喷射成形高合金Vanadis4冷作模具钢的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作结合宝钢集团重大科研项目“喷射成形先进冶金加工技术的应用开发”而完成。模具钢大多数采用常规铸造方法,再经大变形量锻造及复杂的热处理来改善钢中碳化物尺寸和分布,以获得良好的力学性能。但常规方法难以制备高品质高合金模具钢,而只能采用工艺复杂、成本高的粉末冶金方法生产。本论文选取瑞典UDDEHOLM公司生产的粉末冶金Vanadis4(V4)钢作为对比材料,采用喷射成形这一先进的冶金加工技术制备了V4钢,有效细化了晶粒,减小了偏析,极大地改善了钢中碳化物形貌和分布。在此基础上分析了喷射成形V4钢微观组织及形成特点,揭示了该钢的细化机理及区别于其它喷射成形钢材的特点;系统的研究了喷射成形V4钢热加工过程微观组织演变行为,给出了制备V4钢最优化的控制参数;对比研究了喷射成形V4钢与粉末冶金V4钢的淬回火后的力学性能,分析了喷射成形V4钢回火过程二次碳化物的析出行为。自主创新的工艺路线相对粉末冶金工艺而言工艺简单成本更低,有力地证明了喷射成形取代粉末冶金制备高合金V4钢的可行性。
     喷射成形工艺得到的高合金V4钢为等轴晶,晶粒大小在8-10μm左右分布均匀,无宏观偏析及粗大网状碳化物,且组织中未见类似常规铸态材料中的共晶组织。其组成相包括马氏体、残余奥氏体、MC及M7C3型碳化物,其中,残余奥氏体含量高达33%,VC颗粒大部分尺寸在0.5-2μm均匀分布在晶界,而大部分M7C3颗粒尺寸在180nm左右均匀分布在晶内。喷射成形所具有的快速凝固特征是V4钢组织细化的最关键因素;此外,喷射成形雾化过程先凝固粒子的异质形核作用,以及凝固过程中在较高温度析出的VC限制了γ枝晶生长的时间和空间,从而促进γ枝晶细化也是其能获得细小晶粒的重要原因。
     V4钢加热过程的相转变点为845℃(A1)和890℃(A3),加热过程中由于基体组织分解及大量碳化物析出而导致热膨胀曲线出现明显的弯曲。等温压缩热模拟实验结果表明,V4钢在850-1150℃温度范围内的真应力-真应变曲线均为典型的再结晶曲线,当变形温度一定,变形速率越高,流变应力越大;当变形速率一定,变形温度越高,流变应力越小。热轧实验研究结果表明,V4钢在850-950℃温度轧制后基体中析出了大量M7C3及M3C碳化物,而一次碳化物则会发生不均匀长大,因此轧后组织很不均匀;1050℃轧后组织中的碳化物最为均匀细小;当轧制温度升高至1100℃以上时,回溶至基体的合金元素在轧后冷却过程中将沿晶界不均匀析出。因此,热变形温度是决定变形后组织中碳化物形貌、尺寸和分布的最关键热力学条件。退火实验结果表明,退火温度显著影响轧后组织中碳化物球化过程。850℃退火时元素扩散速率较低,部分条状碳化物还未熔断球化;900℃是最理想的退火温度;温度升高至950℃,元素扩散大大能力增加,碳化物将发生较为明显的粗化。通过本文新工艺得到的V4钢组织相对粉末冶金V4钢而言碳化物更加均匀细小,且所采用的轧制或锻造工艺相对简单,工业上也易于实现,这是喷射成形高合金模具钢的独特优点。本研究成果能填补国内采用喷射成形取代粉末冶金制备高合金模具钢的空白。
     经过相同工艺淬回火后的喷射成形V4钢硬度值高于粉末冶金V4钢,两者冲击功相当。V4钢回火过程存在明显的二次硬化,在500℃回火后,极其细小且弥散析出的纳米级VC是材料达到二次硬化峰的主要原因,VC热稳定性好,经过长时间时效也很难长大;当回火温度进一步升高至550℃后,析出的碳化物为尺寸相对较大的M3C,大量C的析出使基体强度降低,且M3C的弥散强化效果低于MC,因此V4钢硬度值有较为明显下降;而700℃过时效处理5min后基体便迅速分解,位错密度显著降低,首先发现析出的碳化物为M7C3且多沿马氏体板条边界析出,随回火时间延长析出的碳化物还包括M23C6、M6C、MC。基体在回复过程中,胞壁的位错重新排列和对消逐渐变锋锐,胞壁完全锋锐了的胞块转化为亚晶,亚晶逐渐合并,形成多边形铁素体。基体中析出的大量碳化物能有效钉扎亚晶界,阻止亚晶合并和再结晶的进行。
     喷射成形V4钢与粉末冶金V4钢的耐磨性对比研究结果表明,两种钢的磨损过程均包括跑合与稳定磨损两个阶段,在二次硬化峰值处两种材料具有最好的耐磨性。磨损表面的扫描电镜形貌观察表明两种钢的主要磨损机制为磨粒磨损,但粉末冶金V4钢磨损表面还存在粘着磨损形貌,而该特征在喷射成形V4钢磨损表面并未发现,这是两种钢磨损过程中的摩擦系数和表面粗糙度差别产生的主要原因。相同实验条件下喷射成形V4钢摩擦系数小于粉末冶金V4钢摩擦系数;基于激光扫描共焦显微镜的两材料磨损表面三维粗糙度表征结果表明喷射成形V4钢的表面粗糙度低于粉末冶金V4钢表面粗糙度。粘着磨损的产生与两种材料中碳化物总量、分布、碳化物间距相关,喷射成形V4钢中碳化物更加均匀细小,能有效避免对磨材料基体间的直接接触而避免粘着磨损。相同淬回火条件下的喷射成形V4钢的耐磨性优于粉末冶金V4钢。
The work of this dissertation was done by combined with the key research project‘Application and Exploitation of the Advanced Metallurgical Technology– Spray Forming’of Baosteel Group Cooperation. In order to obtain high mechanical properties, most of the cold work die steels (CWDS) which were produced by conventional cast technique must be treated by large strain deformation and complex heat treatment in order to refine the size and distribution of the carbides. However, high grade high alloyed CWDS are hard to be produced by conventional cast technology; only the complex and high cost powder metallurgical technology can be used. In this dissertation, a powder metallurgical Vanadis4 (V4) CWDS produced by UDDEHOLM, Sweden, was chosen as the material for comparison, and spray forming technique was firstly proposed to produce the V4 steel. It was found that macro-segregation was reduced, and the grain size, the morphology and distribution of the carbides were refined greatly. In addition, microstructure and forming characteristics of the as-sprayed V4 steel were analyzed; the refine mechanisms and characteristics which different to other materials were revealed. Microstructural evolution during hot working and heat treatment were studied, and optimum parameters for the production of V4 steel were provided. Mechanical properties of the spray formed and powder metallurgical V4 steels after quenching and tempering were compared, and the secondary carbides precipitated during tempering were studied also. Compared with powder metallurgical technology, this self-developed route is more simple and cheaper. It strongly proves the possibility that spray forming can replace powder metallurgy to produce high alloy CWDS.
     Microstructural study of the as-sprayed V4 steel shows that it was composed of martensite, retained austenite (amount to 33%), MC and M7C3 carbides. Fine, homogeneous and fully spheroidal grains ranging from 8 to 10μm, which was substantially finer than the conventionally cast equivalent, are found. No coarse net-work carbides and eutectic structures were found in the matrix. Spheroidal VC carbides ringing from 0.5-2μm were uniformly distributed along grain boundaries; however, most of the M7C3 carbides with the size of about 180 nm were distributed in the grains. Rapid solidification inherent in the spray forming is the key refinement factor of the microstructure, in addition, the facts that the pre-solidified particles acted as heterogeneous nucleate sites, and that the VC carbides which were precipitated at high temperature during solidification and then confined the time and space of the growth of the dendrites, are other two important factors.
     The austenitizing temperatures of the as-sprayed V4 steel are 845℃(A1) and 890℃(A3). An obvious flexure appears in the measured dilatation curves due to the matrix decomposition and the precipitation of a large number of carbides. Isothermal compression test was carried out on the as-sprayed V4 steel within the range of temperatures between 850 and 1150℃. The obtained true stress-strain curves showed that the true stress increase with the decrease of temperature at a given strain rate and the increase in strain rate at a given temperature. Results of the hot rolling test showed that, when the steels were rolled within the ranges of temperatures between 850 and 950℃, a large number of M7C3 and M3C carbides were precipitated, and the primary carbides would grow also, therefore, uneven microstructures were obtained after rolling. Attractive microstructure could be obtained when rolled at 1050℃, however, when the rolling temperature was elevated to equal or above 1100℃, irregular carbides would precipitated along the grain boundaries after rolling. Thus, the hot rolling temperature is the key factor in controlling the evolution of type, morphology and distribution of carbides. During annealing, spheroidization of the carbide was greatly influenced by the temperature. The diffusion ability of the elements was low at 850℃, and many undissolved carbide stringers were found; 900℃was proved to be an ideal annealing temperature; with further increasing annealing temperature, the diffusion ability of the elements increased greatly and therefore, obvious carbide coarsening behavior was found. The average carbide size in the V4 steel obtained by the new method is more finer than the equivalent in the powder metallurgical V4 steel, however, the hot rolling and forging are much simple and can be easily used in mass production, and this is the unique merit of spray formed high alloyed cold work steels.
     The hardness of the spray formed V4 steel is slightly higher than that of the powder metallurgical V4 steel when quenched and tempered by the same technology, and they have equal impact energies. Obvious secondary hardening was found during tempering of the V4 steel. It was confirmed by TEM that the very fine and dense nature of secondary VC precipitates are responsible for the secondary hardening peak at 500℃. The nano-sized VC particles are thermodynamically very stable and show little tendency to coarsen when aged for prolonged times. The decrease of the hardness when the steel was tempered at 550℃can be attributed to the precipitation of M3C, which had lower dispersion strengthen effect as that of MC. The matrix decomposed quickly, and the dislocation density greatly decreased when the steel aged at 700℃for 5 min. The decomposition initiated with the nucleation of fine M7C3 carbides preferentially at the martensite lath boundaries; M23C6, M6C, and MC carbides were also found when aged for prolonged times. During the restoring process of the matrix, the dislocations in the cell boundaries rearranged and neutralized, and then gradually became sharp and the cell translated into sub-grains. The sub-grains coalesce and then the polygonal ferrite came into being. The precipitates, especially a high density of fine precipitates, retard the coalescence of sub-grains and recrystallization of ferrite.
     Sliding wear tests showed that the wear process of the spray formed and powder metallurgical V4 steels can all be divided into running-in and steady state regimes. The V4 steel has the best wear resistance when tempered at 500℃. SEM morphologies of the worn surface indicate that the main wear mechanism of the V4 steel was abrasive wear. Adhesive wear morphologies were also found on the surface of the powder metallurgical V4 steel, however, this characteristic was not found on the surface of the spray formed V4 steel. This is the main factor which caused the difference of the friction coefficient and surface roughness between the two kinds of steels. The results showed that the friction coefficients of the spray formed V4 steel were smaller than those of the powder metallurgical V4 steel; and the worn surface roughness of the spray formed V4 steel were lower too, which was obtained by laser scanning confocal microscope. Formation of the adhesive wear correlated with the total amount, distribution, and space between the carbides. The carbides in the spray formed V4 steel are finer and more uniformly distributed than those of the powder metallurgical V4 steel, which prevents the directly contact of the matrix, and therefore, adhesive wear was being prevented. The wear resistance of the spray formed V4 steel is finer than that of the powder metallurgical V4 steel when treated by the same quenching and tempering technique.
引文
[1]闵耀霞,大力发展模具钢材料,现代金属加工, 2006, 3, 15.
    [2] Grant P. S., Spray forming, Prog. Mater. Sci., 1995, 39(4-5), 497-545.
    [3] Lavernia E. J., Grant N. J., Spray Deposition of Metals: A Review, Mater. Sci. Eng., 1988, 98, 381-394.
    [4] Singer A. R. E., Metal Matrix Composites Made by Spray Forming, Mater. Sci. Eng., A, 1991, 135, 13-17.
    [5] Mathur P., Annavarapu S., Apelian D., Lawley A., Spray Casting: An Integral Model for Process Understanding and Control, Mater. Sci. Eng., A, 1991, 142, 261-276.
    [6] Rodenburg C., Krzyzanowski M., Beynon J. H., et al., Hot Workability of Spray-formed AISI M3:2 High-speed Steel, Mater. Sci. Eng., A, 2004, 386, 420-427.
    [7] Rodenburg C., Rainforth W. M., A Quantitative Analysis of the Influence of Carbides Size Distributions on Wear Behaviour of High-speed Steel in Dry Rolling/Sliding Contact, Acta Mater., 2007, 55(7), 2443-2454.
    [8] Mesrquita R. A., Barbosa C. A., Spray Forming High Speed Steel-Properties and Processing, Mater. Sci. Eng., A, 2004, 383, 87-95.
    [9] Hanlon D. N., Rainforth W. M., Sellars C. M., The Rolling/Sliding Wear Response of Conventionally Processed and Spray Formed High Chromium Content Cast Iron at Ambient and Elevated Temperature, Wear, 1999, 225-229, 587-599.
    [10] Matsuo T. T., Kiminami C. S., Botta Fo W. J., et al., Sliding Wear of Spray-formed High-Chromium White Cast Iron Alloys, Wear, 2005, 259(1-6), 445-452.
    [11] Forrest J., Price R., Hanlon D., Manufacturing Clad Products by Spray Forming, Int. J. Powder Metall, 1997, 33(3), 21-29.
    [12] Zhang J. G., Xu H. B., Shi H. S., et al., Microstructure and Properties of Spray Formed Cr12MoV Steel for Rolls, J. Mater. Process. Technol., 2001, 111, 79-84.
    [13] Luo G. M., Wu J. S., Fan J. F., et al., Deformation Behavior of an Ultrahigh Carbon Steel(UHCS-3.0Si) at Elevated Temperature, Mater. Sci. Eng., A, 2004, 379(1-2), 302-307.
    [14] Luo G. M., Wu J. S., Fan J. F., et al., Excellent Mechanical Properties of a Spray Deposited Ultrahigh Carbon Steel after Hot Rolling, J. Mater. Sci., 2004, 39(14), 4679-4681.
    [15] Luo G. M., Wu J. S., Fan J. F., et al., Microstructure and Mechanical Properties of Spray Deposited Ultrahigh Carbon Steel after Hot Rolling, Mater. Charact., 2004, 52(4-5), 263-268.
    [16] Hellman P., Wisell H., Colloque International sur les Aciers a Coupe Rapide, Saint- Etienne, Nov., 1975.
    [17] Hellman P., As-HIPed APM High Speed Steels, Metal Powder Rep., 1992, 47, 25-26.
    [18]宋学全,粉末冶金高速钢的选择与应用,工具技术, 2005, 19(11), 83-85.
    [19]吴元昌,近年欧美粉末冶金工具钢的进展及其应用实况,粉末冶金工业,1998,8(3), 7-18.
    [20]吴元昌,粉末冶金工具钢生产的新发展,粉末冶金工业, 1999, 9(6), 25-28.
    [21]吴元昌,近年国外粉末冶金工具钢的进展, 2004, 14(4), 24-28.
    [22]徐进,姜先畬,陈再枝,等,模具钢,北京,冶金工业出版社,2002.
    [23]邓玉昆,陈景榕,王世章,高速工具钢,北京,冶金工业出版社, 2002.
    [24] Steven G., Nehrenberg A. E., Philip T. V., High-performance High-speed Steels by Design, Trans. ASM. 1964, 57, 925-948.
    [25]周宏,高碳、钒高速钢及复合轧辊的研究, [学位论文],吉林,吉林大学, 1999.
    [26]李合琴,刘永昕,超高速钢一次碳化物的研究,金属热处理, 1991, 10, 16-27.
    [27] K. Kuo, Carbide precipitation, secondary hardening, and red hardness of high-speed steel, J. Iron. Steel Inst., 1953, 174, 223-228.
    [28] Irani J. J., Honeycombe R. W. K., Clustering and Precipitation in Iron-Molybdenum-Carbon Alloys, J. Iron. Steel. Inst., 1965, 203, 826-833.
    [29]雍岐龙,阎生贡,裴和中,等,钒在钢中的物理冶金学基础数据,钢铁研究学报, 1998, 10(5), 63-66.
    [30]胡正飞,新型高CoNi合金钢的性能与显微组织研究, [学位论文],北京,北京科技大学,2001.
    [31]波特D A,金属和合金中的相变,余永宁等译,北京,冶金工业出版社, 1997.
    [32]徐洲,姚寿山,材料加工原理,北京,科学出版社, 2003.
    [33] Heidenreich R. D., Sturkey L., Woods H. L., Investigation of Secondary Phases in Alloys by Electron Diffraction and the Electron Microscope, J. Appl. Phys, 1946, 17, 127-136.
    [34] Jack K. H., Wild S., Nature ofχ-Carbide and Its Possible Occurrence in Steels, Nature, 1966, 212, 248-250.
    [35]陈景榕,李承基,金属与合金中的固体相变,北京,冶金工业出版社, 1997.
    [36] Kuo K., Alloy Carbides Precipitated during The Fourth Stage of Tempering. Electron Microscopic Examination, J. Iron & Steel Inst., 1956, 184, 258-268.
    [37]卡恩R. W.,钢的组织与性能,北京,科学出版社, 1999.
    [38] Cohen M., Koh P. K., The Tempering of High Speed Steel, Trans. ASM. 1939, 27(4), 1015-1016.
    [39] Nam W. J., Kim D. S., Ahn S. T., Effect of Alloying Elements on Microstructural Evolution and Mechanical Properties of Induction Quenched-and-Tempered Steels, J. Mater. Sci., 2003, 38, 3611-3617.
    [40] Gingell A. D. B., Bhadeshia H. K. D. H., Jones D. G., et al., Carbide Precipitation in SomeSecondary Hardness Steels, J. Mater. Sci., 1997, 32, 4815-4820.
    [41] Wang R., Dunlop G. L., The Crystallography of Secondary Carbide Precipitation in High Speed Steel, Acta Metall., 1984, 32(10), 1591-1599.
    [42] Shtansky D. V., Inden G., Phase Transformation in Fe-Mo-C and Fe-W-C Steels-?. The Structure Evolution During Tempering at 700℃, Acta Mater, 1997, 45(7), 2861-2878.
    [43] Shtansky D. V., Nakai K., Ohmori Y., Decomposition of Martensite by Discontinuous-like Precipitation Reaction in An Fe-17Cr-0.5C Alloy, Acta Mater., 2000, 48, 969-983.
    [44] Stiller K., Svensson L-E., Howell P. R., et al., High Resolution Microanalytical Study of Precipitation in A Powder Metallurgical High Speed Steel, Acta Metall., 1984, 32(9), 1457-1467.
    [45] Kaplow R., Ron. M., Decristofaro, N., M?ssbauer Effect studies of Tempered Martensite, Metall. Trans. A., 1983, 14, 1135-1145.
    [46] Bhat M. S., Garrison W. M., Zackay V. F., Relations between Microstructure and Mechanical Properties in Secondary Hardening Steels, Mater. Sci. Eng., 1979, 41, 1-15.
    [47] Irani R. S., Wright C. S., Wronski A. S., Tempered Carbides in High-speed Steels, J. Mater. Sci. Lett., 1982, 1, 318-320.
    [48] Tkalcec I., Azco?tia C., Crevoiserat S., et al., Tempering Effects on a Martensitic High Carbon Steel. Mater. Sci. Eng., A, 2004, 387-389, 352-356.
    [49] Miller M. K., Smith W. G. D., Atom Probe Microanalysis: Principle and Application to Materials Problems, The Materials Research Society, Pittsburgh, Pennsylvania, USA, 1989.
    [50] Chen C. G., Balluffi R. W., Field Ion Microscope Studies of Atoms in Dilute Pt AlloyⅡDistribution and Interaction of Au and Ni Atoms, Acta Metall., 1975, 23(8), 931-936.
    [51] Goodman S. R., Brenner S. S., Low J. R., An FIM-atom Probe Study of the Precipitation of Copper from Iron-1.4 at. Pot Copper, Metall. Trans., 1973, 4(10), 2363-2378.
    [52] Taylor F. W., On the Art of Cutting, Metals. Trans., ASME, 1906, 28, 31
    [53] Wang M. J., Wang Y., Sun F. F., Tempering behavior of a semi-high speed steel containing nitrogen, Mater. Sci. Eng., A, 2006, 438-440(25), 1139-1142.
    [54] Hiromitsu I., Tsunenori I., Saburo N., et al., A Study of Interstitial Atom Configuration in Fresh and Aged Iron-Carbon Martensite by M?ssbauer Spectroscopy, Acta Metall., 1982, 30, 9-20.
    [55] Thomson R. C., Miller M. K., Carbide Precipitation in Martensite During the Early Stages of Tempering Cr- and Mo-Containing Low Alloy Steels, Acta Mater., 1998, 46(6), 2203-2213.
    [56] H. O. Andren, Atom Probe Microanalysis of a Tempered High-Speed Steel, Scripta Metall., 1981, 15(7), 749-752.
    [57] Stiller K., Karagoz S., Andern H. O., et al. Secondary hardening in high speed steels. J. Phys.Colloq., 1987, 48, 405-410.
    [58] Andren H. O., Karagoz S., Cai G., et al., Carbides precipitation in chromium steels. Surf. Sci. 1991, 246, 246-251.
    [59] Karagoz S., Fischmeister H. F., Andren H. O., et al., Microstructure changes during overtempering of high speed steels, Metall. Trans., 1992, 23(6), 1631-1640.
    [60]赵振业,凌斌,钟平,等,用场离子显微镜和原子探针研究23NiCo钢中M2C的回火析出机制,金属热处理学报, 2000, 21(2), 46-55.
    [61]胡正飞,吴杏芳,王春旭,二次硬化合金钢中多组元强化相M2C碳化物的粗化动力学研究,金属学报, 2003, 39(6), 585-591.
    [62]刘宗昌,杜志伟,朱文方,等, H13钢的回火二次硬化,兵器材料科学与工程, 2001, 24(3), 11-13.
    [63]邱军,袁逸,陈景榕,高速钢中马氏体二次硬化的TEM研究,金属学报, 1992, 28(7), 301-305.
    [64] Burwell J. T., Survey of Possible Wear Mechanisms, Wear, 1957, 1(2), 119-141.
    [65] Katsuki F., Watari K., Tahira H., et al., Abrasive Wear Behavior of a Pearlitic (0.4%C) Steel Microalloyed with Vanadium, Wear in press, (2007) doi:10.1016/j, wear, 2007.03.023.
    [66] Fontalvo G. A., Humer R., Mitterer C., et al., Microstructural Aspects Determining the Adhersive Wear of Tool Steels, Wear, 2006, 260, 1028-1034.
    [67] Colaco R., Gordo E., Ruiz-Navas E. M., et al., A Comparasive Study of the Wear Behaviour of Sintered and Laser Surface Melted AISI M42 High Speed Steel Diluted with Iron, Wear, 260, 949-956.
    [68]李建明,磨损金属学,北京,冶金工业出版社, 1990.
    [69] Kang Y. J., Oh J. C., Lee H. C., et al., Effects of Carbon and Chromium Additions on the Wear Resistance and Surface Roughness of Cast High-speed Steel Rolls, Metall. Mater. Trans. A., 2001, 32, 2515-2525.
    [70] Xu L. J., Xing J. D., Wei S. Z., et al., Investigation on Wear Behaviors of High-vanadium High-speed steel Compared with High-chromium Cast Iron under Rolling Contact Condition, Mater. Sci. Eng., A, 2006, 434, 63-70.
    [71] Xu L. J., Xing J. D., Wei S. Z., et al., Study on Relative Wear Resistance and Wear Stability of High-speed Steel With High Vanadium Content, Wear, 2007, 262, 253-261.
    [72] Wei S. Z., Zhu J. H., Xu L. J., et al., Effect of Carbon on Microstructure and Properties of High Vanadium High-speed Steel, Mater. Des., 2006, 27, 58-63.
    [73] Wei S. Z., Zhu J. H., Xu L. J., Research on Wear Resistance of High Speed Steel with High Vanadium Content, Mater. Sci. Eng., A, 2005, 404, 138-145.
    [74] Vardavoulias M., The Role of Hard Second Phases in the Mild Oxidational Wear Mechanismof High-speed Steel-based Materials, Wear, 1994, 173, 105-114.
    [75] N. P. Suh, The Delamination Theory of Wear, Wear, 1973, 25, 111-124.
    [76] Suh N. P., An Overview of the Delamination Theory of Wear, Wear, 1977, 44, 1-16.
    [77]袁成清,磨损过程中的磨粒表面和磨损表面特征及其相互关系研究, [学位论文],武汉,武汉理工大学, 2005.
    [78]李艳军,左洪福,吴振锋,等,显微观测技术的新进展及其应用,光学仪器, 2002, 24(2), 32-37.
    [79]蒋向前,曲面表面形貌检测理论及方法的研究, [学位论文],武汉,华中理工大学, 1995.
    [80]全书海,基于表面灰度图像的加工表面形貌分形特征研究, [学位论文],武汉,武汉理工大学, 2002.
    [81] Claxton N. S., Thomas J. F., Davidson M. W., Laser scanning confocal microscopy. http://www.olympusconfocal.com/theory/LSCMIntro.pdf
    [82] Yuan C. Q., Peng Z., Zhou X. C., et al., The Surface Roughness Evolutions of Wear Particles and Wear Components under Lubricated Rolling Wear Condition, Wear, 2005, 259, 512-518.
    [83] Yuan C. Q., Peng Z., Yan X., Surface Characterisation Using Wavelet Theoryand Confocal Laser Scanning Microscopy, Journal of Tribology, ASME, 2005,127(2), 394-404.
    [84] Rodriguez A., Ehlenberger D., Kelliher K., et al. Automated Reconstruction of Three-dimensional Neuronal Morphology From Laser Scanning Microscopy Images, Methods, 2003, 30, 94-105.
    [85] Anamalay R. V., Kirk T. B., Panzera D., Numerical Descriptors for the Analysis of Wear Surfaces Using Laser Scanning Confocal Microscopy, Wear, 1995, 181-183(2), 771-776.
    [86] Hanlon D. N., Todd I., Peekstok E., et al., The Application of Laser Scanning Confocal Microscopy to Tribological Research, Wear, 2001, 251(1-12), 1159-1168.
    [87] Ogata K., Lavernia E. J., Grant N. J., Structure and Properties of a Rapidly Solidified Superalloy Produced by Liquid Dynamic Compaction. Inter. J. Rapid Solidification. 1986, 2(1), 21-35.
    [88]徐寒冰,吴建生,章靖国,喷射成形技术进展及其工业应用,机械工程材料,1999, 6, 1-5.
    [89] Singer A. R. E., Improvements Relating to the Fabrication of Articles, British Patent, No.1262471. 1972.
    [90] Forrest J., Price R., Hanlon D., Manufacturing Clad Products by Spray Forming, Int. J. Powder Metall., 1997, 33(3), 21-29.
    [91] Forsberg U., Wilson A., Nylof L., et al. Sandvik Sanicro 65 Composite Tube for Municipal Waste Incinerators, Proceedings of the Third International Conference on Spray Forming, Cardiff, UK, 123-129.
    [92] Singer A., Recent Developments in the Spray Forming of Metals, Metal. Powder Rep, 1986,3, 223-226.
    [93] Spiegelhauer C., Properties of spray formed tool & high speed steels, The Third Pacific Rim International Conference on Advanced Materials and Processing, Honolulu, Hawaii, 1998, 1653-1965.
    [94] Matsuo S., Teiichi A., Grant N. J., Grain Refinement and Stabilization in Spray-formed AISI 1020 Steel, Mater. Sci. Eng., A, 2000, 34, 34-41.
    [95] Liang X., Lavernia E. J., Solidification and Microstructure Evolution during Spray Atomization and Deposition of Ni3Al, Mater. Sci. Eng., A, 1993, 161, 221-235.
    [96] Liang X., Lavernia E. J., Evolution of interaction domain microstructure during spray deposition, Metall. Mater. Trans. A., 1994, 25, 2341-2355.
    [97] Liang X., Earthman J. C., Lavernia E. J., On the Mechanism of Grain Formation during Spray Atomization and Deposition, Acta Metall. Mater., 1992, 40, 3003-3016.
    [98]徐寒冰,唐梁,吴建生,等,喷射成形及时效处理对Cr12MoV钢组织及性能的影响,上海交通大学学报, 2000, 34(12), 1601-1605.
    [99] Zhang J. G., Sun D. S., Shi H. S., et al. Microstructure and Continuous Cooling Transformation Thermograms of Spray Formed GCr15 Steel, Mater. Sci. Eng., A, 2002, 326, 20-25.
    [100]史海生,樊俊飞,林一坚,乐海荣,彭勇,罗光敏,一种超髙碳钢的生产工艺,中国专利,发明专利, 200410025519.1, 2004.6.28.
    [1] Claxton N. S., Thomas J. F., Davidson M. W., Laser Scanning Confocal Microscopy. http://www.olympusconfocal.com/theory/LSCMIntro.pdf.
    [2] Hongbin Y., Hiroyuki S., Toshihiko E., et al.,“In-situ”Observation of Collision, Agglomeration and Cluster Formation of Alumina Inclusion Particle on Steel Melts. ISIJ Int., 1997, 37(10), 936-945.
    [3] Emiliano V. M., Yan W., Seetharaman S., MnS Precipitation Behavior in Re-sulfurized Steels with Intermediate Levels of Sulfur. Steel Research International, 2005, 76(4), 306-312.
    [4] Reid M., Dominic P., Dippenaar R., Concentric Solidification for High Temperature Laser Scanning Confocal Microscopy, ISIJ Int., 2004, 44(3), 565-572.
    [5]黄永宁,激光共焦扫描显微镜简介,现代仪器使用与维修,1998, 3, 28-30.
    [6] Zucker R. M., Price O., Evaluation of Confocal Microscopy System Performance, Cytomerty, 2001, 44, 273-249.
    [7]袁成清,磨损过程中的磨粒表面和磨损表面特征及其相互关系研究, [学位论文],武汉,武汉理工大学. 2005.
    [1] Wei Y., Mu D. B., Zhang L. Y., et al., Microstructure and Properties of Tungsten Carbide Particle-Reinforced High-speed Composites Fabricated by Spray Forming, Powder Technol., 1999, 104, 100-104.
    [2] Mesquita R. A., Barbosa C. A., Spray Forming High Speed Steel- Properties and Processing, Mater. Sci. Eng., A, 2004, 383, 87-95.
    [3] Rodenburg C., Krzyzanowski M., Beynon J. H., et al, Hot Workability of Spray-formed AISI M3:2 High-speed Steel, Mater. Sci. Eng., A, 2004, 386, 420-427.
    [4] Zhang J. G., Xu H. B., Shi H. S., et al., Microstructure and Properties of Spray Formed Cr12MoV Steel for Rolls., J. Mater. Sci. Technol., 2001, 111, 79-84.
    [5] Bhargava A. K., Tiwari A. N., Effect of Rapid Solidification and Heat Treatment on D2 Steel, Int. J. Rapid. Solidification., 1992, 7, 51-66.
    [6]徐寒冰,喷射成形过程模拟及其材料研究, [学位论文],上海,上海交通大学, 2001.
    [7]丁培道,周守则,高速钢中MC型初生碳化物述评,重庆大学学报, 1984, 4, 131-139.
    [8]雍歧龙,阎生贡,裴和中,等,钒在钢中的物理冶金学基础数据,钢铁研究学报, 1998, 10(5), 63-66.
    [9]李玉清,刘锦岩,高温合金晶界间隙相,北京,冶金工业出版社, 1990.
    [10]赵伯麟,金属物理研究方法,北京,冶金工业出版社, 1981.
    [11]徐流杰,高钒高速钢的组织及磨粒磨损性能, [学位论文],河南,河南科技大学, 2001.
    [12]魏世忠,倪峰,朱金华,等,高钒铁碳合金的凝固过程,钢铁研究学报, 2005, 17(3), 56-64.
    [13]邵抗振,魏世忠,龙锐,等,碳对高钒高速钢凝固过程的影响,铸造技术, 2005, 26(11), 1015-1019.
    [14]周宏,王金国,贾树盛,等,不同钒、碳含量高速钢的凝固组织及相组成,金属学报. 1997, 33(8), 838-843.
    [15] Boccalini M., Goldenstein H., Solidification of High Speed Steels, Int. Mater. Rev. 2001, 46(2), 92-115.
    [16] Boetinger W. J., Coriell S. R., Greer A. L., et al., Solidification Microstructures: Recent Developments, Future Directions, Acta Mater., 2000, 48, 43-70.
    [17] Boccalini M., Sinatora A., Matsubara Y., Proc. 37th Rolling Seminar‘Processes and rolled and coated products’, Curitiba, Brazil, Associacao Brasileira de Metalurgia e Materiais-ABM, 2000, 587-596.
    [18] Barkalow R. H., Kraft R. W., Goldstein J. I., Solidification of M2 High Speed Steels, Metall. Trans. 1972, 3, 919-926.
    [19] Barndis H., Wiebking K., Influence of the Alloy Content of Steel S 6-5-2 --20Mo-- on ItsFreezing and Melting Behaviour, Dew. Tech. Bev. 1971, 11(3), 139-146.
    [20] Fischmeister H. F., Ridel R., Karagoz S., Solidification of High-speed Tool Steels, Metal. Trans. A, 1989, 20, 2133-2148.
    [21] Ding P. D., Shi G. Q., Zhou S. Z., A Scanning Electron Microscopy Study of Carbides in High-speed Steels, Mater. Charact., 1992, 29, 15-24.
    [22] Lesoult G., Macrosegregation in Steel Strands and Ingots: Characterisation, Formation and Consequences, Mater. Sci. Eng., A, 2005, 413-414, 19-29.
    [23] Alexander S. C., Application of Bismuth for Solidification Structure Refinement and Properties Enhancement in As-cast High-speed Steels, ISIJ Int., 2005, 45, 1297-1306.
    [24] Valdez M. E., Wang Y., Scidhar S., In-situ observation of the formation of MnS during solidification of high sulfur steels, Steel Research Int. 2005, 76(4): 247-256.
    [25]周宏,高碳、钒高速钢及复合轧辊的研究, [学位论文],吉林,吉林大学, 1999.
    [26] Herlach D. M., Eckler K., Karma A., et al., Grain refinement through fragmentation of dendrites in undercooled melts, Mater. Sci. Eng., A, 2005, 304-306, 20-25.
    [27] Rieker C., Morris D. G., Equiaxed microstructure by rapid solidification, Mater. Sci. Eng., A, 1991, 133, 854-858.
    [28] Kusy M., Caplovic L., Grgac P., et al., Solidification Microstructure in The Rapid Solidified Powder of High Alloyed V-Cr Tool Steel, J. Mater. Process. Technol., 2004, 157-158, 729-734.
    [29] Willnecker R., Herlach D. M., Feuerbacher B., Grain Refinement Induced by a Critical Crystal Growth Velocity in Undercooled Melts, Appl. Phys. Lett., 1990, 56, 324-326.
    [30] Grant P. S., Kim W. T., Cantor B., Spray Forming of Aluminium-copper Alloys. Mater. Sci. Eng., A, 1991, 134: 1111-1114.
    [31] Liang X., Lavernia E. J., Solidification and Microstructure Evolution during Spray Atomization and Deposition of Ni3Al, Mater. Sci. Eng., A, 1993, 161, 221-235.
    [32] Liang X., Lavernia E. J., Evolution of Interaction Domain Microstructure during Spray Deposition, Metall. Mater. Trans. A, 1994, 25, 2341-2355.
    [33] Liang X., Earthman J. C., Lavernia E. J., On the Mechanism of Grain Formation during Spray Atomization and Deposition, Acta Metall., 1992, 40, 3003-3016.
    [34] Xu Q., Lavernia E. J., Microstructural Evolution during the Initial Stages of Spray Atomization and Deposition, Scripta Mater., 1999, 41, 535-540.
    [35]宋维锡,金属学,北京,冶金工业出版社, 1997.
    [1] Zhang J. G., Xu H. B., Shi H. S., et al., Microstructure and Properties of Spray Formed Cr12MoV Steel for Rolls, J. Mater. Process. Technol., 2001, 111, 79-84.
    [2] Rodenburg C., Krzyzanowski M., Beynon J. H., et al. Hot Workability of Spray-formed AISI M3:2 High-speed Steel, Mater. Sci. Eng., A, 2004, 386, 420-427.
    [3] Spangel S., Matthaei-Schulz E., Schulz A., et al., Influence of Carbon and Chromium Content and Preform Shape on The Microstructure of Spray Formed Steel Deposits, Mater. Sci. Eng., A, 2002, 326, 26-39.
    [4] Mesquita R. A., Barbosa C. A., Spary Forming High Speed Steel--- Properties and Processing, Mater. Sci. Eng., A, 2004, 383, 87-95.
    [5] Shtansky D. V., Inden G., Phase Transformation in Fe-Mo-C and Fe-W-C Steels--?. The Structural Evolution during Tempering at 700℃, Acta Mater., 1997, 45, 2861-78.
    [6]詹美燕,夏伟军,张辉,等,喷射沉积--挤压FVS0812耐热铝合金的热变形流变行为研究,湖南科技大学学报(自然科学版), 2004, 19(2), 37-41.
    [7]高珊,王国栋,刘相华,等,冷作模具钢D2钢高温变形行为的研究,钢铁研究, 1998, 5: 32-35.
    [8]哈宽富,金属力学性质的微观理论,北京,科学出版社, 1983.
    [9]李自刚,成形过程中钢铁微观组织性能的试验研究与计算机模拟, [学位论文],上海,上海交通大学, 1998.
    [10]邓玉昆,陈景榕,王世章,高速工具钢,北京,冶金工业出版社, 2002.
    [11] Askeland R. D., PhuléP. P., The Science and Engineering of Materials (Fourth Edition),清华大学出版社, 2005年.
    [12]王笑天,金属材料学,北京,机械工业出版社, 1993.
    [13] Wu C., Sahajwalla V., Krauklis P., The effect of Austenitizing Process on the Hardening Behaviour of Cr-Mo-Mn-C Air-hardening Cast Tool Steel, ISIJ Int., 1996, 36, 347-353.
    [14] HomolováV., Janovec J., Kroupa A., Experimental and Thermodynamic Studies of Phase Transformations in Cr-V low Alloy steels, Mater. Sci. Eng., A, 2002, 335, 290-297.
    [15] Liu Z. K., H?glund L., J?nsson B., et al., An Experimental and Theoretical Study of Cementite Dissolution in an Fe-Cr-C Alloy, Metall. Trans. A, 1991, 22, 1745-1752.
    [16] Liu Z. K., ?gren J., Morphology of Cementite Decomposition in an Fe-Cr-C alloy. Metall. Trans. A, 1991, 22, 1753-1759.
    [17] Adamson J. P., Martin J. W., The Nucleation of M23C6 Carbide Particles in the Grain Boundaries of an Austenitic Stainless Steel, Acta Metall., 1971, 19, 1015-1018.
    [18]刘宗昌,李文学,高占勇,等,钢的退火软化机理,包头钢铁学院学报, 1998, 17(3),178-181.
    [19] Yan F., Xu Z., Shi H. S., et al., Microstructure of the Spray Formed Vanadis 4 steel and its Ultrafine Structure, Mater. Charact. in press, doi: 10.1016/j. matchar. 2007.04.019.
    [20]崔向红,王树奇,吴宏,等,变质莱氏体钢中共晶碳化物的热处理粒化,吉林大学学报, 2002, 32(1), 42-46.
    [21]李彦军,姜启川,赵宇光,等,变质M2高速钢中共晶碳化物加热团球化的动力学研究,金属学报, 1999, 35(2), 207-210.
    [22] Bradley J. R., Kim S., Laser Transformation Hardening of Iron-Carbon and Iron-Carbon-Chromium Steels, Metall. Trans. A, 1988, 19, 2013-2025.
    [23] Bowen A. W., Leak G. M., Solute Diffusion in Alpha- and Gamma-Iron. Metall. Trans. A, 1970, 1, 1695-1700.
    [24]宋维锡,金属学,北京,冶金工业出版社, 1997.
    [1] Irani R. S., Wright C. S., Wronski A. S., Tempered Carbides in High-speed Steels, J. Mater. Sci. Lett., 1982, 1, 318-320.
    [2] Pippel E., Woltersdorf J., P?ckl G., et al. Microstructure and Nanochemistry of Carbide Precipitates in High-speed Steel S 6-5-2-5, Mater. Charact., 1999, 43, 41-55.
    [3] Shtansky D. V., Inden G., Phase Transformation in Fe-Mo-C and Fe-W-C steels--?. The Structure Evolution during Tempering at 700℃, Acta Mater., 1997, 45(7), 2861-2878.
    [4] Jha B. K., Mishra N. S., Microstructural Evolution during Tempering of a Multiphase Steel Containing Retained Austenite, Mater. Sci. Eng., A, 1999, 263, 42-55.
    [5] Thomson R. C., Miller M. K., Carbide Precipitation in Martensite during the Early Stages of Tempering Cr- and Mo- Containing Low Alloy Steels, Acta Mater., 1998, 46(6), 2203-2213.
    [6] Ohmura T., Hara T., Tsuzaki K., Evolution of Temper Softening Behavior of Fe-C Binary Martensitic Steels by Nanoindentaion, Scripta Mater., 2003, 49, 1157-1162.
    [7] Shtansky D. V., Nakai K., Ohmori Y., Decomposition of Martensite by Discontinuous-like Precipitation in an Fe-17Cr-0.5C Alloy, Acta Mater., 2000, 48, 969-983.
    [8] Gingell A. D. B., Bhadeshia H. K. D. H, Jones D. G., et al. Carbide Precipitation in some Secondary Hardened Steels, J. Mater. Sci., 1997, 32, 4815-4820.
    [9] Stiller K., Svensson L. E., Howell P. R., et al. High Resolution Microanalytical Study of Precipitation in a Powder Metallurgical High Speed Steel, Acta Metall., 1984, 32(9), 1457-1467.
    [10] Wang R., Dunlop G. L., The Crystallography of Secondary Carbide Precipitation in High Speed Steel, Acta Metall., 1984, 32(10), 1591-1599.
    [11] Wright C. S., Irani R. S., Towards Equilibrium during Tempering a High-speed Steel, J. Mater. Sci., 1984, 19, 3389-3398.
    [12] Bhat M. S., Garrison W. M., Zackay V. F., Relations between Microstructure and Mechanical Properties in Secondary Hardening Steels, Mater. Sci. Eng., 1979, 41, 1-15.
    [13]邱军,袁逸,陈景榕,高速钢中马氏体二次硬化的TEM研究,金属学报, 1992, 28(7), 301-305.
    [14]马翔,二次硬化马氏体时效钢中纳米级强化相的分析,分析化学, 1996, 24(12), 1379-1382.
    [15]赵振业,超高强度钢中二次硬化现象研究,航空材料学报, 2002, 22(4), 46-55.
    [16] Wang M. J., Wang Y., Sun F. F., Tempering Behavior of a Semi-high Speed Steel Containing Nitrogen, Mater. Sci. Eng., A, 2006, 438-440, 1139-1142.
    [17]徐洲,姚寿山,材料加工原理,北京,科学出版社, 2003.
    [18] Kuo K., Alloy Carbides Precipitated during The Fourth Stage of Tempering, J. Iron & Steel Inst., 1956, 184, 258-268.
    [19] Smith E., An Investigation of Secondary Hardening of a 1% Vanadium-0.2% Carbon Steel, Acta Metall., 1966, 14, 583-593.
    [20] Baker R. G., Nutting J., Precipitation Processes in Steels, The Iron and Steel Institute, Special Report, 1959, No. 64: 1.
    [21] Baker R. G., Nutting J., The Tempering of 2.25Cr%-1%Mo Steel after Quenching and Normalizing, J. Iron & Steel Inst., 1959, 202, 257-268.
    [22]胡赓祥,蔡珣,材料科学基础,上海,上海交通大学出版社, 2002.
    [23]陈鹰,热作模具用H13钢回火二次硬化效应的研究, [学位论文],北京,钢铁研究总院, 2004.
    [24] Orowan E., Symposium on Internal Stress in Metals and Alloys, Institute of Metals, London(1948), 451.
    [25] Shtansky D. V., Nakai K., Ohmori Y., Decomposition of Martensite by Discontinuous-like Precipitation Reaction in an Fe-17Cr-0.5C Alloy, Acta Mater., 2000, 48, 969-83.
    [26]余永宁,金属学原理,北京,冶金工业出版社, 2003.
    [27] Lindsley B. A., Marder A. R., The Morphology and Coarsening Kinetics of Spheroidized Fe-C Binary Alloys, Acta Mater., 1998, 46(7), 341-351.
    [28] Nam W. J., Bae C. M., Coarsening Behavior of Cementite Particles at a Subcritical Temperature in a Medium Carbon Steel, Scripta Mater., 1999, 41(3), 313-318.
    [29] Elrakayby A. M., Mills B., Identification of Carbides in High-speed Steels, J. Mater. Sci. Lett., 1986, 5, 332-334.
    [30] Lifshitz I. M., Slyozov V. V., The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids., 1961, 19, 35-50.
    [31] Wagner C., Theorie fer Altering von Niederschl?gen durch Uml?son(Ostwald-Reifung), Zeit Electrochemie, 1961, 65, 581-591.
    [32] Ardell A. J., Further Application of the Theory of Particle Coarsening, Acta Metall., 1967, 15, 1772-1775.
    [33] Ardell A. J., On the Coarsening of Grain Boundary Precipitates, Acta Metall., 1972, 20, 601-609.
    [34] Ardell A.J., The Effect of Volume Fraction on Particle Coarsening: Theoretical Considerations, Acta Metall., 1972, 20, 61-71.
    [35] Barilsford A. D., Wynblatt P., The Dependence of Ostwald Ripening Kinetics on Particle Volume Fraction, Acta Metall., 1978, 27, 489-497.
    [36] Davis C. K. L., Nash P., Stevens R. N., The Effect of Volume Fraction of Precipitate onOstwald Ripening, Acta Metall., 1980, 28, 179-189.
    [37]雍歧龙,钢铁材料中的第二相,北京,冶金工业出版社, 2006.
    [38] Peterson M. B., Wear, Control Handbook, Edited by Peterson, M. B. and Winer, W. O., ASME, 1980, 9.
    [39] Hurricks P. L., Some Metallurgical Factors Controlling the Adhesive and Abrasive Wear Resistance of Steels: A Review, Wear, 1973, 26, 385-304.
    [40] John T., Burwell J., Survey of Possible Wear Mechanisms, Wear, 1957, 1, 119-141.
    [41] Suh N. P., The Delamination Theory of Wear, Wear, 1973, 25, 111-124.
    [42] Suh N. P., An Overview of the Delaminatio Theory of Wear, Wear, 1977, 44, 1-16.
    [43] Vardavoulias M., The Role of Hard Second Phases in the Mild Oxidational Wear Mechanism of High-speed Steel-based Materials, Wear, 173, 105-114.
    [44] El-rakayby A. M., Mills B., The Role of Primary Carbides in the Wear of High Speed Steels, Wear, 1986, 112, 327-340.
    [45] Mutton P. J., Watson J. D., Some Effects of Microstructure on the Abrasion Resistance of Metals, Wear, 1978, 48, 385-398.
    [46]邓玉昆,陈景榕,王世章,高速工具钢,北京,冶金工业出版社, 2002.
    [47]温诗铸,摩擦学原理,北京,清华大学出版社, 1990.
    [48] Kang Y. J., Oh J. C., Lee H. C., et al. Effects of Carbon and Chromium Additions on the Wear Resistance and Surface Roughness of Cast High-speed Steel Rolls, Metall. Mater. Trans. A, 2001, 32, 2515-2525.
    [49] Xu L. J., Xing J. D., Wei S. Z., et al., Investigation on Wear Behaviors of High-vanadium High-speed Steel Compared with High-chromium Cast Iron under Rolling Contact Condition, Mater. Sci. Eng., A, 2006, 434, 63-70.
    [50] Xu L. J., Xing J. D., Wei S. Z., et al., Study on Relative Wear Resistance and Wear Stability of High-speed Steel with High Vanadium Content, Wear, 2007, 262, 253-261.
    [51] Wei S. Z., Zhu J. H., Xu L. J., et al., Effect of Carbon on Microstructure and Properties of High Vanadium High-speed Steel, Mater. Des., 2006, 27, 58-63.
    [52] Wei S. Z., Zhu J. H., Xu L. J., Research on Wear Resistance of High Speed Steel with High Vanadium Content, Mater. Sci. Eng., A, 2005, 404, 138-145.
    [53] Saka N., Pamies-teixeira J. J., Suh N. P., Wear of Two-phase Metals, Wear, 1977, 44, 747-86.
    [54] Hanlon D. N., Rainforth W. M., The Rolling Sliding Wear Response of Conventionally Processed and Spray Formed High Speed Steel at Ambient and Elevated Temperature, Wear, 2003, 255, 956-966.
    [55] Rodenburg C., Rainforth W. M., A Quantitative Analysis of The Influence of Carbide Size Distributions on Wear Behaviour of High-speed Steel in Dry Rolling/Sliding Contact, ActaMater., 2007, 55, 2443-2453.
    [56]李建明,磨损金属学,北京,冶金工业出版社, 1990.
    [57] Allison Y. S., Polycarpou A. A., Conry T. F., Detailed Surface Roughness Characterization of Engineering Surfaces undergoing Tribological Testing leading to Scuffing, Wear, 2003, 255(1-6), 556-568.
    [58] Myshin N. K., Grigoriev A. Y., Chizhik S. A., et al., Surface Roughness and Texture Analysis in Microscale, Wear, 254(10), 1001-1009.
    [59] Dong W. P., Sullivan P. J., Stout K. J., Comprehensive Study of Parameters for Characterizing Three-dimensional Surface Topography III: Parameters for Characterizing Amplitude and some Functional Properties, Wear, 1994, 178(1-2), 29-43.
    [60] Dong W. P., Sullivan P. J., Stout K. J., Comprehensive Study of Parameters for Characterizing Three-dimensional Surface Topography IV: Parameters for Characterising Spatial and Hybrid Properties, Wear, 1994, 178(1-2), 45-60.
    [61] Yuan C. Q., Peng Z., Zhou X. C., Yan X. P., The Surface Roughness Evolutions of Wear Particles and Wear Components under Lubricated Rolling Wear Condition, Wear, 2005, 259, 512-518.
    [62] Yuan C. Q., Peng Z., Zhou X. C., Yan X. P., Surface Characterisation Using Wavelet Theoryand Confocal Laser Scanning Microscopy, Journal of Tribology, ASME, 2005, 127(2), 394-404.
    [63] Rodriguez A., Ehlenberger D., Kelliher K., et al., Automated Reconstruction of Three-dimensional Neuronal Morphology From Laser Scanning Microscopy Images, Methods, 2003, 30, 94-105.
    [64] Anamalay R. V., Kirk T. B., Panzera D., Numerical Descriptors for the Analysis of Wear Surfaces Using Laser Scanning Confocal Microscopy, Wear, 1995, 181-183(2), 771-776.
    [65] Hanlon D. N., Todd I., Peekstok E., et al., The Application of Laser Scanning Confocal Microscopy to Tribological Research, Wear, 2001, 251(1-12), 1159-1168.
    [66]袁成清,磨损过程中的磨粒表面和磨损表面特征及其相互关系研究, [学位论文],武汉,武汉理工大学, 2005.
    [67] Zum Gahr K. H., Wear of materials, 1979, ASME. 266.
    [68] Ted Guo M. L., Chiang C. H., Tsao C. Y. A., Microstructure and Wear Behavior of Spray-formed and Conventionally Cast Rolls of 18Cr-2.5Mo-Fe Alloy, Mater. Sci. Eng., A, 2002, 326, 1-10.
    [69] Fontalvo G. A., Humer R., Mitterer C., et al. Microstructural Aspects Determining the Adhesive Wear of Tool Steels, Wear, 2006, 260, 1028-1034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700