in a low-carbon steel under high current density electropulsing[J].J.Mater.Res,2002,17(5):921-924.
    [167]Y.Z.Zhou,S.H.Xiao,J.D.Guo,G.H.He.Effect of electropulsing on mierostructure and properties of cold worked brass[J].J..Mater.Res,2002,16(4):375-378.
    [168]冯端.金属物理学(第一卷)[M].北京:科学出版社,1987:327.
    [169]潘邻.表面改性热处理技术与应用[M].北京:机械工业出版社,2006:13.
    [170]刘宗昌,王振国,王玉锋,朱文方,陈龙.铸铁中渗碳体高温石墨化研究[J].包头钢铁学院学报,2002, 21(2):150-154.
    [171]肖素红,郭敬东,吴世丁等.电脉冲处理下疲劳铜单晶的再结晶[J].金属学报,2002,38(2):161-165.
    [172]奇利,滕功清.电脉冲处理过程中试样温度的理论计算[J].北京机械工业学院学报,2001,16(3):54-63.
    [173]Zhou Y.Z.,Qin R.S.,Xiao S.H.,He G.H.,Zhou B.L.Reversing effect of electropulsing on damage of 1045 steel[J].J Mater Res,2000,15:1056-1061.
    [174]朱延东,舒信福,邢泽炳,李玉中,李玲芳.低碳球墨铸铁的显微组织分析[J].机械工程材料,2005,29(9):38-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700