漠境沙蒿AM真菌多样性及时空分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在严酷的荒漠化生境中,植物常通过与丛枝菌根(Arbuscular mycorrhiza,AM)真菌共生来提高对逆境的耐受力。沙生灌木类克隆植物通过其根蘖繁殖抵抗沙埋并占有新的生态位,也为AM真菌提供了特殊的生存环境。本研究以我国西部极端沙地环境为背景,以黑沙蒿(Artemisia ordosica)和白沙蒿(Artemisia sphaerocephala)两种沙生灌木为目标,以荒漠植物与AM真菌共生关系作为切入点,系统研究了黑沙蒿和白沙蒿根围AM真菌多样性及其时空分异规律,AM真菌时空分布与土壤因子的相关性,AM真菌产球囊霉素时空分布等。主要取得如下结果:
     1.本研究共分离出5属37种AM真菌,其中球囊霉属(Glomus Tul & Tul)占54 %,无梗囊霉属(Acaulospora Gerd & Trappe)占32.4 %,盾巨孢囊霉属(Scutellospora Walker & Sander)占8.1%,多孢囊霉属(Diversispora Walker & Schuessler)和类球囊霉属(Paraglomus Walker & Schuessler)各1种。已鉴定32种,尚有5个未定种,初鉴定为新种。帚状球囊霉(G.coremioides)在沙漠环境中出现为首次报道。
     2.不同宿主植物根围AM真菌群落组成和丰富度不同,黑沙蒿根围有34种,白沙蒿根围有26种。黑沙蒿根围优势种为双网无梗囊霉(A. bireticulata)、幼套多孢囊霉(D. etunicatum)和地球囊霉(G. geosporum)。白沙蒿根围优势种为双网无梗囊霉(A. bireticulata)、光壁无梗囊霉(A. laevis)、近明球囊霉(G. claroideum)和卷曲球囊霉(G. convolutum)。AM真菌多样性与样地和土层密切相关,最大种群丰度出现在黑沙蒿根围的宁夏盐池沙生灌木园样地,0~20cm土层为优势真菌种群的适生深度。
     3.不同荒漠环境下,黑沙蒿和白沙蒿在0~50cm土层均有很高的定殖率,黑沙蒿根围总定殖率高达89.94%,白沙蒿根围总定殖率高达94.98%,其根系都有典型的丛枝菌根结构—泡囊和丛枝,菌根类型均为I-型(Intermediate-type),即宿主植物根系同时有疆南星型(Arum-type)和重楼型(Paris-type)两种菌根结构。黑沙蒿和白沙蒿根围菌丝定殖率和泡囊定殖率在0~40cm土层无显著变化;丛枝定殖率随土层加深变化规律与宿主植物须根分布紧密相关。
     4.AM真菌定殖率受地理环境和土壤因子的影响。土壤养分和土壤酶活性多与丛枝定殖率显著负相关。随着养分增加和水分梯度升高,丛枝定殖率下降,孢子密度增加;贫瘠土壤条件伴随着较高的丛枝定殖率和较低的孢子密度。
     5.黑沙蒿和白沙蒿根围孢子密度在不同采样深度差异明显,峰值大多出现在0~10cm土层,并随土壤剖面深度增加而显著降低。土壤酶活性在土壤垂直剖面显示与孢子密度同样的规律。孢子密度在不同样地间差异显著,黑沙蒿根围最大值出现在7月的陕西榆林北部沙区样地,白沙蒿根围最大值出现在7月的鄂尔多斯沙地草地生态研究站样地。孢子密度季节性明显,大都在4~7月显著增加,7~10月降低或持平。孢子密度与土壤养分含量都呈一定正相关关系,同时还与土壤脲酶、酸性磷酸酶、碱性磷酸酶和蛋白酶活性均有显著正相关关系。
     6.黑沙蒿根围0~50cm土层总球囊霉素含量为0.35~4.40mg/g,易提取球囊霉素含量为0.29~0.92mg/g,两者都是在0~20cm土层较大,随土层深度增加而递减。总球囊霉素和易提取球囊霉素有明显季节变化,春季含量最高,夏秋逐渐降低。土壤总球囊霉素含量与土壤总微生物活性显著正相关,与土壤养分、土壤酶活性、孢子密度均表现出显著相关关系,可作为土壤生产力和微生物活力评价的新指标。荒漠土壤球囊霉素含量的测定及季节变化分析,填补了我国这一领域的空白。
     研究表明,不同荒漠环境下,黑沙蒿和白沙蒿与AM真菌都有良好的共生性,这是其适应极端环境的主要生态对策之一。研究成果丰富了荒漠恢复生态学的基础理论,为菌根生物技术在荒漠植被恢复和生态重建中的应用提供了科学依据和种质资源。
In a rigorous desert ecosystem, the symbiosis between arbuscular mycorrhizal (AM) fungi and plants plays a vital role in improving plant drought tolerance and mineral nutrients uptake. Clonal plants occupy new ecological niche by root-sucker reproduction surviving sand burying, which also provide special environment for AM fungi. As fine semi-shrubs for sand fixation in northern China desert, Artemisia ordosica and Artemisia sphaerocephala are typical phalanx clonal plants. Despite their own physiological characters, their endurance capability for the atrocious circumstance also rest with their symbiosis with AM fungi. In this research, soil samples in the rhizosphere of A.ordosic and A.sphaerocephala were collected to isolate arbuscular mycorrhizal (AM) fungi. The spatial and temporal variation and diversity of AM fungi were determined; correlations between distribution of AM fungi and soil factors, soil glomalin concentration were systemically analyzed. Results were shown as follows:
     An abundant diversity of AM fungi was found in sandland. 37 AM fungi taxa in five genera were isolated and identified, of which 54% belong to the genus Glomus, 32.4 % to Acaulospora, 8.1 % to Scutellospora,others to Diversispora and Paraglomus. Five uncertain species were identified as unrecorded species. It is the first time to report G.coremioides existing in desert.
     Dominant species of AM fungi in the rhizosphere of different host plants were different, A.bireticulata, D.etunicatum and G.geosporum were the dominant species in the rhizosphere of A. ordosica. A.bireticulata, A. laevis, G. claroideum and G. convolutum were the dominant species in the rhizosphere of A.sphaerocephala.The community members and species richness of AM fungi were also different among sampling sites and soil depths due to soil properties and microenvironment. The most species was found in Yanchi site, while dominant community of AM fungi mainly distributed in 0-20cm soil profile.
     Both two host plants can form well symbionts with AM fungi in desert. The total colonization of AM fungi of A. ordosica was 89.94%, and that of A.sphaerocephala was 94.98%, both of them formed the intermediate type mycorrhizas.The colonization of hyphae and vesicles were higher in 0-40cm soil layer than that in 40-50cm. The arbuscular colonization was higher only in 10-40cm soil layer.
     Geographical and environmental factors affected the diversity of AM fungi and colonization of arbuscular mycorrhiza. Both soil fertility and soil enzyme activities were negatively correlated with arbuscular colonization.On the flowing dunes where soil was infertile and serious drought, the spore density was lower but arbuscular colonization were higher.
     The maximal value of spore density was observed at the 0-10cm layer, and then gradually decreased with soil depth. The soil enzyme activities showed the same trend with the spore distribution. Seasonal variation of spore density in the rhizosphere of phalanx clonal plants was found; the highest value appeared in summer. The spore density was different among sites, and was significantly and positively correlated with soil available P, N, organic matter contents and soil enzyme activities.
     Total Glomalin concentrations in the rhizosphere of A.ordosica ranged from 0.35 to 4.40mg/g, Easily Extractable Glomalin concentrations ranged from 0.29 to 0.92mg/g. glomalin concentrations showed a clear pattern of decrease from 0 to 50cm soil layer in every site and decline trend with season change, the maximal value was in spring. Glomalin concentrations were significantly positively correlated with soil fertility, microbial activity and spore density, suggesting that glomalin can be used as a new indicator to monitor desertification and soil degradation. We have determined the Glomalin concentrations in desert, which has not been reported yet by the national peers before.
     The results showed that both Artemisia ordosica and Artemisia sphaerocephala could establish well symbiosis with AM fungi, which was the main reason for maintaining integrity and stability of the desert ecosystem, elucidated the ecologic function of AM fungi and interaction between host plants and AM fungi, provided the scientific basis for the applications of AM biotechnology in vegetation restoration and ecology reconstruction of desert.
引文
[1] Smith S E, Read D J. Mycorrhizal symbiosis(2nd edn)[M]. London: Academic. 1997.
    [2] Abbot L K, Robson A D. Factors influencing the occurrence of vesicular-arbuscular Mycorrhizas[J]. Agriculture, Ecosystems and Environment,1991,35:121-150.
    [3] Beck-Nielsen D, Madsen T V. Occurrence of vesicular-arbuscular mycorrhiza in aquatic macrophytes from lakes and streams[J]. Aquatic Botany,2001,71:141-148.
    [4] Remy W,Taylor T N,Hass H, Kerp H.Four hundred-million-year-old vesicular arbuscular mycorrhizae [J]. Plant Biology, 1994, 91(25): 11841-11843.
    [5]李晓林,冯固.丛枝菌根生理生态学[M].北京:华文出版社,2001,1-358.
    [6] Li X L, Geoege E, Marschner H. Extension of the phosphorus depletion zine in VAM white clover in a calcareous soil[J]. Plant and Soil,1991,136:41-48.
    [7] Li X L, Geoege E, Marschner H. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VAM white clover fertilized with ammonium[J].New Phytologist, 1991,119:397-404.
    [8] Jakobsen I, Rosendahl L. Carbon flow into soil and external hyphe from root of ycorrhizal cucumber plants[J]. New Phytologist,1990,115:77-83.
    [9] Bonfante-Fasolo P, Scannerini S. The cellular basis of plant-fungus Interchanges in mycorrhizal asociations[A].In: Allen M F,Mycorrhizal functioning[C]. New York: Chapman and Hall,1992, 65-101.
    [10] Gianinazzi-Pearson V,smith S E, Gianinazzi S,et al. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of the enzyme activities in plant-fungus interfaces [J]. New Phytologist, 1991,117:61-74.
    [11] Gianinazzi-Pearson V, Gollotte A, Dumas-Gaudot E, et al. Gene expression and mole-cular modification associated with plant respons to infection by arbuscular mycorrhizal fungi[J]. Advance in molecular genetic of plant-microbe interaction, 1994, 3:179-186.
    [12] Gianinazzi-Pearson V, A Gollotte, J Lherminier et al. Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations[J]. Canadian Journal of Botanv, 1995,117: 61-74.
    [13] Smith F A, Smith S E, Structural diversity in (vesicular)-arbuscular mycorrhizal symbiosis[J]. New Phytologist, 1997,137:373-388.
    [14] Dekkers T B M, P A van der Werff. Mutualistic functioning of indigenous arbuscular mycorhizae in spring barley and winter wheat after cessation of long-term phosphate fertilisation[J]. Mycorrhiza,2001,10:195-201.
    [15] Peterson R L,Bonfante P. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas[J]. Plant and Soil,1994,159:81-88.
    [16] Becard G,Piche Y. Fungal growth stimulation by CO2 and root exudates in vesicular arbuscular mycorrhizal symbiosis[J]. Applied and Environmenmtal Microbiology, 1989, 55(9):2320-2325.
    [17] Strullu D G, Romand G, Plenchette C.Axenic culture and encapsulation of the intrara-dical form of Glomus spp[J]. World Journal of Micrology, 1991,7:292-297.
    [18] Frank A B.Uber die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durche unterirdische[J]. Pilze Bnr.Deutsch. Bot. Gessell,1885,3:128-145.
    [19] Tulasne L R, Tulasne C. Fungi nonnulli hypogaei novi v. Minus cognito act[J]. Giornale Botanico Italiano,1845,2:55-63.
    [20] Bucholtz F. Beitr?ge zur Kenntnis der Gattung Endogone Link[J]. Beihefte Bot. Centrali,1911, 29(2):147-225.
    [21] Scheck N C, Perez Y. Manual for the identification of VA mycorrhizal fungi[M].(Second edition.INVAM) USA, University of Florida: Gainesville,1988.
    [22] Franke M,Morton J.Ontogenetic comparisons of arbuscular mycorrhizal fungi Scutellospora heterogama and Scutellospora pellucida: Revision of taxonomic character concepts,species descriptions, and phylogenetic hypotheses[J]. Canadial Journal of Botany, 1994.72:122-134.
    [23] Morton J B, Benny G L , Revised classification of arbuscular mycorrhiza fungi (Zygomycetes):a new ordered Glomales, two new suborders, Glornineae and Gigasporaceae, and two new families, Acaulosporaceae and Gigasporaceae, with a emendationof Glomaceae[J].Mycotaxon, 1990, 37:471-491.
    [24] Morton J B, Redecker D. Two new families of Glornales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters[J]. Mycologia,2001,93(1):181-195.
    [25] Schüβler A, Schwarzott D, Walker C. A new fungal phylum,the Glomeromycota: phylogeny and evolution[J]. Mycological Research,2001,105(12):1413-1421.
    [26] Schüβler A. Molecular phylogeny, taxonomy, and evolution of Geosiphon phyriformis and arbuscular mycorrhizal fungi[J].Plant and soil,2002,244:75-83.
    [27]张美庆,王幼姗.VA菌根真菌球囊霉属种的检索表[J].微生物学通报,1991,18(6):188-193.
    [28] Walker C, Sanders F E. Taxonomic concepts in the Endogonaceae. 1. The seperation of Sculellospora gen nov from Gigaspora Gerd and Trappe[J]. Mycotaxon, 1986,27:169-182.
    [29] Morton J B, Bentivenga S P.Levels of diversity in endomycorrhizal fungi (Glornales, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups[J]. Plant and Soil,1994,159:47-59.
    [30] Gazey C, Abbot L K, Robson A D.The rate of development of mycorrhizas afects of the onset of sporulation and production of external hyphae by two species of Acaulospora [J]. Mycological Research,1992,96:643-650.
    [31] Simon L M, Lalonde, Bruns T D. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots[J]. Applied and Environmental Microbiology,1992,58:291-295.
    [32] Hepper C M,Sen R, Azcon-Aguilar C, et al.Variation in certain isozymes amongst different geographic isolates of the vesicular-arbuscular mycorrhizal fungi Glomus clarum, Glomus monosporum and Glomus mosseae[J]. Soil Biol Biochem, 1988,20:51-59.
    [33] Wright S F, Morton J B, Sworobuk J E. Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay[J]. Applied and environmental microbiology,1987, 53(9):2222-2225.
    [34] Morton J B, Taxonomic and phylogenetic divergence among five Scutellospora spccics (Glomales, Zygomycetes) based on comparative developmental sequences[J]. Mycologia, 1995, 87:127-137.
    [35] Murphy R W, Sites J W, Buth D G, et al. Proteins l: Isozyme electrophoresis[A]. In: Hills D M, Moritz C, Molecular Systematics[M]. Sunderland:Sinauer Assoc Inc,1990, 45-126.
    [36] Dodd J C, Rosendahl S, Giovannetti M, et al.Inter-and intraspecific variation within the morpholo gically-similar arbuscular mycorrhizal fungi Glomus mosseae and Glomus cononatum[J]. New Phytologist, 1996, 133:113-122.
    [37]刘润进,李晓林.丛枝菌根及其应用.北京:科学出版社,2000.
    [38]刘润进,陈应龙.菌根学[M].北京:科学出版社,2007.
    [39] Scheck N C, Perez Y. Manual for the identification of VA mycorrhizal fungi[M].(Second edition.INVAM) USA, University of Florida: Gainesville, 1988.
    [40]弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社,1997.
    [41]王发园,林先贵,周健民.中国AM真菌的生物多样性[J].生态学杂志,2004,23(6):149-154.
    [42]张美庆,王幼珊.我国北部的七种vA菌根真菌[J].真菌学报,1991,10(l):13-21.
    [43]潘幸来,王永杰,张贵云,等.黄土高原VAM真菌孢子数量的调查研究初报[J].土壤学报,1994,31(增刊):64-70.
    [44]刘润进,薛炳烨,黄镇,等.山东果树泡囊一丛枝(VA)菌根调查[J].山东农业大学学报,1987,18(14):25-31.
    [45]王发园,刘润进,林先贵,等.几种生态环境中AM真菌多样性的比较研究[J].生态学报,2003,23(12):2666-2671.
    [46]陈欣,方治国,唐建军.红壤坡地杂草群落vA菌根真菌的宿主物种调查[J].生物多样性,2001,9(2):122-128.
    [47]石兆勇,陈应龙,刘润进.西双版纳地区龙脑香科植物根围的AM真菌[J].菌物系统,2003, 22(3): 402-409.
    [48]赵之伟,李习武,王国华,等.西双版纳热带雨林中丛杉菌根真菌的初步研究[J].菌物系统, 2001, 20(3):316-323.
    [49]弓明钦,陈羽,王凤珍,等.华南地区按树林中VA菌根菌资源及其组成[J].林业科学研究,1996,10:277-282.
    [50]陈咏娟,庄雪影.香港两种天然次生林中AM菌研究[A].见:弓明钦等菌根生物多样性及其应用研究[c].北京:中国林业出版社,2000,43-48.
    [51] Muthukumar T, Udaiyan K. Arbuscular mycorrhizas in cycads of southern. India[J]. Mycorrhiza, 2002, 12:213-217.
    [52]张美庆,王幼珊,邢礼军,等.广西平果铝矿区的三个AM真菌新记录种[J].菌物系统,2001,17(3):274-277.
    [53] Brundret M C, Abbot L K, Jasper D A. Glomalean mycorrhizal fungi from tropical Australia[J]. Mycorrhiza, 1999, 8:305-314.
    [54] Helgason T, Daniell T J, Husband R, et al.Ploughing up the wood-wide web[J]. Nature, 1998, 394-431.
    [55]张美庆,王幼珊,刑礼军.环境因子和AM真菌分布的关系[J].菌物系统,1999,18(2):145-148.
    [56]张美庆,王幼珊,刑礼军.我国东南沿海地区AM真菌群落生态分布研究.菌物系统,1998,17(3): 274-277.
    [57]张美庆,王幼珊,刑礼军. AM真菌在我国东南沿海地区各土壤气候带的分布[J].菌物系统,1999,18(2):145-148.
    [58]盖京苹,刘润进.野生植物根围的丛枝菌根真菌Ⅰ[J].菌物系统,2000,19[1]:24-28.
    [59]盖京苹,刘润进,孟祥霞.野生植物根围的丛枝菌根真菌Ⅱ[J].菌物系统,2000,19(2):205-211.
    [60]张英,郭良栋,刘润进.都江堰亚热带地区常见植物根围的丛枝菌根真菌[J].菌物系统,2003, 22(2):204-210.
    [61] Smith S E, Read D J. Mycorrhizal Symbiosis(2nd ed)[M]. London:Academic Press, 1997.
    [62] Sylvia D M, Mycorrhizal symbioses[A].In:Sylvia D M,fuhrmann J J,Hartel P G.principles and Aplications of soil Microbiology[C]. New Jersey:prentice-Hall, 1998, 408-426.
    [63] Beck-Nielsen D, Madsen T V.Occurrence of vesicula arbuscular mycorrhizal in aquatic macrophytes from lakes and Streams[J]. Aquatic Botany,2001,71(2):141-148.
    [64] Schüβler A. Glomus claroideum formus an arbuscular mycorrhiza like symbiosis with the hornwort Anthoceres punctatus[J]. Mycorrhiza, 2000,10(1):15-21.
    [65]杨玲,王国华,任立成,等.苋科植物的丛枝菌根[J].云南植物研究,2002,24(l):37-40.
    [66]王发园,刘润进.黄河三角洲盐碱地中的丛枝菌根真菌[J].菌物系统,2002,21(2):196-202.
    [67]刘润进,王发园,孟祥霞.渤海湾岛屿的丛枝菌根真菌[J].菌物系统,2002,21(4):525-532.
    [68]李晓林,曹一平. VA菌根菌丝对土壤磷和铜吸收及其相关性[J].中国农业大学学报, 1992, 25(5):65-72.
    [69]石兆勇,张立运,冯固等.柽柳灌丛下与灌丛外短命植物AM真菌多样性[J].科学通报, 2006,51:108-115.
    [70]张文敏,张美庆,孟娜等. VA菌根用于矿山复垦的基础研究[J].矿冶,1996,5(3):17-21.
    [71]刘润进,李敏,刘杏忠等.丛枝菌根真菌和氮磷钾复合肥对砖瓦场破坏地土壤肥力的影响[J].干旱地区农业研究.1999,17(3):45-50.
    [72] Miller R M, Jastrow J D.The role of mycorrhizal fungi in soil conservation [A]. In: Bethlenfalvay G J (eds).Mycorrhizae in Sustainable Agriculture[C]. Madison:Special Pubication, 1992,54:29-44.
    [73] Boyle M. The influence of organic matter on soil aggregation and water infiltration [J]. Journal of Production Agricuture,1989,2:290-299.
    [74] Tisdall J M. Fungal hyphae and structural stability of soil [J]. Journal of Soil Research, 1991,29: 729-743.
    [75] Francis R, Read D J. Direct transfer of carbon between plants connected by vesicular arbuscular mycorrhizal mycelium[J],Nature, 1984,307:53-56.
    [76] Read D J.The ties that bind[J]. Nature,1997,388:517-518.
    [77] Hepper C M, Sen R, Maslcall C S. Identification of vesicular-arbuscuar mycorrhizal fungus in roots of leap(Alium porrum L. ) and maize on the basis of enzyme mobility during polyacrylemide gel elecrophoresis[J].New Phytologist, 1986,102:529-531.
    [78] Kothari S K, Marschner H, Romheld V.Direct and indirect effects of VAM fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil[J]. New Phytologist,1990,116:637-645.
    [79] Shumway D L, Koide R T.Size and reproductive inequality in mycorrhizal and nonmycorrhizal populations of Abutilob theophrost[J]. Journal of Ecology, 1995, 83:613-620.
    [80] HarthetY D C, Herick B A D, Wilson G W T, et al. Mycorrhizal influence on infra and interspecific neighbor interactions among co-occurring prairie grasses[J]. Journal of Ecology, 1993,81:787-795.
    [81] Rogers J B, Christie P,Laidlaw A S. Some evidence for host specificity in arbuscular mycorrhizas[J]. Pedosphere, 1994, 2(4):377-381.
    [82] Koide R T, Dickie I A. Effects of mycorrhizal fungi on Plant populations[J]. Plant and soil, 2002,244:307-317.
    [83] Newman E l, Heap A J, Lawley R A. Abundance of mycorrhizas and root surface icroorganisms of Plantago lanceolata in relation to soil and vegetaton A multi-variate approach.New Phytologist,1981, 89:95-108.
    [84] Bever J D, Smith S E, Smith F A. Host-specificity of AM fungal population growth rates can generate feedback on Plant growth.Diversity and integration in mycorrhizas. Proceeding of the 3rd International Conference on Mycorrhizas(ICO3)[J]. Plant and soil, 2002, 244(l-2):281-290.
    [85] Suvercfi, Mukerjl K G. Ectomycotrhiza. In: Aroraet D K, eds. Handbook of applied mycology, soil and plants[M]. New York: Marcel Dekker,1992,187-211.
    [86] Wilson J W T, Hartnett D C. Interspecific variation in plant responses to mycorrhizal colonization in tall grass prairie [J]. America Journal of Botany, 1998,85:1732-1738.
    [87] Smith M R, Charvat I, Jacobson R L. Arbuscular mycorrhizae promote establishment of praire species in a tallgrass prairie restoraion[J]. Canadian Journal of Botany, 1998,76:1947-1954.
    [88] Sylvia D M. Nursery inoculation of Sea Oats with Vesicular-Arbuscular mycorrhizal fungi and outplanting performance on Florida Beaches[J]. Journal of Coastal Research, 1989,5(4):747-754.
    [89] Daft M J, Hacskaylo E.Arbuscular mycorrhizas in the anthracitic and bituminous coal wastes of Pennsylvania[J]. Journal of Applied Ecology,1976,13:523-534.
    [90] Smith S E, Smith F A. Structure and function ofthe interfaces in biotrophic symbioses as they relate to nutrient transport[J].New Phytologist,1990,114:1-38.
    [91] Harley J L,Smith S E.Mycorrhizal symbiosis[M]. New York:Academic Press, 1983,64-10.
    [92] Ravnskov S, Jakobsen. Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant[J]. New Phytologist,1995,129:611-618.
    [93] Janos D P. Vesicular-arbuscular mycorrhizae of epiphytes[J].Mycorrhiza, 1993,4:1-4.
    [94] Hart M M, Reader R J.Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi[J].New Phytologist,2002,153:335-344.
    [95] Van der Heijden M G A, Boller T, Wiemken A,et al.Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure[J]. Ecology, 1998, 79:2082-2091.
    [96] Jakobsenl, Abbot L K, Robson A D.External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots[J]. New Phytologist, 1992,120:371-380.
    [97] Boddington C L,Dodd J C. A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes[J]. Mycorrhiza, 1998,8:149-157.
    [98] Abbot L K, Robson A D. Factors influencing the occurrence of vesicular -arbuscular mycorrhizas[J]. Agriculture, Ecosystems and Envionment, 1991,35:121-150.
    [99] Hayman D S.The physiology of vesicular-arbuscular endo-mycorrhizal symbiosis[J]. Canadian Journal of Botany,1982,61:944-963.
    [100]赵之伟.四种蕨类植物根际土壤中VA菌根真菌孢子种群组成和季相变化[J].云南植物研究,1999,21(4):437-441.
    [101] Dodds D D, Galvez L, Becard G,et al.Regulation of arbuscular mycorrhizal develop -ment by plant host and fungus species in alfalfa[J]. New Phytologist, 1998,138:27-35.
    [102] Sanders l R, Clapp J P, Wiemken A,The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems-a key to understanding the ecology and functioning of the mycorrhizal symbiosis[J]. New Phytologist,1996,133:123-134.
    [103] Monzon A, Azcon R. Relavance of mycorrhizal fungal origin and host plant geno -type toinducing growth and nutrient uptake in Medicago species[J]. Agriculture, Ecosystems and Environment, 1996,60:9-15.
    [104] Roldan-Fajardo B E.Effects of indigenous arbuscular mycorrhizal endophytes on the development of six wild plants colonizaing a semi-arid area in South-east Spain[J].New Phytologist, 1994, 127:115-121.
    [105] Klironomos J N. Feedback with soil biota contributes to plant rarity and invasive -ness in communities[J]. Nature,2002,417:67-70.
    [106] Berendse F, Kroon H De, Braakhekke W G. Acquisition,use, and loss of nutrients[A]. In: Pugnaire F I, alladares F. Handbook of Functional Plant Ecology[M]. New York:Marcel Dekker,Inc,1999,315-340.
    [107] Farley R A, Fiter A H. Temporal and spatial variation in soil resources in deciduous woodland[J]. Journal of Ecology,1999,87:688-696.
    [108] Magid J, Nielsen N E. Seasonai variation in organic and inorganic phosphorus fractions of temperate-climate sandy soils[J].Plant and Soil,1992,144:155-165.
    [109] Merryweather J, Fitter A H. Paterns of arbuscular mycorrhiza colonization of the roots of Hyacinthoides non-scripts after distuption of soil mycelium[J]. Mycorrhiza,1998,8: 887-91.
    [110]刘润进,刘鹏起,徐坤,等.中国盐碱土壤中AM菌的生态分布[J].应用生态学报,1999,10 (6): 721-724.
    [111]张美庆,王幼姗,黄磊,等.我国北方VA菌根真菌某些属和种的生态分布[J].真菌学报,1994,13(30):166-172.
    [112] Xue L H,Mouratov S,Steinberger Y.Spatial distribution and colonization of arbuscular mycorrhizal fungi under the canopies of desert halophytes[J]. Arid Land Research and Management, 2002, 16(2):149-160.
    [113]张美庆,王幼姗.VA菌根真菌生态研究[J].真菌学报,1994,13(16):132-138.
    [114]张美庆,王幼珊,刑礼军.AM真菌在我国东南沿海地区各土壤气候带的分布[J].菌物系统,1999,18(2):145-148.
    [115] Kawai Y, Tezuka T, Yamamoto Y. Morphological characteristics and seasonal variation of VA mycorrrhiza in grapevine[J]. Journal Japan Society Horticulture Science, 1986, 55(1):22-26.
    [116] Guadarrama P, Alvarez-Sanchez F G. Abundance of arbuscular mycorrhizal fungi spores in different environ- ments in a tropical rain forest[J]. Veracruz,Mexico.Mycorrhiza, 1999,8:267-270.
    [117] An Z Q, G.J.W., Hendrix J W, et al. Vertical distribution of endogonaceous mycorrhizal fungi associated with soybean, as afected by soil fumigation[J]. Soil Biol Biochem, 1990, 22(5):715-719.
    [118] Wright S F ,Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparisonwith hyphal protein of arbuscular mycorrhizal fungi[J].Soil Science, 1996, 161:575-586.
    [119] Rillig M C, Allen M F. What is the role of arbuscular mycorrhizal fungi in plant to ecosystem
    [164]刘凤红,刘建,董鸣.毛乌素沙地优势克隆半灌木生物量配置对小尺度植被盖度变异的响应[J].生态学报,2005,25(12):3415-3419.
    [165]刘永和,黄仲达,杜庆堂,等.陕西省榆林地区沙蒿资源情况调查[J].中草药,1999,30(8): 623-625.
    [166]马毓泉,富象乾,陈山等.内蒙古植物志(第六卷)[M].呼和浩特:内蒙古人民出版社,1982, 103-158.
    [167]林鎔,林有润.中国植物志(第七十六卷第二分册)[M].北京:科学出版社,1991,1-250.
    [168]张剑林,于兆英,徐朗然,等.黄土高原植物志(第五卷)[M].北京:科学技术文献出版社,1989,283-325.
    [169] Titus J H,Nowak R S,Smith S D.Soil resource heterogeneity in the Mojave Desert[J]. Journal of Arid Environments, 2002,52:269-292.
    [170] He X L,Mouratov S,Steinberger Y.Temporal and spatial dynamics of vesicular-arbuscular mycorrhizal fungi under the canopy of Zygophyllum dumosum Boiss.in the Negev Desert[J]. Journal of Arid Envrionments,2002,52:379-387.
    [171] Lynch J M,The Rhizosphere[M].London:Johnwiley and sons chichester,1990,27.
    [172] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J].Transactions of the British Mycological Society,1970,55:158-161.
    [173] Ianson D C, Allen M F. The effects of soil texture on extraction of vesicular arbuscular mycorrhizal fungal spores from arid soils[J]. Mycologia,1986,78: 164-168.
    [174] Biermann B, Linderman R G.Use of vesicular arbuscular mycorrhizal roots,intrara-dical vesicles and extraradical Vesicles as inoculum[J].New phytologist, 1983, 95:97-105.
    [175]王立群,陈世璜,郝利忠.黑沙蒿生态生物学特性及群落地理分布规律相关性研究[J].干旱区资源与环境,2002,16(4):95-99.
    [176] Demuth K, Forstreuter W, Weber H C.Morphological differences in vesicular- arbuscular mycorrhizae of Gentianaceae produced by different endophytes [J].Flora, 1991, 185:127-132.
    [177]鲁如坤.土壤农业化学分析方法[M].北京:中国科学技术出版社,1999.
    [178] Brady N C, Wei R R.Organisms and ecology of the soil[J].The Nature and Properties of Soil, 1996, 11:328-360.
    [179] Powell C L,Bagyaraj D J.VA mycorrhiza.Florida: CRC Press Boca Raton,1984.
    [180] Johnson N C, Graham J H, Smith F A.Functioning of mycorrhizal associations along the mutualism-parasitism continuum[J].New Phytologist, 1997, 135:575-586.
    [181]王庆锁,李博.鄂尔多斯沙地油蒿群落生物量初步研究[J].植物生态学报,1994,18(4):347-353.
    [182] Rasmussen H, Anderson T F, Johansen B.Temperature sensitivity of in vitro germina-tion and seeding development of Dactylorhiza majalis (orchidaceae) with and without mycorrhizal fungus[J].PIant Cell and Environment, 1990, 13(2):171-177.
    [183] Zhang Y, Guo L D, Liu R J.Arbuscular mvcorrhizal fungi associated with common pteridophyms in Dujiangyan, southwest China[J].Mvcorrhiza, 2004, 14(1):25-30.
    [184] Turner B L, Haygarth P M. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity[J]. Science of the TotalEnvironment, 2005, 344: 27-36.
    [185] Renella G, Ortigozab A L R, Landi L, et al. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50) [J].Soil Biology and Biochemistry, 2003, 35:1203-1210.
    [186] Shen G Q, Lu Y T, Hong J B. Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil[J]. Ecotoxicology and Environmental Safety, 2006,63:474-480.
    [187] Klose S, Tabatabai M A.Urease activity of microbial biomass in soils[J].Soil Biology and Biochemistry, 1999, 31:205-211.
    [188]关松荫主编.土壤酶及其研究法[M].北京:农业出版社,1986,127-128.
    [189] Ezawa T, Saito M, Yoshida T.Comparison of phosphatase localization in the intrara-dical hyphae of arbuscular mycorrhizal fungi, Glomus spp. And Gigaspora spp[J].Plant and Soil,1995,176:57-63.
    [190] Tisserant B,Gianinazzi-Pearson V,Gianinazzi S,et al.In planto histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections[J]. Mycological Research,1993,97(2):245-250.
    [191] Caravaca F, Alguacil M M, Azcon R, et al. Comparing the effectiveness of mycorrhizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L[J]. Applied Soil Ecology, 2004, 25:169-180.
    [192] Wang F y,Lin X G,Yin R,et al. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multimetal -contaminated soil under unsterilized conditions[J].Applied Soil Ecology, 2006, 31:110-119.
    [193]何跃军,钟章成,刘济明,等.构树Broussonetia papyrifera幼苗氮、磷吸收对接种AM真菌的响应[J].生态学报,2007,27(11):4840-4847.
    [194]宋勇春,冯固,李晓林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响[J].应用与环境生物学报,2000,6(2):171-175.
    [195]周礼恺.土壤酶学[M].北京:科学出版社,1987,267-286.
    [196] Margarita S,Fernando G P,Lillian F.Soilmicrobial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grand is plantations in Uruguay[J].Applied Soil Ecology,2004 (3):1-9.
    [197] Sardans J,Penuelas J.Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L.forest[J].Soil Biology & Biochemistry,2005,37:455-461.
    [198] kang H,Freeman C. Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors[J].Soil biology and biochemistry,1999,31(3):449-454.
    [199]高雪峰,张功,卢萍.短花针茅草原土壤的酶活性及其生态因子的季节动态变化研究[J].内蒙古师范大学学报,2006,35(2):226-228.
    [200]贺学礼,赵丽莉,杨宏宇.黄土高原柠条锦鸡儿AM真菌多样性及空间分布[J].生态学报,2006,26(11):3835-3841.
    [201] O'Connor P J,Smith S E,Smith F A.Arbuscular mycorrhizal associations in the Simpson Desert[J]. Australia Journal of Botany,2001,49:493-499.
    [202] Green V S,Stott D E,Diack M.Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples[J].Soil Biology and Biochemistry,2006,38:693-701.
    [203] Schnurer J,Rosswall T.Fluorescein Diacetate Hydrolysis as a Measure of Total Microbial Activity inSoil and Litter [J].Applied and Environmental Microbiology,1982,1256-1261.
    [204] David P,Janos,Sara G,et al.Glomalin extraction and measurement[J].Soil Biology and Biochemistry, 2008,40:728-739.
    [205] Wright S F,Franke-Snyder M,Morton J B,et al.Time course study and partial characterization of a protein on hyphae of arbuscular mcyrrohzal fungi during active colonization of roots[J].Plant and Soil,1996,181:193-203.
    [206] Lovelock C E,Wright S F,Clark D A,et al.Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape[J].Journal of Ecology,2004,92:278-287.
    [207] Olsson P A,Thingstrup I,Jakobson I,et al.Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field[J].Soil Biology and Biochemistry, 1999,31: 1879-1887.
    [208] Ames R N.Mycorrhiza development in onion in response to inoculation with chitin-decomposing actinomycetes[J].New Phytologist,1989,112(3):423-42.
    [209]贺学礼,李斌. VA菌根真菌与植物相互选择性研究[J].西北植物学报,1999,19(3):471- 475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700