铌微合金化H13钢的热疲劳行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AISI H13钢是目前应用极为广泛的一类热作模具钢,主要应用于压铸模、热挤压模和热锻模等。热疲劳是这类钢的主要失效形式。本文研究了微量Nb对H13钢热疲劳行为的影响,初步探明了Nb微合金化H13钢的热疲劳裂纹萌生、扩展的主要方式及其热疲劳循环软化的表现形式,并提出相应的热疲劳寿命预测模型;同时对热疲劳过程中多元合金钢的碳化物粗化动力学行为也进行了初步探讨。主要结论如下:
     1、借助Thermo-calc热力学计算软件和TEM&EDS等手段,研究了微量铌对H13钢的显微组织结构、碳化物的类型、大小和分布的影响。研究表明,在相同的奥氏体化温度下,添加微量的Nb可以有效细化H13钢的奥氏体晶粒,甚至添加0.07wt%Nb的H13钢在1120℃奥氏体化后的晶粒大小与普通H13钢1030℃奥氏体化时的晶粒大小相当;同时碳化物细小且更加弥散。
     2、对铌微合金化H13钢的室温及高温力学性能研究表明,添加微量Nb对H13钢的抗拉强度和屈服强度的贡献不显著,而且对塑韧性的改善也有限。回火软化抗力和热稳定性的研究结果表明,微量铌的添加改善了H13钢的回火软化抗力和热稳定性,其中添加0.07wt%Nb的效果好于添加0.014wt%Nb的效果。
     3、添加微量的Nb使H13钢的热疲劳裂纹萌生细小、均匀,裂纹扩展缓慢;热疲劳后的硬度梯度下降缓慢,软化层较浅,从而显著提高了H13钢的热疲劳性能。其中含0.07wt%Nb的H13钢热疲劳性能最好。奥氏体化温度对所研究钢的热疲劳性能有明显的影响。随奥氏体化温度升高,钢的热疲劳性能先增加后降低,在1080℃奥氏体化时钢具有最好的热疲劳性能。
     4、对Nb微合金化H13钢和普通H13钢热疲劳后的表层硬度测试发现,在热疲劳过程中的表层硬度随循环次数的增加呈类震荡周期变化。在热疲劳循环起始阶段,表层硬度急剧下降,类震荡频率较快;在热疲劳后期,类震荡频率趋缓,表层硬度总体表现为循环软化特性。TEM&EDS分析显示,热疲劳初期表层硬度的急剧下降与M23C6碳化物的迅速粗化有关;而表层硬度的类震荡周期变化与位错密度的变化密切相关。
     5、对几种H13类钢的碳化物形态和弥散分布程度的比较分析发现,热疲劳
AISIH13 hot work tool steel is widely used for hot forging, hot-extrusion and die-casting because of its high temperature strength, impact toughness, heat checking resistance and wear resistance etc. The thermally induced surface damage, i.e., thermal fatigue, is believed to be controlled by the magnitude of the imposed cyclic strain. The thermal fatigue on the surface of hot working die, which is responsible to the initiation of the cracks, is reported to result in more than 80% of the failure of dies.
     In this paper, aimed to suppress the crack generation and improve the heat checking resistance, niobium is added into the H13 steel. The mechanical properties, the resistance to temper softening, thermal stability, the cyclic softening and the thermal fatigue life prediction for H13 steel with and without niobium are investigated. The coarsening kinetics of M23C6 carbide in H13 steel during thermal fatigue is also studied. And the main results are summarized as follows:
     1. The influence of the niobium on the microstructure and the type, size and distribution of carbides in AISI H13 steel have been investigated by means of Thermo-calc software and TEM&EDS. It is shown that austenitic grains of H13 steel containing niobium are smaller than those without niobium. Experimental results indicate that the 0.07 pct niobium in H13 steel is sufficient to suppress grain growth at the austenitizing temperature up to 1120℃. After microalloyed by 0.07pct niobium, the carbides become smaller and its distribution become much more dispersive in the
引文
[1]崔昆.中国模具钢现状及发展(I)[J]. 机械工程材料, 2001,Vol.25(1):1-5
    [2]佟晓辉.国外模具材料及热处理概况[J].模具工业.1994(10),2-6
    [3]王万阁. 4Cr5MoV1Si(H13)模具钢[J]. 模具工业, 1990, 110(4): 57-59
    [4]胡志刚. 热作模具材料的进展[J]. 甘肃冶金, 2000, 3: 18-21
    [5]刘徽平. 瑞典模具钢的特性与用途介绍[J]. 国外金属热处理. 1999, 4: 12-14
    [6]周敬恩.模具材料选用、热处理与使用寿命[J].金属热处理,1999, 24(5):1-9
    [7] 王小军,徐明刚等.热作模具钢 QRO90 与 8407(H13)回火稳定性对比研究[J].上海金属.1998,20(10):8-11
    [8] Lars Ake Norstrom,张水忠.九十年代的新型优质模具钢[J].模具技术.1989,4:109-113
    [9]朱宗元.我国热作模具钢性能数据集(续 XI)[J].机械工程材料,2002,26(1):42-46
    [10]朱宗元.我国热作模具钢性能数据集(续ⅩⅣ)[J].机械工程材料,2002,26(4):43-46
    [11]朱宗元.我国热作模具钢性能数据集(续ⅩⅩ)[J].机械工程材料,2002,26(9):44-46
    [12]B.Kosec, L.Kosec, J.Kopac. Analysis of casting die failures[J].Engineering Failure Analysis,2001,8:355-359
    [13] Lieurad H P, Dias A, Giusti J. Experimental simulation and theoretical modeling of crack initiation and propagation due to thermal cycling [J]. High Temperature Technology. 1991,8(2): 137-145
    [14]吴玉道,王洁民.铝压铸模具失效分析[J]. 机械工程材料,1989,75(6):49-51
    [15] M. Nagasawa. Prediction of Life to Thermal Fatigue Crack Initiation of Die Casting Dies[C]. Franz Jeglitsch. Proceedings of the 5th International Conference on Tooling. Leoben,Austria:University of Leoben,1999.225-234
    [16] S.Jean. An Investigation on Heat Checking of Hot Work Tool Steels[C]. Franz Jeglitsch. Proceedings of the 5th International Conference on Tooling. Leoben,Austria:University of Leoben,1999.185-193
    [17] Lars-Ake Norstrom. Thermal Fatigue and Thermal Shork Behaviour of some Hot work Tool Steels[C]. Proceedings of A Symposium Held in Sunne,Sweden,. Uddeholm Swedish Institute for Metals Research, 1983,177-203
    [18]Korach,M. Low-cycle Fatigue and Thermal Fatigue Behaviour of Hot Work Tool Steels[C]. Proceedings of A Symposium Held in Sunne,Sweden, Uddeholm Swedish Institute for Metals Research,1983.241-267
    [19] D.Delagnes. Influence of Temperature and Initial Hardness on Fatigue Behaviour and Life of a 5%Cr Hot Work Tool Steel[C]. Franz Jeglitsch. Proceedings of the 5th International Conference on Tooling. Leoben,Austria:University of Leoben,1999.195-213
    [20] B. Klarenfjord,Lars-Ake Norstrom.热作模具钢进展[C]. 许珞萍.第五届环太平洋国际模具钢会议论文集.上海,1998.3-9
    [21] Lars-Ake Norstrom,B. Klarenfjord.General Aspects on “Wash-out” Mechanics in Aluminium Die Casting Dies[C]. NADCA 17th International Die Casting Congress and Exposition. Cleveland,Ohio. 1993,
    [22]Norstom L A, Sveensson M, Ohrberg N. thermal fatigue behaviour of hot work tool steels[J]. Met.technology,1981,8(10):376-381
    [23]Norstom L A. A new generation of steel for die casting dies[J]. Die Casting Engineer.1982,9:24-27
    [24]平修二,郭廷玮,李安定译.热应力与热疲劳[M].北京:国防工业出版社,1984:115-121
    [25] Li X, Shi Z, Zhou F, Xiao Z. The comparison of thermal fatigue property on some die steels[J]. J.anhui Inst.Tehnology,1988,7(2):10-20
    [26]王赵俊编译.一种高性能的新型热作模具钢[J]. 国外金属热处理,2000,21(4):15-19
    [27]冯晓曾,刘剑虹.3Cr2W8V、4Cr5MoSiV1 钢热疲劳机理及热疲劳抗力的差异[J]. 安徽工学院学报,1988;7(2):1-9
    [28]李熙章,施占华,周凤云,肖钟义.几种模具钢的热疲劳性能对比研究[J]. 安徽工学院学报,1988:7(2):10-20
    [29]N.Mebarki, P.Lamesle, D.Delagnes, C.Levaillant. Relationship Between Microstructure And Mechanical Properties of 5%Cr Hot Work Tool Steel[C]. Proceedings of the 6th International tooling conference, The use of tool steels; Experience and Research, Karlstad, Sweden, 10-3,sep. 2002: 617-632
    [30]李宝山.浅论热疲劳机理[C].全国第七届热疲劳学术会议论文集,海口,2000 :225-235
    [31]冯 端.金属物理学[M]. 北京: 科学出版社,1999
    [32] N.Tsujii G.Abe, K.Fukura, H.Sunada.Effect of testing atmosphere on low cycle fatigue of hot work tool steel at elevated temperature[J].ISIJ International,1995,35(7):920-926
    [33]N.Tsujii G.Abe, K.Fukura, H.Sunada. High temperature low cycle fatigue behaviour of a 4.2Cr-2.5Mo-V-Nb hot work tool steel[J]. Journal of Materials Science Letters, 15 (1996)1251-1254.
    [34]A.Grellier, M.Siaut. A new hot work tool steel for high temperature and high stress service conditions. Proceedings of the 6th International tooling conference[C], The use of tools steels; Experience and Research, Karlstad, Sweden, 10-3,sep. 2002: 33-41
    [35] 兰 杰 , 贺 俊 杰 , 丁 文 江 . 铝 压 铸 模 具 的 失 效 形 式 及 材 料 进 展 [J]. 机 械 工 程 材料,1999,23(3):38-41
    [36] 李健 , 束德林 , 郭新成 . 钨系 热作模具 钢热疲劳特性的研究 [J] 安徽工学院学报,1988:7(2):21-31
    [37] Guobn Li, Xiangzhi Li, Jianjun Wu. Study of The Thermal Fatigue Crack Initial Life of H13 And H21 Steels[J]. Journal of Materials Processing Technology ,1998,74:23-26
    [38] N.Tsujii, G.Abe, K.Fukura, H.Sunada.. Effect of testing Atmosphere on low cycle fatigue of hot work tool steel at elevated temperature[J]. ISIJ International, 1995,35:920-926.
    [39] W.Bleck, M.Pant. The Influence of Tramp Elements on The Spalling Resistance of Hot Work Tool Steel 1.2343[C]. Proceedings of the 6th International tooling conference, The use of tool steels; Experience and Research, Karlstad, Sweden, 10-3,sep. 2002: 43-49
    [40]哈宽富.断裂物理基础[M].北京:科学出版社,2000:315
    [41]蔡美良,丁惠麟,孟沪龙编. 新编工模具钢金相热处理[M]. 北京机械工业出版社,1998:173
    [42]郭新成,束德林.热模钢的热疲劳缺口敏感性[J].机械工程材料,1993,17(3):24-27
    [43]杨宜科等.金属高温强度及实验[M].上海:上海科学技术出版社,1986.
    [44]R.Zuchowski. Analysis of the thermal fatigue process.[J] Journal of Materials Processing Technology, 2000, 106:167-172
    [45]D.Caliskanoglu, I.Siller , R.Ebner, etal. Thermal fatigue and softening behaviour of hot work tool steels[C]. Proceedings of the 6th International tooling conference, The use of tool steels; Experience and Research, Karlstad, Sweden, 10-3,sep. 2002:591-601
    [46] K.Kanazawa, K.Yamaguchi and K.Kobayashi[J]. J. Soc. Mater. Sci., Japan., 1979,28:393
    [47] D.V.Wilson. Acta Metall[J]., 1973,21:673
    [48]R.Zauter, F.Petry, H.J.Christ and H.Mughrabi. Thermomechanical fatigue behavior of materials[M]. ASTM STP,1993,1186:70
    [49] S.Kocanda 著,颜鸣皋,刘才穆译.金属的疲劳与断裂[M].上海:上海科技出版社,1983:49
    [50]许珞萍,吴晓春,邵光杰,闵永安.4Cr5MoSiV1、8407 钢的热疲劳性能[J]. 全国第七届热疲劳学术会议论文集,海口,2000 :146-149
    [51]刘剑虹,冯晓曾,张德福.利用扫描电镜动态研究 3Cr2W8V 钢热疲劳裂纹的萌生[J]. 安徽工学院学报,1988,7(2):45-50
    [52] 哈宽富.断裂物理基础[M].北京:科学出版社,2000:315
    [53] 刘剑虹,何世禹,姚枚. 3Cr2W8V 钢热疲劳裂纹长大方式的原位观察[J].金属学报,1992,28(12):A527-A529
    [54] 王建国,王连庆,王红缨,徐世平.GH4133 合金热机械疲劳寿命预测[C]. 全国第七届热疲劳学术会议论文集,海口,2000 :66-72
    [55]Taira S. Relationship between thermal fatigue and low cycle fatigue at elevated temperature[M] ASTM STP 520.Baltimore,1973:80-101
    [56] 王海清.定向 DZ-22、DZ-4 合金热机械疲劳和低循环疲劳特性[C].第四届全国热疲劳学术会议文集,武汉,1993:49-55
    [57] Taira S,Motoaki F, Takashi H. A method for life prediction of thermal fatigue by isothermalfatigue testing[C]. Proceedings, Symposium on mechanical behavior of materials. The Society of Materials Science, Kyoto, Japan, 1994:257-264
    [58] 施惠基. 高温合金材料循环热机械疲劳寿命预测[J]. 固体力学学报,1998,19(1):89-92.
    [59] 张文华.材质和热处理对模具钢热疲劳性能的影响[J].中国建材装备,1992,(2):26-28.
    [60] C.I.Schruff, K.Rasche,E.Haberling, Optimization of the alloying constituents hot-work tool steel X40CrMoV5-1 for large tool with high demands on toughness[C]. Proc.2nd ICT, Bochum, 1989:3348.
    [61] L.A.Dobrzański,J.Mazurkiewicz, E.HajducZek and J.Madejski. Comparison of the thermal fatigue resistance and structure of the 47CrMoWVTiCeZr16-26-8 hot work tool steel with X40CrMoV5-1 type one [J].Journal of Materials Processing Technology, 2001,113:527-538.
    [62] 李熙章,施占华,肖钟义.显微组织对模具钢的热疲劳性能的影响[J].机械工程材料,1993,17(1):40-42.
    [63]藤井利光,松田幸纪.热间工具钢の疲劳き裂进展特性にずよぽす Si 量の影响[J].CAMP-ISIJ,2000,13:1347.
    [64]C.Ernst, K.Rasche. Nitrogen alloyed tool steels, Proc. The International European Conference on Tooling Materials, Interlaken, Switzerland,Sept.7-9,1992,481-497.
    [65]闵永安. 热作模具钢表面处理及其热疲劳、热熔损性能研究[D].上海大学博士论文,2005:4
    [66]Lutz Meyer.铌作为微合金化元素的历史.铌·科学与技术[M],北京:冶金工业出版社,2003:231
    [67]Klaus,V.R.C.Guimarues. Effect of Niobium in Works Steels and Application[J]. 微合金化技术,2002,2(2):49-53
    [68]东 涛, 傅俊岩.微铌处理钢的物理冶金[J].微合金化技术,2002,2(3):48-53
    [69]冯 端, 等. 金属物理学[M]. 北京: 科学出版社,1999: 396
    [70]冯 端, 等. 金属物理学[M]. 北京: 科学出版社, 1999: 431
    [71]C.Mercer and W.O.Soboyejo. Hall-Petch Relationships in Gamma Titanium Aluminides[J].Scripta Materialin,1996,35(1):17-22
    [72]俞德刚. 钢的强韧化理论与设计[M]. 上海: 上海交大出版社, 1990.
    [73]肖纪美.金属的韧性与韧化[M].上海:上海科学技术出版社,1980
    [74]张树松, 仝爱莲. 钢的强韧化机理与技术途径[M]. 北京: 兵器工业出版社, 1995
    [75] 雍歧龙 . 微合金 碳氮化 物在铁素 体 中的 沉淀 强化机 制的理 论分 析 [J]. 科学通报,1989,9:707-709
    [76]Shunichi, Hashinvoto. Effect of Metallurgical Factors on the Mechanical Properties of IF Steels[C].微合金化技术国际研讨会论文集, 北京: 中信微合金化技术中心, 2002:30-45
    [77]Wilmes S, Zwick G. Effect of niobium and vanadium as an alloying element in tool steels with high chromium content[C].6th international tooling conference (Karlstad university) 10-13 sep.2002:227.
    [78]孟繁茂. 铌、钒、钛在特殊钢中的应用[J]. 微合金化技术,2001,1(1):28-33
    [79]J.R.T.Branco, George Krauss. Alloy partitioning and grain growth control of H13 steel [C]. Proceeding of the 6th international congress on heat treatment of materials, Chicago,1988:195:199.
    [80]C.N.Elias and C.S.Da Costa Viana. Effect of ausforming on microstructure and hardness of AISI H13 steel modified with niobium [J].Materials Science and Technology,1992,8:785-789.
    [81]乔芝郁等. 冶金和材料计算物理化学. 北京:冶金工业出版社, 1999:1-14
    [82]N. Saunders and A. P. Miodownik. CALPHAD, Edited by Robert W. Cahn FRs, Department of Materials Science and Metallurgy, University of Cambridge, UK, 1998.
    [83] J.Andersson et al. Thermo-Calc & DICTRA, Computational Tools For Materials Science. Calphad,2002,26(2):273-312
    [84]Bo Sundman, Thermo-Calc, Users’s Guide, 1997
    [85] DICTRA User’s guide,1998
    [86]J-O Andersson, J.Agren. Models for Numerical Treatment of Multicomponent Diffusion in Simple Phase[J]. J.Appl.Phys,1992,72(4):1350-1355
    [87] J.Agren. Computer Simulations of Diffusion Reaction in Complex Steels[J]. ISIJ,1992, 32 (3):291-296
    [88]A.Borgenstam et al. DICTRA, a Tool for Simulation of Diffusional Transformation in Alloys[J]. J.Phase Equilibria, 2000, 21(3):269-280 [89J.?gren. Thermodynamics and Heat Treatment[J]. Materials Science Forum, 1994, 163-165:3-14
    [90]T.Yamashita. Application of Thermo-Calc to the Development of High-Performance Steels[J]. J Phase Equilibria,1999,20(3):231-237
    [91]T.Inoue.Influence of Cementite Distribution on Machinability and Tool Life of High Carbon Cr-bearing Steel[J]. 铁こ钢,1998,84(5):67-72
    [92]A.Vyrostkovà etal. Carbide Reaction And Phase Equilibria in Low Alloy Cr-Mo-V Steels Tempered at 773K-993K[J].Acta mater,1998,46(1):31-38
    [93] Jing-Bo Li. Computer Simulation of Phase Transformation in Steels[J]. Materials and Design, 2001,22:39-43
    [94]Asa Gustafson and Mats Hattestrand. Coarsening of precipitates in an advanced creep resistant 9% chromium steel-quantitative microscopy and simulations[J]. Mat.Sci. & Eng. A, 2002, 333:279-286.
    [95]Anders Bjarbo and Mats Hattestrand. Complex carbide growth, dissolution, and coarsening in a modified 12% chromium steel-an experimental and theoreticalstudy[J]. Meta. and Mat. Tran. A, 2001,32A:19-25.
    [96]周媛. TRIP 钢的组织控制计算[D]. 上海大学硕士学位论文,2002
    [97]何燕霖. 高性能预硬型塑料模具钢的计算机合金设计[D].上海大学博士论文,2004.
    [1]Malm S, Norstom L A. Material related model for thermal fatigue applied to tool steels in hot-work applications [J]. Met.Sci.1979,9:544-550.
    [2] Norstom L A, Svensson M,Ohrberg N. Thermal fatigue behavior of hot-work tool steels[J], Met.Technology. 1981,8(10):376-381.
    [3] Norstom L A. A new generation of steel for die castingdies[J]. Die Casting Engineer, 1982,9~10:24-27.
    [4]平修二(编),郭延玮,李安定译.热应力与热疲劳[M].北京:国防工业出版社,1984:115-121.
    [5]Johnny S. Jens B. Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments[J]. Journal of Materials Processing Technology, 2004,(153-154):1089-1096.
    [6]许珞萍,吴晓春,邵光杰,闵永安.4Cr5MoSiV1和8407钢的热疲劳性能[C].全国的七届热疲劳学术会议论文集,刘绍伦编,海口,2000:89-96.
    [7]许珞萍,吴晓春,李麟,邵光杰.我国模具钢标准的思考[J],上海金属,2004,26(2):1-4.
    [8]T.Yamashita, K.Okuda, J.Obara. Application of Thermo-calc to the development of high-performance steels [J]. J phase Equilibria,1999,20(3):231-237.
    [9]J-O Andersson, T.Helander,L.H?glund, et al.Thermo-calc & DICTRA, computational tools for materials science [J], Calphad, 2002,26(2):273-312.
    [10]乔芝郁,许志宏,刘洪霖.冶金和材料计算物理化学[M].北京:冶金工业出版社,1999:1-14.
    [11]徐进,姜先畲,陈再枝,陈景榕编.模具钢[M].北京:冶金工业出版社,1998:245.
    [12]任慧平,李文学,刘宗昌等.H13 钢退火用 TTT 图及球化退火工艺的研究[J].金属热处理1997,5:7-10.
    [13]李文学,王玉峰,刘宗昌.H13 热作模具钢的热处理[J].特殊钢,1999,20(6):10-12. [14 朱心昆,赵应富.淬火温度对 H13 钢性能的影响[J].金属热处理,1994,8:28-30.
    [15]C.N.Elias and C.S.Da Costa Viana. Effect of ausforming on microstructure and hardness of AISI H13 steel modified with niobium [J].Materials Science and Technology,1992,8:785-789.
    [16]吴晓春,许珞萍,闵永安,张恒华,徐晓.回火温度对 4Cr5MoSiV1 钢和 8407 钢热疲劳性能的影响[J].金属热处理,2001,(4):7-10.
    [17] L.A.Dobrzański,J.Mazurkiewicz, E.HajducZek and J.Madejski. Comparison of the thermal fatigue resistance and structure of the 47CrMoWVTiCeZr16-26-8 hot work tool steel with X40CrMoV5-1 type one [J].Journal of Materials Processing Technology, 2001,113:527-538.
    [18] Sundman B., Jansson B., Andersson J.-O., The Thermo-calc database system [J], CALPHAD,1985,9:153-190.
    [19] Bo Sundman, Thermodynamic databanks, visions and facts [J], Scandinavian Journal of Metallurgy, 1991,20:79-85.
    [20]E.B.潘钦科夫等著,孙一唐译.金相实验室[M].北京:中国工业出版社,1960:443.
    [21] J.R.T.Branco, George Krauss. Alloy partitioning and grain growth control of H13 steel [C]. Proceeding of the 6th international congress on heat treatment of materials, Chicago,1988:195:199.
    [22]N.Tsujii G.Abe, K.Fukura, H.Sunada. High temperature low cycle fatigue behaviour of a 4.2Cr-2.5Mo-V-Nb hot work tool steel[J]. Journal of Materials Science Letters, 1996, 15 :1251-1254.
    [23]N.Mebarki, P.Lamesle, D.Delagnes, C.Levaillant. Relationship Between Microstructure And Mechanical Properties of 5%Cr Hot Work Tool Steel[C]. Proceedings of the 6th International tooling conference, The use of tool steels; Experience and Research, Karlstad, Sweden, 10-3,sep. 2002: 617-632
    [24]刘树勋,李培杰,黄相全,安运铮等.高 Co 稀土热作模具钢析出相沉淀析出的研究[J].材料热处理学报, 2002, 3:15-19.
    [25]Cai Guang-jun, Andrén,Svensson Lars-erik. Microstructural change of a 5%Cr steel weld metal during tempering. Materials Sci. and Engin.,1998,A242:202-209.
    [26]Anders Bjarbo and Mats Hattestrand. Complex carbide growth, dissolution, and coarsening in a modified 12% chromium steel-an experimental and theoretical study. Meta. and Mat. Tran. A, 2001,32A:19-25.
    [27]郑鲁,雍歧龙,孙珍宝.碳化铌在微合金钢中的溶解[J].金属学报,1987,6:B277-B281.
    [28] 雍歧龙 . 微合金碳氮化物在铁 素 体 中的 沉 淀强化 机制 的理 论分 析 [J]. 科学通报,1989,9:707-709
    [29]Shunichi, Hashinvoto. Effect of Metallurgical Factors on the Mechanical Properties of IF Steels[C].微合金化技术国际研讨会论文集, 北京: 中信微合金化技术中心, 2002:30-45
    [30]Wilmes S, Zwick G. Effect of niobium and vanadium as an alloying element in tool steels withhigh chromium content[C].6th international tooling conference (Karlstad university) 10-13 sep.2002:227.
    [31] J.R.T.Branco, George Krauss. Alloy partitioning and grain growth control of H13 steel [C]. Proceeding of the 6th international congress on heat treatment of materials, Chicago,1988:195:199.
    [32]冯 端, 等. 《金属物理学》[M]. 北京: 科学出版社,1999: 420
    [33]张树松, 仝爱莲. 《钢的强韧化机理与技术途径》[M]. 北京: 兵器工业出版社, 1995
    [34]Johansson B,Worbye J. Some aspects on the properties of QRO and die performance. SDCE. In:The Proccedings of the 13th International Die Casting Congress & Exposition. Milwaukee:the Society of the casting Engineers, Inc.,1985.G-T85-042.g1
    [35]A.Kroupa, A.Vyrostkova, M.Svoboda and J.Janovec. Carbide reactions and phase equilibria in low-alloy Cr-Mo-V steels tempered at 773-993K [J]. Acta mater. 1998,1:39-49.
    [36]钢铁研究总院编.《钢和铁、镍基合金的物理化学相分析》[M].上海:上海科学技术出版社,1981:150.
    [37] 雷廷全,赵连成等译.《钢的组织转变》[M].北京:机械工业出版社,1985.
    [38] 俞德刚. 《钢的强韧化理论与设计》[M]. 上海: 上海交大出版社, 1990.
    [39] 徐进,姜先畲,陈再枝,陈景榕编.模具钢[M].北京:冶金工业出版社,1998:129
    [40]王毛球,董翰,王琪等.奥氏体化对 3Cr-3Mo-Nb 二次硬化钢的组织和力学性能的影响[J]. 兵器材料科学与工程,2002,25(5):9-13.
    [41]R.W.K.霍尼库姆著,傅俊岩译.钢的显微组织和性能[M].北京:冶金工业出版社,1985:205.
    [42]章守华主编.合金钢. 北京:冶金工业出版社,1981:178-179.
    [43]陈景榕,李承基主编.金属和合金中的固态相变. 北京:冶金工业出版社,1997:77-93.
    [44]刘宗昌,杜志伟等.H13 钢的回火二次硬化[J].兵器材料科学与工程,2001,24(3):11-13.
    [45]约.盖勒.工具钢[M].北京:国防工业出版社,1983:125
    [46]冯晓曾等.模具钢和热处理[M].北京:机械工业出版社,1984:75
    [47]李平安,高军.热作模具钢的热稳定性研究[J].金属热处理,1997,12:10-12.
    [48] 雍 歧 龙 , 阎 生 贡 , 裴 和 中 等 . 钒 在 钢 中 的 物 理 冶 金 学 基 础 数 据 [J]. 钢铁 研究学报,1998,10(5):64-66.
    [1] 宗亚平,郝士明,李彬,热作模具钢热疲劳性能测定方法的研究.安徽工学院学报,1988,7(2):109-118
    [2]李熙章,施占华,汤继跃,肖忠义,吴一平.评定模具钢热疲劳性能的 Uddeholm 法[J].安徽工学院学报,1988,7(2)101-108
    [3] Korach,M. Low-cycle Fatigue and Thermal Fatigue Behaviour of Hot Work Tool Steels[C]. Proceedings of A Symposium Held in Sunne,Sweden, Uddeholm Swedish Institute for MetalsResearch,1983.241-267
    [4]Norstrom L.A, Svensson M, Ohrberg V. Thermal fatigue behaviour of hot work tool steels. Met. Technology. 1981;8(10):376-381
    [5]R.Zauter, F.Petry, H.J.Christ and H.Mughrabi. Thermomechanical fatigue behavior of materials. ASTM STP,1993,1186:70
    [6] Li Ming, Wu Yudao., Evalution of the Thermal Fatigue Cracks in Die Steel, Tool Steel for Dies and Molds, April 14-16,1998, Shanghai, China. P180-185
    [7] W.Bleck, M.Pant. The Influence of Tramp Elements on the Spalling Resistance of Hot Work Tool Steel, 6th International Tooling Conference, 10-13, Sep, 2002, Sweden:43~53
    [8] M.Faccoli, G.M.La Vecchia, R.Roberti, G.Straffelini, Thermal Fatigue behaviour and Fracture toughness of Vacuum Treated Steel, Conference: 11th Congress of the International Federation for Heat Treatment and Surface Engineering and the 4th ASM Heat Treatment and Surface Engineering Conference in Europe, Florence Italy , 1998, Oct,19-21, p437-448
    [9]徐晓,吴晓春,许珞萍.热作模具钢热疲劳损伤因子的研究.上海金属,2003,25(2):1-5
    [10] X.Wu and L.Xu. Proceedings of the 6th International tooling conference, The use of tools steels; Experience and Research, Karlstad, Sweden, 10-3,sep. (2002), p.657/66
    [11]徐晓. H13 类钢的各向异性及其热疲劳损伤因子的研究[D],硕士学位论文,上海大学,2003.
    [12] Johnny S. Jens B. Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments. Journal of Materials Processing Technology, 2004,(153-154):1089-1096.
    [13]吴晓春,许珞萍,闵永安,张恒华,徐晓.回火温度对 4Cr5MoSiV1 钢和 8407 钢热疲劳性能的影响.金属热处理,2001,(4):7-10.
    [14]Anders Persson, Sture Hogmark, Jens Bergstrom. Simulation and Evaluation of thermal fatigue cracking of hot work tool steels [J]. International Journal of Fatigue, 2004,26:109-1107.
    [15]郭新成,束德林.热模钢的热疲劳缺口敏感性.机械工程材料,1993,17(3):24-27.
    [16] 李健 , 束德林 , 郭新成 . 钨系 热作模具钢热疲劳特性的研究 [J] 安徽工学院学报,1988:7(2):21-31
    [17]平修二,郭廷玮,李安定译.热应力与热疲劳[M].北京:国防工业出版社,1984:211-221.
    [18] 刘剑虹 , 何世禹姚枚 .3Cr2W8V 钢热疲劳裂纹长大方式的原位观察 [J]. 金属学报,1992,28(12):A527-A529.
    [19]Liu J, Feng X. The Effect of heat treatment on propagation drive forge of thermal fatigue crack in 4Cr5MoSiV1 steel [J].J. Anhui Inst.Tech., 1988,7(2):58-62.
    [20]R.Zuchowski. Analysis of the thermal process. J. of Mat.Proc.Tech.,2000,106:167-172.
    [21]Li Guobin, Wu Jianjun, Jiang Yanfei, LiGuiyun. The nucleation and propagation of a fatigue crack in 4Cr2NiMoV steel. J. of Mat.Proc.Tech.,2000,100:63-66.
    [22] 哈宽富.断裂物理基础[M].北京:科学出版社,2000:315
    [23] 李宝山.浅论热疲劳机理[C].全国第七届热疲劳学术会议论文集,海口,2000 :225-235
    [1]平修二,郭廷玮,李安定译.热应力与热疲劳[M].北京:国防工业出版社,1984:93.
    [2] R.Zuchowski. Analysis of the thermal process. J. of Mat.Proc.Tech.,2000,106:167-172.
    [3]D.Caliskanoglu, I.Siller , R.Ebner, etal. Thermal fatigue and softening behaviour of hot work tool steels[C]. Proceedings of the 6th International tooling conference, The use of tool steels; Experience and Research, Karlstad, Sweden, 10-3,sep. 2002:591-601
    [4] K.Kanazawa, K.Yamaguchi and K.Kobayashi[J]. J. Soc. Mater. Sci., Jpn., 1979,28:393
    [5] D.V.Wilson. Acta Metall[J]., 1973,21:673
    [6]R.Zauter, F.Petry, H.J.Christ and H.Mughrabi. Thermomechanical fatigue behavior of materials[M]. ASTM STP,1993,1186:70
    [7] S.Kocanda 著,颜鸣皋,刘才穆译.金属的疲劳与断裂[M].上海:上海科技出版社,1983:49
    [8]N.Tsujii, G.Abe, K.Fukura, H.Sunada.. Effect of testing Atmosphere on low cycle fatigue of hot work tool steel at elevated temperature[J]. ISIJ International, 1995,35:920-926.
    [9]N.Tsujii G.Abe, K.Fukura, H.Sunada. High temperature low cycle fatigue behaviour of a 4.2Cr-2.5Mo-V-Nb hot work tool steel [J]. Journal of Materials Science Letters, 15 (1996)1251-1254.
    [10]李宝山.浅论热疲劳机理[C]. 全国第七届热疲劳学术会议论文集,海口,2000:225-235.
    [11]唐超群,李国元,施占华,李熙章.用正电子探测热疲劳模具钢中的缺陷变化[J].华中理工大学学报,1994,22(12)139-143.
    [12]郭可信,叶恒强,吴玉琨.电子衍射图在晶体学中的应用[M].北京:科学出版社,1983:426
    [13] Raabe D 编著,项金钟,吴兴惠译.计算材料学[M].北京:化学工业出版社,2002:232.
    [14]哈宽富.断裂物理基础[M].北京:科学出版社,2000:315
    [15]肖纪美,朱逢吾.材料能量学[M].上海:上海科学技术出版社,1999:416~417.
    [16]徐祖耀,李麟.材料热力学[M].第三版,北京:冶金工业出版社,2005:41
    [17]钢铁研究总院编.《钢和铁、镍基合金的物理化学相分析》[M].上海:上海科学技术出版社,1981:128-129.
    [18]哈宽富.断裂物理基础[M].北京:科学出版社,2000:315
    [19] S.Kocanda 著,颜鸣皋,刘才穆译.金属的疲劳与断裂[M].上海:上海科技出版社,1983:49
    [20]刘剑虹,何世禹,姚枚. 3Cr2W8V 钢热疲劳裂纹长大方式的原位观察[J].金属学报,1992,28(12):A527-A529
    [21] 刘剑虹,冯晓曾,张德福.利用扫描电镜动态研究 3Cr2W8V 钢热疲劳裂纹的萌生[J]. 安徽工学院学报,1988;7(2):45-50
    [22]A. Melander, S. Haglund. A New Model for Fatigue Failure Due to Carbide Clusters[C]. J. Bergstrom. Proceedings of The 6th International Tooling Conference. Karlstad University,Sweden,2002.699-710
    [23]杨瑞成,聂福荣,师瑞霞,王晖.WC 钢基合金的强韧化因素分析[J].甘肃工业大学学报,2001,27(1):22-26.
    [24]李熙章,施占华,周凤云,肖钟义.几种模具钢的热疲劳性能对比研究[J]. 安徽工学院学报,1988:7(2):10-20
    [25] 李 健 , 束 德 林 , 郭 新 成 . 钨 系 热 作 模 具 钢 热 疲 劳 特 性 的 研究 [J]. 安徽工学院学报,1988:7(2):21-31
    [26]J.Sj?str?m, J.Bergstr?m. Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments. J. of Mat.Proc.Tech.,2004,153-154:1089-1096.
    [27]刘立名,段梦兰,柳春图,赵慧娟.对裂纹扩展规律 Paris 公式物理本质的探讨[J].力学学报,2003,35(2):171:175.
    [28]王建国,王连庆,王红缨,徐世平.GH4133 合金热机械疲劳寿命预测[C]. 全国第七届热疲劳学术会议论文集,海口,2000 :66-72
    [29] Guobin Li, Xiangzhi Li, Jianjun Wu. Study of The Thermal Fatigue Crack Initial Life of H13 And H21 Steels. Journal of Materials Processing Technology, 1998,74:23-26
    [30]A.Srivastava, V.Joshi,R.Shivpuri. Computer modeling and prediction of thermal fatigue cracking in die-casting tooling [J]. WEAR, 2004,256:38-43.
    [31]A.Persson, S.Hogmark, J.Bergstr?m. Failure modes in field-tested brass die casting dies [J]. Journal of Materials Processing Technology, 2004,148:108-118.
    [32]哈宽富.断裂物理基础[M].北京:科学出版社,2000:305.
    [33]Zheng X, Lu B. Fatigue formula under cyclic strain, In: Fatigue and Fracture, Proc.1st .Int.Conf. Ed. By aliabadi M H.et al, 1990:175-184.
    [34] 平修二,郭廷玮,李安定译.热应力与热疲劳[M].北京:国防工业出版社,1984:145.
    [35]王栓柱.金属疲劳[M].福州:福建科学技术出版社,1986:485.
    [36]C.M.D.Starling, J.R.T.Branco. Thermal fatigue of hot work tool steel with hard coatings[J]. Thin Solid Films, 1997,308-309:436-442.
    [37]朱宗元.我国热作模具钢性能数据集(续ⅩⅣ)[J].机械工程材料,2002,26(4):43-46.
    [38]闵永安.热作模具钢表面处理及其热疲劳、热熔损性能研究[D].上海大学,2005:130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700