转Bt基因对水稻根际及残茬降解土壤微生物生态的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因植物是运用人类智慧和技能在遵循生物学原理的基础上创制出的符合人类意愿的新型植物品种。它的种植满足了人类对粮食产量、经济效益和食物安全的需求。2009年11月,中国首次通过转Bt基因水稻的审批,Bt大米在不久的将来即会进入商品化生产阶段。当前,我国常年水稻种植面积约4.5亿亩,转Bt基因水稻一旦商品化生产,无疑将给我国带来巨大的经济和环境效益。然而,由于转基因植物通常携带外源基因,表达外源物质,且外源基因的人工插入可能改变植物原来的基因组序列,可能会影响植物的生理生化特性和物理化学结构;改变根分泌物的组成从而影响田间土壤生态;大面积转基因作物的秸秆还田也可能给农田生态系统带来很大的环境安全压力。本论文针对当前转Bt基因水稻农田生态安全风险中关注的主要问题,以转Bt基因水稻“克螟稻”和亲本水稻“秀水11”为试材,通过田间试验,系统研究比较转Bt基因与三唑磷农药施用对水稻根际土壤微生物生态的影响;转Bt基因对水稻成熟体植株物理结构与化学组成的影响;转Bt基因对水稻成熟体残茬降解以及土壤降解微生物的影响。研究结果为即将到来的Bt水稻大规模释放的农田土壤生态安全风险性评价提供重要依据。具体研究结果如下:
     1.转Bt基因及三唑磷施用对水稻根际微生物的影响
     通过田间试验,采用PCR-T-RFLP-AMMI方法对比水稻转Bt基因与螟虫常用杀虫剂三唑磷施用对水稻根际土壤细菌和真菌种群结构多样性的影响,结果发现转Bt基因与亲本及亲本喷药处理之间丛枝菌根(AM)真菌孢子浓度、球囊霉素(Glomalin)蛋白浓度未见显著性差异,表明转Bt基因未对AM真菌群落丰富度产生显著性的影响;此外,转Bt基因与三唑磷并未显著影响水稻根际的总细菌和真菌群落多样性组成。
     环境因素对水稻根际微生物影响显著,AM真菌及glomalin蛋白的丰度随着时间季节的变化呈现较大的波动。环境因素的变化如气温的季节变化、湿度的变化对水稻根际的总细菌和真菌的群落组成影响较大。
     2.转Bt基因对成熟期水稻秸秆与根物理结构与化学组分的影响
     通过田间试验培育的转Bt基因克螟稻及亲本水稻的成熟期秸秆与根,采用元素分析、傅立叶红外光谱(FTIR)、木质素和纤维素含量分析和扫描电镜(SEM)观察,对比转Bt基因克螟稻和亲本水稻成熟期秸秆物理结构与化学成分的差异。结果发现:转Bt基因与亲本水稻秸秆与根之间C%、N%、C:N、H%以及灰分均存在较大差异,水稻秸秆的C%、C:N和H%显著高于根,而N%和灰分含量则显著低于水稻根。但除水稻秸秆灰分含量外,转Bt基因与亲本水稻秸秆与根的元素组成均无显著性的差异;化学结构组成、傅立叶红外光谱(FITR)及表面和横切水稻组织扫描电镜(SEM)分析发现,水稻秸秆与根之间木质素和纤维素含量均显著高于根,SEM显示秸秆与根之间的物理结构存在一定的差异;但转Bt基因与亲本水稻亲本之间木质素和纤维素含量、表面基团并无显著性差异,转Bt基因与亲本水稻物理结构均呈现典型的粳稻的结构。
     3.转Bt基因对成熟期秸秆与根降解动力学的影响
     通过田间培育克螟稻及原亲本成熟期秸秆与根,在不同耕作方式(油菜-水稻、双季稻)下,采用litterbag技术将成熟期克螟稻与亲本稻秸杆与根还田,以明确克螟稻与亲本秸杆与根在田间土壤中的降解规律,结果发现:地下放置方式与双季稻模式下转Bt水稻根降解可能存在一定的差异,双季稻模式转Bt基因水稻根降解在地下放置31、68和137 d处理下显著性高于亲本稻;两种耕作模式下水稻秸秆降解过程存在较大的相似性,转Bt基因水稻与亲本水稻秸秆降解均未出现持续的显著性差异,耕作模式对水稻秸秆的降解影响较小;不同耕作模式下转Bt基因水稻与亲本稻根降解存在较大差异。双季稻模式水稻根降解前期出现平台期而油菜-水稻耕作模式下油菜种植有利与前期水稻根的降解。
     4.转Bt基因对成熟期秸秆与根降解微生物群落的影响
     采用双季稻或油菜-水稻耕作模式通过田间试验研究了转Bt基因地成熟期水稻秸秆与根降解微生物群落的影响,结果发现:基于降解动力学的结果,我们也发现在双季稻耕作模式地下放置方式下,还田31 d、68 d和137 d的转Bt基因水稻与亲本稻根降解真菌群落结构均存在一定的差异。提取前20个相对荧光强度的T-RFs,进行对比分析也表明,在地下10 cm放置处理,转Bt基因与亲本根降解真菌T-RFs在三个时期均存在一定的差异,而细菌和地表放置处理则无差异,真菌DGGE分析也表明这种差异可能由担子菌门和子囊菌门真菌种群结构发生变化所致;相比较与时间和放置方式因素,两种耕作模式转Bt基因对水稻秸秆与根的降解整个降解周期影响较不明显,方差分析也证明转Bt基因效应在整个降解周期模型中并不显著;降解微生物菌群落均在降解时间上存在较大差异,并在一定程度上表现出不同埋放方式之间的差异,表明转Bt基因水稻与亲本稻秸秆与根的降解微生物群落受降解时间的推移影响最大;两种耕作方式下微生物群落结构沿降解时间演替规律存在一定的差异,主要表现为双季稻模式下微生物群落结构分化主要在后期出现,而油菜-水稻耕作模式下主要是前期。
     综上所述,转Bt基因对水稻根际土壤微生物生态、成熟期植株体结构与组成、成熟期水稻秸秆的降解及降解微生物的影响并不显著。虽然如此,我们发现转Bt基因对成熟期水稻根降解前期以及降解真菌群落组成存在一定的影响。
By 2009, genetically modified (GM) crops were adopted in 25 countries covering an area of more than 134 million hectares with an annual growth rate of 7%. The Chinese government implemented a$3.5 billion GM Crops Initiative that included Bt rice to secure its food supply and to address land degradation, chronic water shortages, and a growing population that already numbers 1.3 billion. Transgenic Bt rice is not approved in any country so far, but is likely to be approved in China in the near future. However, the random insertion of a foreign gene into the plant genome may cause changes in the amount and composition of crop residues and may also affect organic matter decomposition, soil microbial community, andnutrient cycling in soil. So far, little is known about the effects of Bt rice on rihzosphere microbial community, residues composition and its decomposition process. Hennce in this thesis the effects of cry1Ab gene transformation in rice on rihzosphere and its residue decomposed microbial community were conducted under field conditions. The results were summaried as follow:
     1. The effect of Bt rice on rihzosphere soil microbial community composition
     There were no significant differences of arbuscular mycorrhiza fungi (AMF) spores and glomalin protein density between Bt and non-Bt rice variety indicating that Bt gene transformation have little effect on soil AMF in paddy field. Furthermore, the bacterial and fungal mommunity composition were shifted during the rice growing stage and environment condition in paddy field. The effects of Bt gene transformation on rihzosphere soil microbial community were minor.
     2. The effect of Bt transformation on rice residues composition
     Lignin, cellulose, carbon and nitrogen contents in Bt and non-Bt parental rice residues were not significantly different. However, significantly higher lignin, cellulose and carbon content, and lower nitrogen content were detected in rice straw compared with rice roots. The FITR showed no significant differences of surface functional groups between Bt and non-Bt residues. The physical histology of rice straw was quit different compared with root using scanning electron microscope (SEM). However, no differencs of physical histology were also shown in Bt and non-Bt rice residues.
     3. The effect of Bt rice on rice residue decomposition dynamics
     For rice straw in the litterbags, the time-course of AFMR, TN, TC and the C/N ratio showed similar trends despite a transient increase in TN at the beginning of decomposition. A significantly higher decomposition level of straw as indicated by AFMR, TN and TC under incorporated placement was observed as compared to the surface placement. However, there were no further significant differences between Bt and non-Bt treatments. Percent AFMR, TN, TC and C/N ratio of rice straws were significantly affected by time and placement factors.
     For rice root, there were no significant differences of AFMR TN, TC and the C/N between Bt and non-Bt treatment in there rapeseed-rice cropping system. However, concerns have to be raised in rice-rice cropping sysytem Bt roots in buried litterbags displayed significantly lower AFMR, TN and TC contents at the initial decomposition stage compared to the conventional rice. 4. The effect of Bt rice on rice residue decomposed microbial community composition
     For rapeseed-rice cropping system, AMMI analysis of two bacterial T-RFLP data sets revealed a relationship between soil microbial community and decomposition time for rice straw and roots. The MANOVA on the first two dimensions of AMMI scores for soil bacterial and fungal communities showed significant effect of decomposition time in all treatments except the second interaction principal component (IPC 2) of bacterial T-RFLP data during the root decomposition. The fungal T-RFLP fingerprints from both straw and root samples were also clearly grouped by time. An effect of litterbag placement on the microbial community associated with the residues was also detected by AMMI analysis. However, no significant effect of rice genotype was observed at any time for either bacteria or fungi associated with straw and root residues.
     For rice-rice cropping system, total AMMI model analysis revealed that microbial community composition in the litterbags was affected by temporal and spatial factors. Compared with the non-Bt rice residue treatment, Bt rice straw had no significant effects on the soil bacterial and fungal community composition during the study period, regardless of the litterbags being placed on the surface or buried in the soil. There were no significant differences in the bacterial community composition profiles in root decomposition between Bt transgenic and non-Bt varieties. However, significant differences in soil fungal community composition between the buried Bt and non-Bt rice roots were observed in soils sampled on days 31,68 and 137, indicating that Bt roots incorporated into paddy soil may affect soil fungal community during the initial stage of their decomposition
引文
Bardgett, R.D., Denton, C.S., Cook, R. (1999) Below-ground herbivory promotes soil nutrient transfer and root growth in grassland. Ecology Letters 2:357-360.
    Barton, K.A., Whiteley, H.R., Yang, N.S. (1987) Bacillus-Thuringiensis Delta-Endotoxin Expressed in Transgenic Nicotiana-Tabacum Provides Resistance to Lepidopteran Insects. Plant Physiology 85:1103-1109.
    Baumgarte, S., Tebbe, C.C. (2005) Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Molecular Ecology 14: 2539-2551.
    Beachy, R.N., Fedoroff, N.V., Goldberg, R.B., McHughen, A. (2008) The burden of proof:a response to Rosi-Marshall et al. Proc Natl Acad Sci U S A 105:E9; author reply E11.
    Beare, M.H., Parmelee, R.W., Hendrix, P.F., Cheng, W., Coleman, D.C., Crossley, D.A., Jr. (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecological Monographs 62:569-591.
    Beegle, C.C., Yamamoto, T. (1992) Invitation Paper (Cp-Alexander-Fund)-History of Bacillus-Thuringiensis Berliner Research-and-Development. Canadian Entomologist 124:587-616.
    Bernal, J.S., Griset, J.G, Gillogly, P.O. (2002) Impacts of developing on Bt maize-intoxicated hosts on fitness parameters of a stem borer parasitoid. Journal of Entomological Science 37:27-40.
    Blackwood, C.B., Buyer, J.S. (2004) Soil microbial communities associated with Bt and non-Bt corn in three soils. Journal of Environmental Quality 33:832-836.
    Blenis, P.V., Chow, P.S., Stringam, G.R. (1999) Effects of burial, stem portion and cultivar on the decomposition of canola straw. Canadian Journal of Plant Science 79:97-100.
    Bradley, D., Harkey, M.A., Kim, M.K., Biever, K.D., Bauer, L.S. (1995) The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. Journal of Invertebrate Pathology 65:162-173.
    Brusetti, L., Francia, P., Bertolini, C., Pagliuca, A., Borin, S., Sorlini, C. et al. (2004) Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non transgenic counterpart. Plant and Soil 266:11-21.
    Castaldini, M., Turrini, A., Sbrana, C., Benedetti, A., Marchionni, M., Mocali, S. et al. (2005) Impact of Bt corn on rhizospheric and on beneficial mycorrhizal symbiosis and soil eubacterial communities iosis in experimental microcosms. Applied and Environmental Microbiology 71:6719-6729.
    Celis, C., Scurrah, M., Cowgill, S., Chumbiauca, S., Green, J., Franco, J. et al. (2004) Environmental biosafety and transgenic potato in a centre of diversity for this crop. Nature 432:222-225.
    Chaboud, A. (1983) Isolation, Purification and Chemical-Composition of Maize Root Cap Slime. Plant and Soil 73:395-402.
    Christou, P. (2002) No credible scientific evidence is presented to support claims that transgenic DNA was introgressed into traditional maize landraces in Oaxaca, Mexico. Transgenic Research 11:Iii-V.
    Cookson, W.R., Beare, M.H., Wilson, P.E. (1998) Effects of prior crop residue management on microbial properties and crop residue decomposition. Applied Soil Ecology 7:179-188.
    Corey, D., Kambhampati, S., Wilde, G. (1998) Electrophoretic analysis of Orius insidiosus (Hemiptera:Anthocoridae) feeding habits in field corn. Journal of the Kansas Entomological Society 71:11-17.
    Cortet, J., Andersen, M.N., Caul, S., Griffiths, B., Joffre, R., Lacroix, B. et al. (2006) Decomposition processes under Bt (Bacillus thuringiensis) maize:Results of a multi-site experiment. Soil Biology & Biochemistry 38:195-199.
    Crecchio, C., Stotzky, G. (1998) Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kurstaki bound to humic acids from soil. Soil Biology & Biochemistry 30:463-470.
    Crecchio, C., Stotzky, G. (2001) Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp kurstaki bound on complexes of montmorillonite-humic acids-Al hydroxypolymers. Soil Biology & Biochemistry 33:573-581.
    Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D. et al. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807-813.
    Culman, S.W., Duxbury, J.M., Lauren, J.G., Thies, J.E. (2006) Microbial community response to soil solarization in Nepal's rice-wheat cropping system. Soil Biology & Biochemistry 38:3359-3371.
    Culman, S.W., Gauch, H.G., Blackwood, C.B., Thies, J.E. (2008) Analysis of T-RFLP data using analysis of variance and ordination methods:A comparative study. Journal of Microbiological Methods 75:55-63.
    Daudu, C.K., Muchaonyerwa, P., Mnkeni, P.N.S. (2009) Litterbag decomposition of genetically modified maize residues and their constituent Bacillus thuringiensis protein (Cry1Ab) under field conditions in the central region of the Eastern Cape, South Africa. Agriculture Ecosystems & Environment 134:153-158.
    Davis, M.F., Tuskan, GA., Payne, P., Tschaplinski, T.J., Meilan, R. (2006) Assessment of Populus wood chemistry following the introduction of a Bt toxin gene. Tree Physiology 26:557-564.
    Devare, M., Londono-R, L.M., Thies, J.E. (2007) Neither transgenic Bt maize (MON863) nor tefluthrin insecticide adversely affect soil microbial activity or biomass:A 3-year field analysis. Soil Biology & Biochemistry 39:2038-2047.
    Devare, M.H., Jones, C.M., Thies, J.E. (2004) Effect of Cry3Bb transgenic corn and tefluthrin on the soil microbial community:Biomass, activity, and diversity. Journal of Environmental Quality 33:837-843.
    Dickinson, C., Pugh, G.F. (eds) (1974) Biology of plant litter decomposition. Volume 1. London:Academic Press.
    Donegan, K.K., Schaller, D.L., Stone, J.K., Ganio, L.M., Reed, G., Hamm, P.B., Seidler, R.J. (1996) Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var tenebrionis endotoxin. Transgenic Research 5:25-35.
    Donegan, K.K., Seidler, R.J., Doyle, J.D., Porteous, L.A., Digiovanni, G., Widmer, F., Watrud, L.S. (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti:effects on the soil ecosystem. Journal of Applied Ecology 36:920-936.
    Donegan, K.K., Palm, C.J., Fieland, V.J., Porteous, L.A., Ganio, L.M., Schaller, D.L. et al. (1995) Changes in Levels, Species and DNA Fingerprints of Soil-Microorganisms Associated with Cotton Expressing the Bacillus-Thuringiensis Var Kurstaki Endotoxin. Applied Soil Ecology 2: 111-124.
    Donovan, W.P., Dankocsik, C., Gilbert, M.P. (1988) Molecular Characterization of a Gene Encoding a 72-Kilodalton Mosquito-Toxic Crystal Protein from Bacillus-Thuringiensis Subsp Israelensis. Journal of Bacteriology 170: 4732-4738.
    Duan, J.J., Head, G., McKee, M.J., Nickson, T.E., Martin, J.W., Sayegh, F.S. (2002) Evaluation of dietary effects of transgenic corn pollen expressing Cry3Bbl protein on a non-target ladybird beetle, Coleomegilla maculata. Entomologia Experimentalis Et Applicata 104:271-280.
    Eijsackers, H., Zehnder, A.J.B. (1990) Litter Decomposition-a Russian Matriochka Doll. Biogeochemistry 11:153-174.
    Escher, N., Kach, B., Nentwig, W. (2000) Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodlice Porcellio scaber (Crustacea: Isopoda). Basic and Applied Ecology 1:161-169.
    Evans, D.G, Miller, M.H. (1988) Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. I. Causal relations. New phytologist 110:75-84.
    Feitelson, J.S., Payne, J., Kim, L. (1992) Bacillus-Thuringiensis-Insects and Beyond. Bio-Technology 10:271-275.
    Fernandes, E.C.M., Motavalli, P.P., Castilla, C., Mukurumbira, L. (1997) Management control of soil organic matter dynamics in tropical land-use systems. Geoderma 79:49-67.
    Fischhoff, D.A., Bowdish, K.S., Perlak, F.J., Marrone, P.G, Mccormick, S.M., Niedermeyer, J.G et al. (1987) Insect tolerant transgenic tomato plants. Nature Biotechnology 5:807-813.
    Flores, S., Saxena, D., Stotzky, G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biology & Biochemistry 37:1073-1082.
    Frey, S.D., Elliott, E.T., Paustian, K., Peterson, GA. (2000) Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biology & Biochemistry 32:689-698.
    Gebhard, F., Smalla, K. (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. Fems Microbiology Ecology 28:261-272.
    Geiser, M., Schweitzer, S., Grimm, C. (1986) The Hypervariable Region in the Genes-Coding for Entomopathogenic Crystal Proteins of Bacillus-Thuringiensis-Nucleotide-Sequence of the Kurhdl Gene of Subsp Kurstaki Hdl. Gene 48: 109-118.
    Gerdemann, J.W., Nicolson, T.H. (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46:235-244.
    Ghidey, F., Alberts, E.E. (1993) Residue Type and Placement Effects on Decomposition-Field-Study and Model Evaluation. Transactions of the Asae 36: 1611-1617.
    Griffiths, B.S., Geoghegan, I.E., Robertson, W.M. (2000) Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes. Journal of Applied Ecology 37:159-170.
    Griffiths, B.S., Caul, S., Thompson, J., Birch, A.N.E., Scrimgeour, C., Cortet, J. et al. (2006) Soil microbial and faunal community responses to Bt maize and insecticide in two soils. Journal of Environmental Quality 35:734-741.
    Grillot-Courvalin, C., Goussard, S., Huetz, F., Ojcius, D.M., Courvalin, P. (1998) Functional gene transfer from intracellular bacteria to mammalian cells. Nature Biotechnology 16:862-866.
    Hofte, H., Whiteley, H.R. (1989) Insecticidal Crystal Proteins of Bacillus-Thuringiensis. Microbiological Reviews 53:242-255.
    Hofte, H., Vanrie, J., Jansens, S., Vanhoutven, A., Vanderbruggen, H., Vaeck, M. (1988) Monoclonal-Antibody Analysis and Insecticidal Spectrum of 3 Types of Lepidopteran-Specific Insecticidal Crystal Proteins of Bacillus-Thuringiensis. Applied and Environmental Microbiology 54:2010-2017.
    Hofte, H., Degreve, H., Seurinck, J., Jansens, S., Mahillon, J., Ampe, C. et al. (1986) Structural and Functional-Analysis of a Cloned Delta Endotoxin of Bacillus-Thuringiensis-Berliner 1715. European Journal of Biochemistry 161: 273-280.
    Hannay, C.L., Fitzjames, P. (1955) The Protein Crystals of Bacillus-Thuringiensis Berliner. Canadian Journal of Microbiology 1:694-&.
    Hartley, R.D. (1981) Chemical Constitution, Properties and Processing of Lignocellulosic Wastes in Relation to Nutritional Quality for Animals. Agriculture and Environment 6:91-113.
    Henault, C., English, L.C., Halpin, C., Andreux, F., Hopkins, D.W. (2006) Microbial community structure in soils with decomposing residues from plants with genetic modifications to lignin biosynthesis. Fems Microbiology Letters 263:68-75.
    Heritage, J. (2004) The fate of transgenes in the human gut. Nature Biotechnology 22: 170-172.
    Hilbeck, A., Baumgartner, M., Fried, P.M., Bigler, F. (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera:Chrysopidae). Environmental Entomology 27:480-487.
    Hoffmann, T., Golz, C., Schieder, O. (1994) Foreign DNA-sequences are received by a wild-type strain of aspergillus-niger after co-culture with transgenic higher-plants. Current Genetics 27:70-76.
    Holland, E.A., Coleman, D.C. (1987) Litter Placement Effects on Microbial and Organic-Matter Dynamics in an Agroecosystem. Ecology 68:425-433.
    Hopkins, D.W., Gregorich, E.G. (2003) Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maize. European Journal of Soil Science 54:793-800.
    Hopkins, D.W., Webster, E.A., Chudek, J.A., Halpin, C. (2001) Decomposition in soil of tobacco plants with genetic modifications to lignin biosynthesis. Soil Biology & Biochemistry 33:1455-1462.
    House, G.J., Stinner, B.R., Crossley, D.A., Odum, E.P., Langdale, G.W. (1984) Nitrogen Cycling in Conventional and No-Tillage Agroecosystems in the Southern Piedmont. Journal of Soil and Water Conservation 39:194-200.
    Icoz, I., Stotzky, G. (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biology & Biochemistry 40:559-586.
    Icoz, I., Saxena, D., Andow, D.A., Zwahlen, C., Stotzky, G. (2008) Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis. Journal of Environmental Quality 37: 647-662.
    James, C. (2008) Executive Summary Global Status of Commercialized Biotech/GM Crops:2008. In ISAAA Brief No 39. Ithaca, NY:International Service for Acquisition of Agri-biotech Applications.
    James, C. (2009) Executive Summary Global Status of Commercialized Biotech/GM Crops:2009. In ISAAA Brief No 39. Ithaca, NY:International Service for Acquisition of Agri-biotech Applications.
    Jesse, L.C.H., Obrycki, J.J. (2003) Occurrence of Danaus plexippus L. (Lepidoptera: Danaidae) on milkweeds (Asclepias syriaca) in transgenic Bt corn agroecosystems. Agriculture Ecosystems & Environment 97:225-233.
    Jung, H.G., Sheaffer, C.C. (2004) Influence of Bt transgenes on cell wall lignification and digestibility of maize stover for silage. Crop Science 44:1781-1789.
    Kaplinsky, N., Braun, D., Lisch, D., Hay, A., Hake, S., Freeling, M. (2002) Biodiversity (communications arising):Maize transgene results in Mexico are artefacts. Nature 416:601-601.
    Koskella, J., Stotzky, G. (1997) Microbial Utilization of Free and Clay-Bound Insecticidal Toxins from Bacillus thuringiensis and Their Retention of Insecticidal Activity after Incubation with Microbes. Appl Environ Microbiol 63: 3561-3568.
    Koskella,J., Stotzky, G. (2002) Larvicidal toxins from Bacillus thuringiensis subspp. kurstaki, morrisoni (strain tenebrionis), and israelensis have no microbicidal or microbiostatic activity against selected bacteria, fungi, and algae in vitro. Canadian Journal of Microbiology 48:262-267.
    Kronstad, J.W., Whiteley, H.R. (1986) Three classes of homologous Bacillus thuringiensis crystal-protein genes. Gene 43:29-40.
    Lachnicht, S.L., Hendrix, P.F., Potter, R.L., Coleman, D.C., Crossley, D.A. (2004) Winter decomposition of transgenic cotton residue in conventional-till and no-till systems. Applied Soil Ecology 27:135-142.
    Lehman, R.M., Osborne, S.L., Rosentrater, K.A. (2008a) No differences in decomposition rates observed between Bacillus thuringiensis and non-Bacillus thuringiensis corn residue incubated in the field. Agronomy Journal 100: 163-168.
    Lehman, R.M., Osborne, S.L., Rosentrater, K.A. (2008b) No Evidence That Bacillus thuringiensis Genes and Their Products Influence the Susceptibility of Corn Residue to Decomposition. Agronomy Journal 100:1687-1693.
    Liu, W., Lu, H.H., Wu, W., Wei, Q.K., Chen, Y.X., Thies, J.E. (2008) Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biology & Biochemistry 40:475-486.
    Losey, J.E., Rayor, L.S., Carter, M.E. (1999) Transgenic pollen harms monarch larvae. Nature 399:214-214.
    Lottmann, J., Berg, G. (2001) Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plants. Microbiological Research 156:75-82.
    Lottmann, J., Heuer, H., de Vries, J., Mahn, A., During, K., Wackernagel, W. et al. (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. Ferns Microbiology Ecology 33:41-49.
    Lundgren, J.G, Wiedenmann, R.N. (2004) Nutritional suitability of corn pollen for the predator Coleomegilla maculata (Coleoptera:Coccinellidae). Journal of Insect Physiology 50:567-575.
    Masoero, F., Moschini, M., Rossi, F., Prandini, A., Pietri, A. (1999) Nutritive value, mycotoxin contamination and in vitro rumen fermentation of normal and genetically modified corn (cry1A(b)) grown in northern Italy. Maydica 44: 205-209.
    Mcgaughey, W.H. (1994) Problems of Insect Resistance to Bacillus-Thuringiensis. Agriculture Ecosystems & Environment 49:95-102.
    Mclinden, J.H., Sabourin, J.R., Clark, B.D., Gensler, D.R., Workman, W.E., Dean, D.H. (1985) Cloning and Expression of an Insecticidal K-73 Type Crystal Protein Gene from Bacillus-Thuringiensis Var Kurstaki into Escherichia-Coli. Applied and Environmental Microbiology 50:623-628.
    Moeseneder, M.M., Arrieta, J.M., Muyzer, G, Winter, C., Herndl, GJ. (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Applied and Environmental Microbiology 65: 3518-3525.
    Nielsen, K.M., Gebhard, F., Smalla, K., Bones, A.M., vanElsas, J.D. (1997) Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theoretical and Applied Genetics 95:815-821.
    Noteborn, H.P.J.M., Lommen, A., van der Jagt, R.C., Weseman, J.M. (2000) Chemical fingerprinting for the evaluation of unintended secondary metabolic changes in transgenic food crops. Journal of Biotechnology 77:103-114.
    O'Callaghan, M., Glare, T.R., Burgess, E.P.J., Malone, L.A. (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annual Review of Entomology 50:271-292.
    Obukowicz, M.G., Perlak, F.J., Kusano-Kretzmer, K., Mayer, E.J., Bolten, S.L., Watrud, L.S. (1986) Tn5-mediated integration of the delta-endotoxin gene from Bacillus thuringiensis into the chromosome of root-colonizing pseudomonads. Journal of Bacteriology 168:982-989.
    Oger, P., Petit, A., Dessaux, Y. (1997) Genetically engineered plants producing opines alter their biological environment. Nature Biotechnology 15:369-372.
    Palm, C.J., Schaller, D.L., Donegan, K.K., Seidler, R.J. (1996) Persistence in soil of transgenic plant produced Bacillus thuringiensis var kurstaki delta-endotoxin. Canadian Journal of Microbiology 42:1258-1262.
    Parrott, W. (2008) Study of Bt impact on caddisflies overstates its conclusions: response to Rosi-Marshall et al. Proc Natl Acad Sci U S A 105:E10; author reply E11.
    Pilcher, C.D., Obrycki, J.J., Rice, M.E., Lewis, L.C. (1997) Preimaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environmental Entomology 26:446-454.
    Poerschmann, J., Gathmann, A., Augustin, J., Langer, U., Gorecki, T. (2005) Molecular composition of leaves and stems of genetically modified bt and near-isogenic non-bt maize-Characterization of lignin patterns. Journal of Environmental Quality 34:1508-1518.
    Poerschmann, J., Rauschen, S., Langer, U., Augustin, J., Gorecki, T. (2008) Molecular Level Lignin Patterns of Genetically Modified Bt-Maize MON88017 and Three Conventional Varieties Using Tetramethylammonium Hydroxide (TMAH)-induced Thermochemolysis. Journal of Agricultural and Food Chemistry 56:11906-11913.
    Poerschmann, J., Rauschen, S., Langer, U., Augustin, J., Gorecki, T. (2009) Fatty Acid Patterns of Genetically Modified Cry3Bb1 Expressing Bt-Maize MON88017 and Its Near-Isogenic Line. Journal of Agricultural and Food Chemistry 57:127-132.
    Preston, R.D. (1979) Polysaccharide Conformation and Cell-Wall Function. Annual Review of Plant Physiology and Plant Molecular Biology 30:55-78.
    Quist, D., Chapela, I.H. (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541-543.
    Quist, D., Chapela, I.H. (2002) Maize transgene results in Mexico are artefacts-Reply. Nature 416:602-602.
    Raybould, A., Stacey, D., Vlachos, D., Graser, G., Li, X., Joseph, R. (2007) Non-target organism risk assessment of MIR604 maize expressing mCry3A for control of corn rootworm. Journal of Applied Entomology 131:391-399.
    Rosi-Marshall, E.J., Tank, J.L., Royer, T.V., Whiles, M.R., Evans-White, M., Chambers, C. et al. (2007) Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proceedings of the National Academy of Sciences of the United States of America 104:16204-16208.
    Roulston, T.H., Buchmann, S.L. (2000) A phylogenetic reconsideration of the pollen starch-pollination correlation. Evolutionary Ecology Research 2:627-643.
    Sanchis, V., Lereclus, D., Menou, G., Chaufaux, J., Guo, S., Lecadet, M.M. (1989) Nucleotide-Sequence and Analysis of the N-Terminal Coding Region of the Spodoptera-Active Delta-Endotoxin Gene of Bacillus-Thuringiensis Aizawai-7.29. Molecular Microbiology 3:229-238.
    Savka, M.A., Farrand, S.K. (1997) Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nature Biotechnology 15:363-368.
    Saxena, D., Stotzky, G. (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. Ferns Microbiology Ecology 33:35-39.
    Saxena, D., Stotzky, G. (2001a) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biology & Biochemistry 33: 1225-1230.
    Saxena, D., Stotzky, G. (2001b) Bt corn has a higher lignin content than non-Bt corn. American Journal of Botany 88:1704-1706.
    Saxena, D., Flores, S., Stotzky, G. (1999) Transgenic plants-Insecticidal toxin in root exudates from Bt corn. Nature 402:480-480.
    Saxena, D., Flores, S., Stotzky, G. (2002) Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biology & Biochemistry 34:133-137.
    Schnepf, H.E., Whiteley, H.R. (1981) Cloning and Expression of the Bacillus-Thuringiensis Crystal Protein Gene in Escherichia-Coli. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 78:2893-2897.
    Shelton, A.M., Zhao, J.Z., Roush, R.T. (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annual Review of Entomology 47:845-881.
    Shen, R.F., Cai, H., Gong, W.H. (2006) Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil. Plant and Soil 285:149-159.
    Shu, Q.Y., Ye, G.Y., Cui, H.R., Cheng, X.Y., Xiang, Y.B., Wu, D.X. et al. (2000) Transgenic rice plants with a synthetic crylAb gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Molecular Breeding 6:433-439.
    Siciliano, S.D., Theoret, C.M., de Freitas, J.R., Hucl, P.J., Germida, J.J. (1998) Differences in the microbial communities associated with the roots of different cultivars of canola and wheat. Canadian Journal of Microbiology 44:844-851.
    Stone, R. (2008) Plant science-China plans$3.5 billion GM crops initiative. Science 321:1279-1279.
    Sun, Y., Cheng, J.Y. (2002) Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource Technology 83:1-11.
    Swift, M., Heal, O., Anderson, J. (eds) (1979) Decomposition in Terrestrial Ecosystems. Oxford:Blackwell Scientific Publications.
    Tabashnik, B.E. (1994) Evolution of Resistance to Bacillus-Thuringiensis. Annual Review of Entomology 39:47-79.
    Tapp, H., Stotzky, G (1995) Insecticidal Activity of the Toxins from Bacillus-Thuringiensis Subspecies Kurstaki and Tenebrionis Adsorbed and Bound on Pure and Soil Clays. Applied and Environmental Microbiology 61: 1786-1790.
    Tapp, H., Stotzky, G (1998) Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biology & Biochemistry 30:471-476.
    Tapp, H., Calamai, L., Stotzky, G (1994) Adsorption and Binding of the Insecticidal Proteins from Bacillus-Thuringiensis Subsp Kurstaki and Subsp Tenebrionis on Clay-Minerals. Soil Biology & Biochemistry 26:663-679.
    Thies, J.E. (2007) Soil Microbial Community Analysis using Terminal Restriction Fragment Length Polymorphisms. Soil Science Society of America Journal 71: 579-591.
    Tu, J.M., Zhang, G.A., Datta, K., Xu, C.G, He, Y.Q., Zhang, Q.F. et al. (2000) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta-endotoxin. Nature Biotechnology 18:1101-1104.
    Turrini, A., Sbrana, C., Nuti, M., Pietrangeli, B., Giovannetti, M. (2005) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant and Soil 266:69-75.
    Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., Debeuckeleer, M., Dean, C. et al. (1987) Transgenic Plants Protected from Insect Attack. Nature 328:33-37.
    Van Soest, P.J. (ed) (1982) Nutritional ecology of the ruminant. Ithaca, NY, USA: Cornell University Press.
    Vansoest, P.J., Robertson, J.B., Lewis, B.A. (1991) Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science 74:3583-3597.
    Vauramo, S., Pasonen, H.L., Pappinen, A., Setala, H. (2006) Decomposition of leaf litter from chitinase transgenic silver birch (Betula pendula) and effects on decomposer populations in a field trial. Applied Soil Ecology 32:338-349.
    Wang, H.Y., Ye, Q.F., Wu, L.C., Gan, J. (2007) Biodegradation of CrylAb protein from Bt transgenic rice in aerobic and flooded paddy soils. Journal of Agricultural and Food Chemistry 55:1900-1904.
    Wang, H.Y., Ye, Q.F., Gan, J., Wu, J.M. (2008) Adsorption of CrylAb protein isolated from Bt transgenic rice on bentone, kaolin, humic acids, and soils. Journal of Agricultural and Food Chemistry 56:4659-4664.
    Wang, H.Y., Ye, Q.F., Wang, W., Wu, L.C., Wu, W.X. (2006) CrylAb protein from Bt transgenic rice does not residue in rhizosphere soil. Environmental Pollution 143: 449-455.
    Ward, E.S., Ellar, D.J. (1987) Nucleotide-Sequence of a Bacillus-Thuringiensis Var Israelensis Gene Encoding a 130 Kda Delta-Endotoxin. Nucleic Acids Research 15:7195-7195.
    Webster, E.A., Halpin, C., Chudek, J.A., Tilston, E.L., Hopkins, D.W. (2005) Decomposition in soil of soluble, insoluble and lignin-rich fractions of plant material from tobacco with genetic modifications to lignin biosynthesis. Soil Biology & Biochemistry 37:751-760.
    White, T.J., Bruns, T.D., Lee, S., Taylor, J. (eds) (1990) Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. New York:Academic Press.
    Wieder, R.K., Lang, G.E. (1982) A Critique of the Analytical Methods Used in Examining Decomposition Data Obtained from Litter Bags. Ecology 63: 1636-1642.
    Wraight, C.L., Zangerl, A.R., Carroll, M.J., Berenbaum, M.R. (2000) Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proceedings of the National Academy of Sciences of the United States of America 97:7700-7703.
    Wright, S.F., Upadhyaya, A. (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science 161:575-586.
    Wright, S.F., Jawson, L. (2001) A pressure cooker method to extract glomalin from soils. Soil Science Society of America Journal 65:1734-1735.
    Wright, S.F., Upadhyaya, A., Buyer, J.S. (1998) Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology & Biochemistry 30:1853-1857.
    Wu, W.X., Ye, Q.F., Min, H. (2004a) Effect of straws from Bt-transgenic rice on selected biological activities in water-flooded soil. European Journal of Soil Biology 40:15-22.
    Wu, W.X., Ye, Q.F., Min, H., Duan, X J., Jin, W.M. (2004b) Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biology & Biochemistry 36:289-295.
    Wu, W.X., Lu, H.H., Liu, W., Devare, M., Thies, J.E., Chen, Y.X. (2009a) Decomposition of Bacillus thuringiensis (Bt) transgenic rice residues (straw and roots) in paddy fields. Journal of Soils and Sediments 9:457-467.
    Wu, W.X., Liu, W., Lu, H.H., Chen, Y.X., Devare, M., Thies, J. (2009b) Use of C-13 labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. Ferns Microbiology Ecology 67:93-102.
    Xue, K., Luo, H.F., Qi, H.Y., Zhang, H.X. (2005) Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA. Journal of Environmental Sciences-China 17:130-134.
    Zwahlen, C., Hilbeck, A., Nentwig, W. (2007) Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates. Plant and Soil 300: 245-257.
    Zwahlen, C., Hilbeck, A., Gugerli, P., Nentwig, W. (2003) Degradation of the CrylAb protein within transgenic Bacillus thuringiensis corn tissue in the field. Molecular Ecology 12:765-775.
    中华人民共和国农业部市场与经济信息司(2005)2004年全国农业统计提要.
    王占华,周兵,袁星(2005)4种常见农药对土壤微生物呼吸的影响及其危害性评价.农药科学与管理26:13-16.
    王建武,冯远娇(2005)种植Bt玉米对土壤微生物活性和肥力的影响.生态学报25:1213-1220.
    王建武,骆世明,冯远娇,CindyNakatsu (2003)转Bt基因作物Bt毒素在土壤中的环境去向及其生态效应.生态学报23:797-804.
    王洪兴,陈欣,唐建军,叶庆富,王忠华(2004)转Bt基因水稻秸秆降解对土壤 微生物可培养类群的影响.生态学报24:89-94.
    王应,袁建国(2007)秸秆还田对农田土壤有机质提升的探索研究.山西农业大学学报:自然科学版:120-121,126.
    田慧,刘晓蕾,盖京苹,张俊伶,李晓林(2009)球囊霉素及其作用研究进展.土壤通报40:1215-1220.
    任馨,吴伟祥,叶庆富,陈英旭,JaniceE.Thies (2004)转Bt基因克螟稻秸杆对淹水土壤细菌群落的影响.环境科学学报24:871-877.
    李永山,范巧兰,陈耕,陈萍,吴良欢(2007)转Bt基因棉花对土壤微生物的影响.农业环境科学学报26:533-536.
    沈雪梅(2009)土壤微生物多样性的主要影响因子.安徽农学通报15:83-85,194.
    沈晋良,周晓梅(2004)转基因作物的抗虫性.现代农药3:1-6,11.
    沈晋良,周威君,吴益东,林祥文,朱协飞(1998)棉铃虫对Bt生物农药早期抗抗性及与转Bt基因棉抗虫性的关系.昆虫学报41:8-14.
    汪海燕(2007)Bt水稻及其外源基因表达蛋白的环境行为与生物学效应.浙江大学博士生论文.
    汪海燕,叶庆富(2007)Hpt—Elisa方法的建立及其在转基因水稻监测中的应用.核农学报21:168-172.
    武予清,郭予元(2000)转Bt基因棉单宁及总酚含量的初步测定.河南农业大学学报34:134-135,138.
    范秀莲,曲英杰(2002)秸秆还田与农业可持续发展.农机化研究:172-172.
    唐黎,张永军,吴晓磊(2007)转Bt基因棉花根际细菌与古菌群落结构分析.土壤学报44:717-726.
    徐晓宇,叶庆富,吴伟祥,闵航(2004)转Bt基因“克螟稻”秸秆还田对稻田厌氧微生物种群和酶活性的影响.植物营养与肥料学报10:63-67.
    徐汉卿(ed)(2001)植物学.北京:中国农业出版社.
    崔海瑞,舒庆尧,项友斌(eds)(1988)转cryIAb基因水稻的田间表现.杭州:杭州大学出版社.
    曾木祥,张玉洁,等(2001)我国主要农区的秸秆还田模式.土壤肥料:32-36.
    舒庆尧,叶恭银,崔海瑞,项友斌,高明尉(1998)转基因水稻“克螟稻”选育.浙江农业大学学报24:579-580.
    董立国,袁汉民,李生宝,袁海燕,潘占兵(2010)玉米免耕秸秆覆盖对土壤微生物群落功能多样性的影响.生态环境学报19:444-446.
    乐毅全,郑师章(1990)凤眼莲—根际微生物系统的降酚效应.植物生态学与地植物学学报14:151-159.
    刘微(2009)水稻转Bt基因对稻田土壤光合碳固定和微生物多样性的影响研究.浙江大学博士生论文.
    刘润进,焦惠,李岩,李敏,朱新产(2009)丛枝菌根真菌物种多样性研究进展.应用生态学报20:2301-2307.
    卢宝荣,傅强,沈志成(2008)我国转基因水稻商品化应用的潜在环境生物安全问题.生物多样性16:426-436.
    吴立成,李啸风,叶庆富,汪海燕(2004)转crylAb基因水稻中毒蛋白的表达、分泌及其在土壤中的残留.环境科学25:116-121.
    吴迪,王秋玉(2007)转基因植物对根际土壤生态系统的影响.中国生物工程杂志27:113-118.
    吴刚,崔海瑞,舒庆尧,夏英武(1999)Bt转基因植物研究进展及其持续利用.生物技术9:34-38.
    孙彩霞,陈利军,武志杰,张玉兰,张丽莉(2003)种植转Bt基因水稻对土壤酶活性的影响.应用生态学报14:2261-2264.
    张永军,孙毅,袁海滨,吴孔明,彭于发,郭予元(2005)转Bt-cry1Ab玉米花粉对异色瓢虫生长发育及体内三种代谢酶活性的影响.昆虫学报48:898-902.
    张美俊,杨武德(2008)转Bt基因棉种植对根际土壤生物学特性和养分含量的影响.植物营养与肥料学报14:162-166.
    张美俊,杨武德,李燕娥(2008a)不同生育期转Bt基因棉种植对根际土壤微生物的影响.植物生态学报:197-203.
    张美俊,杨武德,李燕娥(2008b)不同生育期转Bt基因棉种植对根际土壤微生物的影响.植物生态学报32:197-203.
    杨国正,展茗,杨长举,骆炳山(2005)Bt转基因抗虫棉田昆虫群落结构研究.湖 北农业科学:53-56.
    贾士荣(2004)转基因作物的环境风险分析研究进展.中国农业科学:175-187.
    贾乾涛,石尚柏,杨长举,彭于发(2005a)转Bt基因水稻生长期几种重要成分含量的变化研究.中国农业科学38:2002-2006.
    贾乾涛,杨长举,石尚柏,彭于发(2005b)转Bt基因水稻氨基酸含量研究.浙江农业学报17:39-41.
    赵大君,郑师章(1996)凤眼莲根分泌物氨基酸组分对根际肠杆菌属f2细菌和趋化作用.应用生态学报7:207-212.
    赵建周,卢美光(1998)转Bt基因棉花对棉铃虫不同龄期幼虫的杀虫活性和抑制生长作用.昆虫学报41:354-358.
    钱迎倩,田彦,魏伟(1998)转基因植物的生态风险评价.植物生态学报:2-12.
    闫鑫鹏,李杰(2008)白腐真菌在农作物秸秆中的研究与应用.饲料工业29:54-57.
    陈中云,闵航,等(2003a)农药污染对黄松稻田土壤产甲烷菌数量和甲烷排放通量影响的研究.中国沼气21:18-21.
    陈中云,闵航,张夫道,赵秉强(2004)农药污染对水稻田土壤硫酸盐还原菌种群数量及其活性影响的研究.土壤学报41:97-102.
    陈中云,闵航,吴伟祥,陈美慈,张夫道,赵兼强(2003b)农药污染对水稻田土壤反硝化细菌种群数量及其活性的影响.应用生态学报14:1765-1769.
    陈晓娟,何树林,程开禄,任光俊(2003)转Bt基因抗虫水稻对稻田生物群落的影响.四川农业大学学报21:185-186.
    项友斌,梁竹青,高明尉,舒庆尧,叶恭银,成雄鹰,I.Altosaar (1999)农杆菌介导的苏云金杆菌抗虫基因cryIA(b)和cryIA(c)在水稻中的遗传转化及蛋白表达.生物工程学报:494-500.
    鲍士旦(2000)土壤农化分析.北京:中国农业出版社.
    黄进勇,李春霞(2004)土壤微生物多样性的主要影响因子及其效应.河南科技大学学报:农学版24:10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700