复杂枝杈类转向节精密成形数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转向节是汽车转向系统的关键零件,对其机械性能和表面质量要求非常严格。目前国内枝杈类转向节锻件生产工艺落后,成为其提高生产效率、改善产品质量的瓶颈。因此如何高效、节能地生产出优质的枝杈类转向节锻件,已成为汽车行业亟待解决的技术问题。
     本文以复杂锻件的精密成形为指导思想,根据闭塞挤压成形理论,以捷达轿车转向节为研究对象,在深入分析该类锻件成形特点的基础上,首次提出采用闭塞挤压成形的方法成形转向节锻件。
     为了验证闭塞挤压成形枝杈类转向节锻件的可行性,对捷达轿车转向节成形过程进行了实验研究,拟定了成形工艺,设计了成形模具,获得了尺寸精确、表面质量良好的铅和40Cr转向节1:2试件。通过对40Cr试件进行金相组织分析,发现该锻件的晶粒组织明显细化,说明闭塞挤压成形工艺可明显提高锻件的机械性能。在此基础上分析了锻件产生缩孔缺陷的主要因素,并提出了相应的解决方案。
     在实验研究和数值分析的基础上,提出了“一火两锻”的成形新工艺,即首先采用闭塞挤压技术生产预锻件,然后进行开式终锻。该工艺的关键是预锻成形工序的设计。通过在DEFORMTM环境下对“一火两锻”成形过程中的应力、应变、速度和温度场等的分布规律的模拟,研究了枝杈类锻件闭塞挤压塑性成形规律。模拟结果表明,“一火两锻”工艺能显著改善变形金属流动、降低锻压设备公称压力和提高模具寿命。
     为进一步降低预锻成形力、提高模具和冲头的使用寿命,将挤压带式闭塞挤压引入“一火两锻”成形工艺。通过热力耦合分析,获得了挤压带长度、摩擦条件、模具工作温度、冲头挤压速度等主要工艺参数对金属流动规律、挤压力和张模力的影响,揭示了挤压带式闭塞挤压成形机理,为该工艺的实际应用提供了重要参考。
     利用上限法推导了挤压带式闭塞挤压成形具有空间角度枝杈的复杂锻件的挤压力计算公式。运用该公式计算了捷达轿车转向节锻件挤压力,计算结果与模拟结果较好吻合,说明该公式具有较高的计算精度。
     本文通过数值模拟,证明了以挤压带式闭塞挤压成形为基础的“一火两锻”成形工艺,在成形复杂枝杈类转向节锻件的可行性。该工艺不仅拓宽了闭塞挤压工艺的应用范围,而且大大简化复杂枝杈类锻件的生产过程,可降低生产成本,为复杂枝杈类锻件精密成形提供了一条行之有效的途径。
Steering knuckle is the key part of vehicle steering system, so the requirements of its mechanical properties and surface qualities are very strict. The current production technologies of branch-like steering knuckle are obsolete, which become the restriction of increasing productivity and improving the quality. It becomes urgent technical matters for automotive industry to produce the parts efficiently and economically.
     In this dissertation, with the guidelines of precision forming complex forging pieces, basing on the forming theory of closed die extrusion, choosing the Jetta steering knuckle to be investigated, analyzing its forming characteristics deeply, the closed die extrusion technology is proposed to form steering knuckle forging piece firstly.
     To verify the feasibility of closed die extrusion technology forming branch-like steering knuckle forging piece, experimental researches are carried on the forming process of Jetta steering knuckle, forming technology has been drawn up, and dies have been designed. Precise and qualified 1:2 lead and 40Cr specimens have been obtained. With the metallurgical analysis of 40Cr forging pieces, it is presented that the crystal grain has been refined and the mechanical property can be improved with the technology. The mechanism and influencing factors of shrinkage cavity defect are analyzed on this basis.
     Based on experimental researches and numerical analysis, the technology of two forging steps in one heat is presented, which consist of closed die extrusion preforging and open die finish forging, whose critical step is preforging process. By utilizing DEFORMTM software, the stress, strain, velocity and temperature fields during forming process are obtained, and then the plastic forming law of branch-like forging pieces in closed die extrusion has been studied. Simulation results show that with the technology of two forging steps in one heat, the metal flow can be improved evidently, the nominal pressure of forging press equipments can be reduced, and die life can be prolonged.
     To further reduce the shaping force of preforging and increase the service life of dies and punches, closed die extrusion with extrusion-belt is introduced to the technology of two forging steps in one heat. By the thermo-mechanical coupling simulation, the influence of main technological parameters to metal flow, extrusion force and opening force are studied and determined, such as extrusion-belt length, friction conditions, die work temperature and punch extrusion speed, then the mechanism of closed die extrusion with extrusion-belt is acquired, which are very important to the actual application of the technology.
     By using upper bound method, the extrusion force formula is deduced, which is appropriate for closed die extrusion with extrusion-belt forming complicated forging pieces with space angle branches. By using the formula, the extrusion forces in closed die extrusion forming Jetta steering knuckle are calculated. The calculation results agreed with simulation results, which indicate that the formula has high calculation accuracy.
     By using numerical simulation, it is approved that the technology of two forging steps in one heat is feasible, whose core is closed die extrusion with extrusion belt. The new technology enlarges the applying range of closed die extrusion, greatly simplifies the production technology of complicated branch-like forging pieces, reduces the production cost, and provides effective method for the precision forming of the complicated branch-like forging parts.
引文
1 ?ngelo Caporalli, Luciano Antonio Gileno, Sérgio Tonini Button. Expert System for Hot Forging Design. Journal of Materials Processing Technology, 1998, (80~81): 131~135
    2李敏贤,闵乃燕,安桂华,等.精密成形技术发展前沿.中国机械工程, 2000, 11(1~2): 183~187
    3梁继才,付沛福,黄良驹,等.轿车等速万向节星形套闭式模锻变形分析,汽车工艺与材料, 2000, (1): 8~9
    4 H. N?gele, H. W?rner, M. Automotive Parts Produced by Optimizing the Process Flow Forming-machining. Journal of Materials Processing Technology, 2000, (98): 171~175
    5陈贤杰,雷源忠,李敏贤.先进制造技术在我国的进展.我国先进制造技术发展战略学术研讨会论文集,上海, 1998: 81~85
    6 Hyoji Yoshimura, Katsuhisa Tanaka. Precision Forging of Aluminum and Steel. Journal of Materials Processing Technology, 2000, (98): 196~204
    7 B.-A. Behrens , E. Doege , S. Reinsch , K. Telkamp , H. Daehndel, A. Specker. Precision Forging Processes for High-duty Automotive Components. Journal of Materials Processing Technology, 2007, (185): 139~146
    8 R. Cominotti, E. Gentili. Near Net Shape Technology: An Innovative Opportunity for the Automotive Industry. Journal of Materials Processing Technology, 2008, (24): 722~727
    9 B.I. Tomov, V.I. Gagov. Modeling and Description of the Near-net-shape Forging of Cylindrical Spur Gears. Journal of Materials Processing Technology, 1999, (93~94): 444~449
    10杨沿平,范叶,钟勇,等.汽车精密成型技术现状与发展趋势刍议.汽车工程, 2003, 25(6): 625~629
    11董启生,付茂华.汽车前桥转向节失效因素探析及预防.山东机械, 2004, (4): 37~38
    12袁敏,赵韩,钱德猛.基于ANSYS的某型客车转向节的弯曲强度分析.客车技术, 2005, (1): 9~11
    13 R. d'Ippolito, M. Hack, S. Donders, L. Hermans, N. Tzannetakis, D.Vandepitte. Improving the Fatigue Life of a Vehicle Knuckle with a Reliability-based Design Optimization Approach. Journal of Statistical Planning and Inference, 2009, (139): 1619~1632
    14 G. Leclère , A. Nême, J.Y. Cognard, F. Berger. Rupture Simulation of 3D Elastoplastic Structures under Dynamic Loading. Computers & Structures, 2004, (82): 2049~2059
    15林家让.汽车构造(底盘篇).北京:电子工业出版社, 2004: 122~124
    16佟景桂.汽车转向节制造技术.工程设计与应用研究, 1994, (1):12~21, 37
    17李尚健.锻造工艺及模具设计资料.北京:机械工业出版社, 1991, 121~122
    18汪泽波,胡成亮,刘全坤,等.汽车转向节成形过程的三维有限元模拟.锻压与冲压, 2007,(8): 28~30
    19董之社.轿车转向节锻件半封闭挤压工艺.锻压技术, 2000, (6): 9~10
    20周杰,孙小孟,权国政,等.异形转向节工艺设计及成形分析.锻压装备及制造技术, 2005, 40(5): 37~39
    21王公平,石光华.微车转向节系列球铁铸件的壳型铸造.特种铸造及有色合金, 2007, 27(7): 538~539
    22陈勉己.国外汽车工业中的铸铁件铸造新工艺.机械工人:热加工, 2001, (8): 3~6
    23 G. Hirt, R. Cremer, T. Witulski. Lightweight Near Net Shape Components Produced by Thixoforming. Materials & Design, 1998, 18 (4~6): 315~321
    24 Sang-Yong Lee, Se-Il Oh. Thixoforming Characteristics of Thermo-mechanically Treated AA 6061 Alloy for Suspension Parts of Electric Vehicles. Journal of Materials Processing Technology, 2002, (130~131): 587~593
    25田福祥.弯杆型喷嘴挤压模设计.热加工工艺, 2004, (9): 58~60
    26吕炎.锻造工艺学.机械工业出版社, 1995: 109~111, 254~255
    27高雄昭好.最近の閉塞鍛造プレスによる加工実例を.プレス技术, 1990, (6): 57~61
    28筱崎吉太郎,吉村豹治,安藤弘行.精密鍛造へのパスポート閉塞鍛造技術.塑性と加工, 1999, (4): 26~31
    29 J.J. Park, H.S. Hwang. Economic Net-shape Forming of TiAl Alloys for Automotive Parts. Intermetallics, 2006 (14): 1163~1167
    30 J.-H. Song, Y.-T. Im. Process Design for Closed-die Forging of Bevel Gear by Finite Element analyses. Journal of Materials Processing Technology, 2007, (192~193): 1~7
    31 W. Bochniak, A. Korbel, R. Szyndler, R. Hanarz. New Forging Method of Bevel Gears from Structural Steel. Journal of Materials Processing Technology, 2006, (173): 75~83
    32 Chengliang Hu, Kesheng Wang, Quankun Liu. Study on a New Technological Scheme for Cold Forging of Spur Gears. Journal of Materials Processing Technology, 2007, (187-188): 600~603
    33 M. Skunca, P. Skakun, Z. Keran, L. Sidjanin, M.D. Relations between Numerical Simulation and Experiment in Closed Die Forging of a Gear. Journal of Materials Processing Technology, 2006, (177): 256~260
    34 H.Q. Chen, Q.C. Wang, H.G. Guo. Research on the Casting-forging Precision Forming Process of Alternator Poles. Journal of Materials Processing Technology , 2002, (129): 330~332
    35 Naunit R. Chitkara, Yohng J. Kim. Near-net Shape Forging of a Crown Gear: Some Experimental Results and an Analysis. International Journal of Machine Tools & Manufacture, 2001, (41):325~346
    36 Esa Ervasti, Ulf St?hlberg. A Quasi-3D Method Used for Increasing the Material Yield in Closed-Die Forging of a Front Axle Beam. Journal of Materials Processing Technology, 2005, (160): 119~122
    37 Tahir Altinbalik, H. Erol Akata, Yilmaz Can. An Approach for Calculation of Press Loads inClosed-Die Upsetting of Gear Blanks of Gear Pumps. Materials and Design, 2007, (28): 730~734
    38 K. Shi, D.B. Shan, W.C. Xu, Y. Lu. Near Net Shape Forming Process of a Ttitanium Alloy Impeller. Journal of Materials Processing Technology, 2007, (187~188): 582~585
    39 Debin Shan, Fang Liu, Wenchen Xu, Yan Lu. Experimental Study on Process of Precision Forging of an Aluminum-alloy Rotor. Journal of Materials Processing Technology, 2005, (170):412~415
    40王华君,夏巨谌,钱应平,等.主动螺旋伞齿轮闭塞模锻物理模拟.华中科技大学学报(自然版), 2005, (08): 78~80
    41櫛部悠記,高橋正樹.閉塞型鍛造プレスと加工事例.三菱重工业株式会社社刊, 1983:66~72
    42吉村豹治,島崎定.閉そく鍛造法の現状.塑性と加工, 1983, (8): 781~785
    43 Takashi Nakano. Modern Application of Complex Forging and Multi-action Forming in Cold Forging. Journal of Materials Processing Technology, 1994, (46): 201~226
    44肖景容.精密模锻.北京:机械工业出版社, 1985: 156~160
    45斯普林格.金属成形技术手册.格平根:德国舒勒股份公司, 1999: 437~440
    46 R.Naunit Chitkara, Yohng J. Kim. Near-net Shape Forging of a Crown Gear: Some Experimental Results and an Analysis. International Journal of Machine Tools & Manufacture 2001, (41): 325~346
    47 B. Talebanpour, R. Ebrahimi. Upper-bound Analysis of Dual Equal Channel Lateral Extrusion. Materials & Design, 2009, 30(5): 1484~1489
    48 Yilmaz Can, Cenk Misirli. Analysis of Spur Gear Forms with Tapered Tooth Profile. Materials & Design, 2008, 29(4): 829~838
    49 Yilmaz ?an, Tahir Alt?nbalik, H. Erol Akata. A study of Lateral Extrusion of Gear like Elements and Splines. Journal of Materials Processing Technology, 2005, 166(1): 128~134
    50刘化民,梁继才,李义.圆柱体闭塞模锻变形摄动方程的建立.吉林工业大学自然科学学报, 2001, 31(3): 20~25
    51梁继才,黄良驹,李义,等.星形套闭塞模锻光塑性模拟研究.机械强度, 2003, 25(2): 178~182
    52梁继才,李义,黄良驹,等.闭塞模锻成形凸模受力分析.吉林大学学报(工学版), 2004, 34(1): 97~101
    53洪深泽.冷挤压工艺及模具设计.北京:机械工艺出版社, 1985: 20~29
    54靳辅安,苏升贵,高新.十字头锻件挤压成形的研究.金属科学与工艺, 1983, (3): 82~91
    55王广春,管婧,李玲.面向微观组织优化的锻造工艺预成形优化设计,锻压技术, 2005, 32(1): 10~12
    56丁金根,汪忠良.挤压成形在锤上模锻中的应用.模具工业, 2003, 271(9): 43~45
    57邹安全,邓沛然. H13钢组织性能对热锻模使用寿命的影响.中国机械工程, 2004, 15(24):2248~2251
    58王凤生,刘颖,刘凯泉.叉车门架热挤压工艺试验与研究.一重技术, 2004, (1): 32~33
    59许树勤,池成忠.双联齿轮半精锻工艺的试验研究.材料科学与工艺, 2000, 8(4): 54~56
    60杨慧,张质良.温热精密成形微观组织模拟研究.热处理, 2003, 18(4): 1~4
    61王科,武金有.圆柱齿轮镦挤成形的模拟研究.机械工程与自动化, 2005, (3): 39~41
    62 Abel D. Santos, J. Ferreira Duarte, Ana Reis, Baratada Rochaect. The Use of Finite Element Simulation for Optimization of Metal Forming and Tool Design. Journal of Materials Processing Technology, 2001, (119): 152~157
    63 S.Y. Yuan, L.W. Zhang, S.L. Liao, G.D. Jiang, Y.S. Yu, M. Qi. Simulation of Deformation and Temperature in Multi-pass Continuous Rolling by Three-dimensional FEM. Journal of Materials Processing Technology, 2009, 209(6): 2760~2766
    64周杰.炮弹弹体毛坯精密热成形数值模拟仿真与试验研究. [重庆大学博士论文]. 2003:15~18
    65 S. Kobayashi. Metal Forming and the Finite Element Method-Past and Future. 25th International MTDR Conference, Birmingham, 1985: 17
    66 Zienkiewicz. The Finite Element Method. 3rd Edition, New York, McGraw-Hill, 1979: 56~74
    67陈如欣,胡忠民.塑性有限元及其在金属成形中的应用.重庆大学出版社, 1989: 10~20
    68孙新岭,周杰,朱革,等.基于罚函数法和Backofen模型的刚粘塑性有限元列式推导.金属成形工艺, 2000, (2): 39~41
    69 G. Li, J.T. Jinn, W.T. Wu, S.I. Oh. Recent Development and Applications of Three-dimensional Finite Element Modeling in Bulk Forming Processes. Journal of Materials Processing Technology, 2001, (113): 40~45
    70 S.I. Oh, W.T. Wu, J.P.A. Tang. Capability and application of FEM code DEFORM. Journal of Material Processing Technology, 1991, (27): 25~42
    71赵国群,王广春,马新武.塑性有限元模拟中材料体积损失的控制方法.金属成形工艺, 1999, 17(6): 12~15
    72詹艳然,张中元.刚塑性有限元模拟中罚因子的取值.锻压技术, 2000, 25(1): 7~9, 12
    73张清萍,尚勇,赵国群,等.直齿圆柱齿轮精锻成形过程数值模拟及参数分析.中国机械工程, 2004, 15(17): 1546~1548
    74寇淑清,杨慎华,邓春萍,等.直齿圆锥齿轮冷闭塞锻造数值模拟分析.中国机械工程, 2003, 14(20): 1721~1724
    75陈军,王玉国,王跃先,等.金属塑性成形有限元模拟中的六面体单元再划分技术研究进展.塑性工程学报, 2002, 9(3): 1~5
    76左旭,陈军.复杂体积成形三维有限元仿真的关键技术.金属学报, 1999, 35(3): 325~329
    77 Cheng Lv, Liwen Zhang, Zhengjun Mu, Qingan Tai, Quying Zheng. 3D FEM Simulation of the Multi-stage Forging Process of a Gas Turbine Compressor Blade. Journal of Materials Processing Technology, 2008, 198(1~3): 463~470
    78 Hyunkee Kim, Kevin Sweeney, Taylan Altan. Application of Computer Aided Simulation toInvestigate Metal Flow in Selected Forging Operations. Journal of Material Processing Technology, 1994, (46): 127~154
    79王敏婷. 40Cr钢奥氏体热变形及轴类件楔横轧微观组织演变预报. [燕山大学硕士论文]. 2002: 31~32
    80赵德颖.轿车转向节闭塞挤压精密成形新工艺研究. [燕山大学硕士论文]. 2003: 38~39
    81杨振恒.锻造工艺学.西北工业大学出版社, 1986: 112
    82彭颖红,周飞,阮雪榆.汽车联轴节壳体挤压成形过程三维有限元数值模拟.上海交通大学学报, 1998, 32(5): 18~22
    83 P. Petrov, V. Perfilov, S. Stebunov. Prevention of Lap Formation in Near Net Shape Isothermal Forging Technology of Part of Irregular Shape Made of Aluminum Alloy A92618. Journal of Materials Processing Technology, 2006, (177): 218~223
    84刘运祯,张耀忠,方泉水,等.铝合金拉杆冷挤压缩孔缺陷数值模拟分析.模具工程, 2006, (10): 60~63
    85 Haluk Tumer, Faz?l O. Sonmez. Optimum Shape Design of Die and Preform for Improved Hardness Distribution in Cold Forged Parts. Journal of Materials Processing Technology, 2009, 209(3): 1538~1549
    86 M. Sedighi, S. Tokmechi. A New Approach to Preform Design in Forging Process of Complex Parts. Journal of Materials Processing Technology, 2008, 197(1~3):314~324
    87 A.N. Bramley, UBET and TEUBA: Fast Methods for Forging Simulation and Preform Design. Journal of Materials Processing Technology, 2001, (116): 62~66
    88 G. Zhao, Z. Zhao, T. Wang, R.V. Grandhi. Preform Design of a Generic Turbine Disk Forging Process. Journal of Materials Processing Technology, 1998, (84): 193~201
    89 J.J. Park , H.S. Hwang. Preform Design for Precision Forging of an Asymmetric Rib-web Type Component. Journal of Materials Processing Technology, 2007, (187~188): 595~599
    90蒋鹏,方刚,曹世金,等.奔驰重卡转向节挤压锻造复合工艺有限元分析.锻压技术, 2006, 1(31): 22~27
    91彭颖红,周飞,阮雪榆.汽车联轴节壳体挤压成形过程三维有限元数值模拟.上海交通大学学报, 1998, 32(5): 18~22
    92马新武,赵国群,王芳.体积成形过程预成形优化设计系统的开发研究.塑性工程学报, 2004, 11(1): 9~10
    93高军,赵国群,李立华.基于有限元法的正反向模拟技术在链轨节锻造中的应用.锻压技术, 2002, (5): 5~9
    94 F.N. Osman, A.N.Bramley, M.I.Ghobrial. Forging and Perform Design Using UBET. Processing Ist International Conference in Technology of Plasticity(ICTP), 1984: 76~85
    95 J.J. Park, N. Rebelo, S. Kobayashi. A New Approach to Preform Design in Metal Forming with the Finite Element Method. International Journal of Machine Tool Design & Research, 1983, 23(1): 71~79
    96 S.M. Hwang, S. Kobayashi. Preform Design in Plane-strain Rolling by the Finite Element Method. International Journal of Machine Tool Design & Research, 1984, 24(4): 253~266
    97 S.M. Hwang, S. Kobayashi. Perform Design in Disk Forging. International Journal of Machine Tool Design & Research, 1986, 26(3): 231~243
    98 N. Kim, S. Kobayashi. Perform Design in H-shaped Cross Section Axisymmetric Forging by the Finite Element Method. International Journal of Machine Tools Manufacture, 1990, 30(2): 243~268
    99 B.S. Kang, J.H. Lee, S.H. Kim. Development of a Methodology to Form Net-shape Nosing Shells by the Backwards Tracing Scheme of the Rigid-plastic FEM. International Journal of Machine Tool Design & Research, 1997, 37(6): 737~750
    100吕炎.精密塑性体积成形技术.北京:国防工业出版社, 2000: 9~10
    101杨青春,于沪生,余宁.汽车转向节成形过程的有限元数值模拟.塑性工程学报, 1996, 3(3):1~5
    102吕成,张立文,牟正君.重型燃机叶片锻造过程的三维热力耦合有限元模拟.塑性工程学报, 2006, (4): 54~58
    103杨长顺.冷挤压模具设计.北京:国防工业出版社, 1994: 17~18
    104 H.C. Lee, Y. Lee, S.Y. Lee, S. Choi, D.L. Lee, Y.T. Im. Tool Life Prediction for the Bolt Forming Process Based on High-cycle Fatigue and Wear. Journal of Materials Processing Technology, 2008,201(1~3): 348~353
    105 Deying Zhao, Liandong Zhang, Huixue Sun. Research on Closed Die Forging Process of Car Steering Knuckle. Materials Science Forum., 2008, (575~578): 204~209
    106 K. Ohga, K. Kondo. Research on Precision Die Forging Utilizing Divided Flow (lst Report, Theoretical Analysis of Processes Utilizing Flow Relief-Axis and Relief-Hole). Bulletin of the JSME, 1982, (25): 1828~1835
    107夏世升,王广春,赵国群,等.直齿圆柱齿轮冷精锻新工艺数值模拟研究,热加工工艺, 2003, (2): 22~23
    108模具实用技术丛书编委会.模具材料与使用寿命.北京:机械工业出版社, 2000: 116~117
    109邹安全,邓芬燕,邓沛然.等温球化退火对H13钢组织性能的影响.金属热处理, 2003, (8):35~36
    110 J.H. Kang, K.O. Lee, S.S. Kang. Characterization of Cooling Heat Transfer for Various Coolant Conditions in Warm Forging Process. Journal of Materials Processing Technology, 2007, (184): 338~344
    111 B. Falk , U. Engel, M. Geiger. Estimation of Tool Life in Bulk Metal forming Based on Different Failure Concepts. Journal of Materials Processing Technology, 1998, (80~81): 602~607
    112 A.F.M. Arif, A.K. Sheikh, S.Z. Qamar. A Study of Die Failure Mechanisms in Aluminum Extrusion. Journal of Materials Processing Technology, 2006, 134(3): 318~328
    113 M.R. Krishnadev, S.C. Jain. Improved Productivity through Failure Analysis: Case Studies inPrecision Forging of Aerospace Components. Engineering Failure Analysis, 2007, 14(6) :1053~1064
    114 Anders Persson, Sture Hogmark, Jens Bergstr?m. Thermal Fatigue Cracking of Surface Engineered Hot Work Tool Steels. Surface and Coatings Technology, 2005,191(2~3): 216~227
    115 C.A. Santos, M.T.P. Aguilar, H.B. Campos, A.E.M. Pertence, P.R. Cetlin. Failure Analysis of the Die in the Third Hot forging Stage of a Gear Blank. Engineering Failure Analysis, 2006, 13(6): 886~897
    116 Tatsuro Iwama, Yasuhiro Morimoto. Die Life and Lubrication in Warm Forging. Journal of Materials Processing Technology, 1997, (71): 43~48
    117 X.J. Liu, H.C. Wang, D.W. Li. Study on Design Techniques of a Long Life Hot Forging Die with Multi-materials. Acta Metallurgical Sinica (English Letters), 2007, 20 (6) : 448~456
    118洪慎章,曾振鹏.提高金属成形性的研究.模具技术, 2000, (5): 69~73
    119 T. Sobis, U. Engel, M. Geiger. A Theoretical Study on Wear Simulation in Metal Forming Process. Journal of Materials Processing Technology, 1992, (34): 233~240
    120 J.H. Kang, I.W. Park, J.S. Je, S.S. Kang. A Study on a Die Wear Model Considering Thermal Softening: (I) Construction of the Wear Model. Journal of Materials Processing Technology, 1999, (96): 53~58
    121 J.H. Kang, I.W. Park, J.S. Je, S.S. Kang. A Study on a Die Wear Model Considering Thermal Softening: (II) Application of the Suggested Wear Model. Journal of Materials Processing Technology, 1999, (94): 183~188
    122罗学心,何向山.国内外热挤压工模具用材的发展.材料科学与工程, 1991, 9 (1): 25~29
    123邓小民.反向挤压时的挤压力变化规律.中国有色金属学报, 2002, (1): 96~100
    124王振范.上限法及其在塑性加工中的应用.沈阳:东北工学院出版社, 1991: 26~28
    125王涛,王仲仁.复合挤压滑移线中分流点位置的确定.锻压技术, 1982, (5): 15~18
    126 J.H. Beynon. Tribology of Hot Metal Forming. Tribology International, 1998, 31(1~3): 73~77
    127刘建雄,詹肇麟.热挤压凸模预热温度确定.云南工业大学学报, 1996, 12(2): 23~27
    128张驰,陈元芳,杨长辉.闭塞锻造的发展概况及其应用.锻压技术, 2004, (3): 7~10
    129 E. Doege, R. Bohnsack. Closed Die Technology for Hot Forging. Journal of Materials Processing Technology, 2000, (98): 165~170
    130近藤一义.日本精密锻造的现状.汽车工艺与材料, 1996, (10): 1~5
    131黄良驹,梁继才,李义,等.闭塞模锻液压模架液压系统设计.电加工与模具, 2001, (6): 39~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700