盐与磷胁迫条件下内生真菌和菌根菌对野大麦生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禾草内生真菌(Neotyphodium/Epichloe)和丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)是两类最主要的草地植物共生真菌,其与草地植物的共生,可增加宿主植物抗旱等抗逆特性,促进宿主植物生长。野大麦(Hordeum brevisubulatum)是一种生长于甘肃临泽天然草地的耐盐碱优良牧草。本论文分别以带内生真菌和AMF(M+E+)、只带AMF但不带内生真菌(M+E-),只带内生真菌但不带AMF(M-E+)和均不带内生真菌和AMF(M-E-)的野大麦为植物材料,通过研究在NaCl (0,200,400,600mmol/L)和P (0,0.05,2mmol/L)处理下禾草内生真菌和菌根菌对野大麦株高、分蘖、生物量及N、P含量等方面的影响,初步研究了在不同胁迫下内生真菌和菌根菌对宿主植物所起的作用,并寻找共生真菌-宿主植物-外界环境的动态平衡。获得了以下主要结果:
     1.正常条件下,内生真菌的存在可显著抑制丛枝菌根真菌的侵染(P<0.05),抑制率为41.67%。内生真菌和菌根真菌均可显著增加野大麦的地上生物量和总生物量(P<0.05),而菌根菌可显著增加野大麦的地下生物量(P<0.05)。两种共生体结构共存时野大麦的N含量显著小于单个共生体的处理(P<0.05)。只带菌根(M+E-)的野大麦P含量显著大于两种共生体结构共存时的野大麦P含量(P<0.05),表明内生真菌的存在降低菌根菌对野大麦P的吸收和积累。
     2.盐胁迫条件下,两种真菌单独或共同存在均可增加野大麦地上、地下和总生物量。与不带菌处理(M-E-)相比,当NaCl浓度为200mmol/L时,内生真菌单独(M-E+)或两种真菌共存(M+E+)都能显著增加地上生物量(P<0.05),而菌根的存在(M+E+和M+E-)对地下生物量有显著促进作用(P<0.05);NaCl浓度为400mmol/L时,带内生真菌和AM真菌的处理显著提高了野大麦的生物量(P<0.05),但三个处理之间差异不显著(P>0.05);当NaCl浓度达到600mmol/L时,各菌处理之间生物量则无显著性差异(P>0.05)。随着NaCl胁迫浓度从(0-600mmol/L)的增加,野大麦各处理地上全氮含量先增加后降低、地下N和P均呈现下降的趋势。在200mmol/LNaCl时,内生真菌可显著促进地上N的吸收(P<0.05);AMF可显著促进地上和地下P的吸收(P<0.05);两种菌共存时促进作用则不明显。
     3.高磷(Hp,2mmol/L KH2PO4)、低磷(Lp,0.05mmol/L KH2PO4)和无磷(Op)水平下,与不带菌的处理(M-E-)相比,M-E+显著提高了野大麦的株高和分蘖P<0.05);M+E+处理的地上、地下生物量显著大于其它水平的处理(P<0.05)。在Op条件下,有AM真菌的处理M+E+和M+E-地下生物量显著高于其它处理(P<0.05)。在Lp水平下,带内生真菌的处理M-E+和带AM真菌的处理M+E-对野大麦的氮、磷的累积有显著的促进作用(P<0.05)。
Neotyphodium/Epichloe endophytes not only confer enhanced fitness, but also have the positive effect on stress tolerance and plant growth of the host grass. Arbuscular Mycorrhizal Fungi (AMF) can improve the mineral nutrition especially P uptake and storage in the plants. Both symbionts of Neotyphodium endophyte and AMF in wild barley (Hordeum brevisubulatum) were studied under different conditions of normal, salt (0,200,400,600mmol/L NaCl) and phosphorus (0,0.05,2mmol/L P) stresses, with four treatments of both endophyte infected (M+) and AMF infected (M+)(M+E+), only AMF (M+E-), only endophyte infected (M-E+) and non fungi (M-E-). The main results were summarized as followings:
     1. Under the normal conditions, AMF infection and colonization in H. brevisubulatum were significantly inhibited by the Neotyphodium endophyte (P<0.05), the inhibition rate was41.67%. The above-ground and total biomass of the grass were significantly increased by both grass endophytes and AMF, while the root biomass was significantly increased by AMF (P<0.05), but not endophyte. The accumulation of nitrogen (N) and phosphrus (P) in host grass showed that the contents of total N in the treatments with only endophyte or AMF infected alone was significantly higher than those of with both fungi infected, respectively (P<0.05). P absorption and accumulation caused by AMF were inhibited by the endophyte as well.
     2. Under the salt stress condition, the shoot biomass of the M+E+and M-E+treatments were increased significantly (P<0.05), and the root and total biomass of the M+E+, M+E-and M-E+treatments were significantly (P<0.05) promoted under200mmol/L NaCl solution..Under400mmol/L NaCl solution, both endophyte and AMF had positive promotion to its host plant (P<0.05), however, there was no significantly diferencees among them under600mmol/L NaCl. With increasing of NaCl solution, the shoot N content in the plant increased then decreased, but root N and P decreased. But the content of N in root and P tended to be decresed. Under200mmol/L NaCl, endophyte could significantly increase absorption of shoot N (P<0.05), AMF could significantly increase absorption of shoot and root P.. However, there was not significant promotion effect by endophyte and AMF co-existed.
     3. Under treatments of high P (2mmol/L KH2PO4, Hp), low P (0.05mmol/L KH2PO4, Lp) and non-P (0mmol/L KH2PO4, Op) conditions, compared with non-fungal treatment, only endophyte (M-E+) could significantly improve plant height and tiller numbers (P<0.05), dual infection (M+E+) significantly increased shoot and root biomass of plant (P<0.05). Under Op level, M+E+and M+E-had significantly more root biomass than those of under other treatments (P<0.05). Under the Lp level, both M-E+and M+E-increased the content of N and P accumulation in host plants (P<005).
引文
[l]毕琪.丛枝菌根真菌对羊草耐盐性及生长效应分析.东北师范大学[硕士学位论文].长春:东北师范大学,2006.
    [2]柴凤久,郭宝华.野大麦的特征及栽培利用.内蒙古畜牧业,1992,(4):14-15.
    [3]陈娜.内生真菌提高醉马草低温萌发能力的分子机制.兰州大学[博士学位论文].兰州:兰州大学,2011.
    [4]陈世萍,高玉葆,梁宇,任安芝.水分胁迫下内生真菌感染对黑麦草叶内保护酶系统活力的影响.应用与环境生物学报,2001,7(4):348-354.
    [5]丁雪梅等,野大麦种子萌发条件的研究[J].东北农业大学学报,2010.41(6):11-16.
    [6]杜永吉,孙鑫博,韩烈保.内生真菌Neotyphodium starrii感染对自然高温下高羊茅光合和形态特性的影响.中南林业科技大学学报,2010,30(1):41-47.
    [7]杜永吉,王琪,韩烈保.内生真菌Neotyphodium typhinum感染对高羊茅光合特性的影响.生态环境学报,2009,18(2):590-594.
    [8]冯固,张福锁,李晓林,张君伶,盖京平.丛枝菌根真菌在农业生产中的作用与调控.生态环境学报,2010,47(5):995-1004.
    [9]盖京平,冯固,李晓林.丛枝菌根真菌的生物多样性研究进展土壤,2005,37(3):236-242.
    [10]缑小媛.内生真菌对醉马草耐盐性影响的研究.[硕士学位论文].兰州:兰州大学,2007.
    [11]郭良栋.菌根真菌的碳氮循环功能研究进展[J].微生物学通报,2013,40(1):158-171.
    [12]金文进等.禾草内生真菌的多样性及意义.草业学报.2013,发表中.
    [13]李涛,赵之伟.丛枝菌根真菌产球囊霉素研究进展[J].生态学杂志,2005,24(9):1080-1084.
    [14]李晓林,冯固.丛枝茵根生态生理[M].北京:华文出版社,2001.
    [15]刘润进,陈应龙.菌根学[M].北京:科学出版社,2007.
    [16]刘润进,李晓林.丛枝菌根及其应用.北京:科学出版社,2000.
    [17]刘永俊等.施肥对垂穗披碱草根系中丛枝菌根真菌的影响.应用生态学报,2011,22(12):3131-3137.
    [18]马剑等.接种丛枝菌根菌对盆栽孔雀草生长的影响.新疆农业科学,2007,44(4):461-464.
    [19]马敏芝,南志标.黑麦草内生真菌对植物病院真菌的生长影响.草业科学,2011,28(6):962-965.
    [20]南志标,李春杰.禾草内生真菌共生体在草地农业系统中的作用[J].生态学报.2004,24(3):605-616.
    [21]任安芝,高玉葆.禾草类内生真菌研究进展.微生物学通报,2004,31(2):130-133.
    [22]任安芝,高玉葆,章瑾,张晶.内生真菌感染对黑麦草抗盐性的影响.生态学报,2006,26(6):1750-1757.
    [23]任安芝,高玉葆.干旱胁迫下内生真菌感染对黑麦草光合色素和光合产物的影响.生态学报,2005,25(2):225-231.
    [24]任安芝等.黑麦草-生真菌共生体对磷缺乏的生理生态反应.生态学报,2007,27:5433-5440
    [25]石伟琦等.丛枝菌根真菌对羊草生物量和氮磷吸收及土壤碳的影响.西北植物学报,2011,31(2):0357-0362.
    [26]王平.人工草地野大麦生态研究.东北师范大学[硕士学位论文].长春:东北师范大学,2003.
    [27]王素平,郭世荣,李璟等.盐胁迫对黄瓜幼苗根系生长和水分利用的影响.应用生态学报,2006,17(10):1883-1888.
    [28]王正凤.真菌对野大麦耐盐性影响的研究[硕士学位论文].兰州:兰州大学,2009.
    129]王志伟,燕玲,永敢,亢燕.禾本科植物内生真菌资源及其物种多样性.生态学报,2010,30(17):4771-4781.
    [30l王志伟,王世梅,纪燕玲,赵明文,于汉寿.中国禾本科植物内生真菌研究-东营市盐碱地区的禾本科植物内生真菌的检测与分布特征.草业科学,2005,22(2):60-63.
    [31]魏宇昆,高玉葆,李川,许华,任安芝.内蒙古中东部草原羽茅内生真菌的遗传多样性.植物生态学报,2006,30,(4):640-649.
    [32]叶少萍等.不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响.草业学报,2013.22:46-52.
    [33]袁志林,章初龙,林福呈.植物与内生真菌互作的生理与份子机制研究进展.生态学报,28(9):4430-4439.
    [34]赵之伟.菌根真菌在陆地生态系统中的作用.生物多样性,1999,7(3):240-244.
    [35]周芳,高玉葆,马文江.却林对黑麦草-内生真菌共生体生长和根中酚含量的影响.植物生理学通报,2003,39(4):321-324.
    [36]Alloush GAZ, Zeto SK, Clark RB. Phosphorus source, organic matter and arbuscular mycorrhiza effects on growth and mineral acquisition of chickpea grown in acidic soil[J]. Plant Nutr,2000,23:1351-1369.
    [37]Antunes PM, Miller J, Carvalho LM, Klironomos JN, Newman JA. Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Function Ecology,2008,22:912-918.
    [38]Antunes V et al. Growth and nutrient status of citrus plants as influenced by mycorrhiza and phosphorus application. Plant and Soil,1991,131:11-19.
    [39]Auge RM. Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza,2001,11:3-42.
    [40]Ayres RL, Gange AC, Aplin DM. Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size, and size inequality, of Planlago lanceolata L. Journal of Ecohgy,2006,94:285-294.
    [41]Azevedo MD and Welty RE. A study of the fungal endophyte Acremonium coenophialum in the roots of tall fescue seedlings. Mycologia,1995,87:289-297.
    [42]Bacon CW, Porter JK, Robbins JD. Epichloe typhina from toxic tall fescue grasses. Applied and Environmental Microbiology,1977,34:576-581.
    [43]Bagyaraj DJ and Menge, JA. Interaction between a VA mycorrhizal and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytologist,1978,80:567-573.
    [44]Ball OJP, Barker GM, Prestigdge RA, Sprosen JM. Distribution and accumulation of the mycotoxin Lolitrem B in Neotyphodium lolii-infected perennial ryegrass. Chem. Ecol,1997, 23:1435-1449.
    [45]Barker GM. Mycorrhizal infection influences Acremonium-induced resistance to Argentine stem weevil in ryegrass. Proceedings of the New Zealand Weed and Pest Control Conference, 1987,40:199-203.
    [46]Black KG, Mitchell DT, Osborne BA.Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant Cell Environ, 2000,23:797-809.
    [47]Black KG, Mitchell DT, Osborne BA. Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant Cell Environ, 2000,23:797-809.
    [48]Blanke V, Renker C, Wanger M, Fullner K, Held M, Kuhn A, Buscot F. Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytologist,2005,166:981-992.
    [49]Bony S, Pichon N., Ravel C., Durix A. The relationship between mycotoxin synthesis and isolate morphology in fungal endophytes of Lolium perenne [J]. New Phytologist,2001, 152(1):125-137.
    [50]Brundrett MC.Coevolution of roots and mycorrhizas of land plants. New Phytologist,2002, 154:275-04.
    [51]Buyer JS, Franzluebbers AJ. Soil microbial community function, structure, and glomalin in response to tall fescue endophyte infection. Plant Soil,2011,339:401-412.
    [52]Carvalho LM, Cacador I, Martins-Loucao M. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal) [J]. Mycorrhiza,2001, 11(6):303-309.
    [53]Carvalho LM, Correia PM, Martins-Loucao MA. Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza,2004,14:165-170.
    [54]Casas C, Omacini M, Montecchia M, Correa O. Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil,2010,340,347-355.
    [55]Chen BD, Li XL, Tao HQ, Christie P, Wong MH. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere,2003,50:839-846.
    [56]Chen X, Tang JJ, Zhi GY, Hu S. Arbuscular mycorrhizal clolonization and phosphorus acquisition of plants:effects of coexisting plant species. Applied Soil Ecology,2005, 28:259-269.
    [57]Chen YG, Ji YL, Yu HS, Wang ZW. A new Neotyphodium species from Festuca parvigluma Steud. grown in China. Mycologia,2009,101(5):681-685.
    [58]Cheplick GP, Perera A, Konlounis K. Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Functional Ecology,2000,14(6):657-667.
    [59]Chu-chou MM, Guo B, An ZQ, Hendrix JW, Ferris RS, Siegel MR, Dougherty CT, Burrus PB. Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol. Biochem,1992,24:633-637.
    [60]Clay K. Fungal endophytes Herbivores and the structure of grassland communities. In:Gange A C ed. Multitrophic Interactions in Terrestrial Systems [M]. Oxford:Blankwell,1997, 151-169.
    [61]Clay K. Interactions among fungal endophytes, grasses, and herbivores. Res Popul Ecol (Kyoto),1996,38:191-201.
    [62]Clement SL, Elbersona LR, Youssef NN, Davitt CM, Doss RP. Incidence and diversity of Neotyphodium fungal endophytes in tall fescue from Morocco, Tunisia, and Sardinia[J]. Crop Science,2001,41:570-576.
    [63]Eerens JPJ, Luces RJ, Easton S, White JGH. Influence of the endophyte(Neotyphodium lolii) on morphology physiology and alkaloid synthesis of perennial ryegrass during high temperature and water stress.New Zealand Journal of Agriculture Reserch,1998,41: 216-219.
    [64]Elmi AA, West CP.Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue.New Phytol,1995,131:61-67.
    [65]Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress:a review. Ann Bot,2009,104:1263-1280.
    [66]Ezawa T, Saito M, Yoshida T. Comparison of phosphatase localization in the intraradial hyphae of arbuscular mycorrhizal fungi, Glomus spp and Gigaspora spp[J]. Plant andSoil, 1995,176:57-63.
    [67]Facelli E, Facelli JM, Smith SE, Mclaughlin MJ. Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv.Mt.Barker. New Phytologist,1999,141:535-547.
    [68]Faeth SH, Fangan WF. Fungal endophytes:common host plant symbionts but uncommon mutualists. Interative and Comparative Biology,2002,42(2):360-368.
    [69]Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C. Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funtional Ecology,1998,12: 406-412.
    [70]Franzluebbers AJ, Nazih N, Stuedemann JA, Fuhrmann JJ, Schomberg HH, Hartel PG. Soil carbon and nitrogen pools under low-and high-endophyte-infected tall fescue. Soil Sci Soc Am J,1999,63:1687-1694.
    [71]Gange AC, Brown VK, Sinclair GS. Vesicular-arbuscular mycorrhizal fungi:a determinant of plant community structure in early succession. Functional Ecology,1993,7:616-622.
    [72]Grzybowska B. Arbuscular mycorrhiza of herbs colonizing a salt affected area near Krakow (Poland). Acta Societ Botanic Polon,2004,73:247-253.
    [73]Guo BZ. Hendrix J, An ZQ, Ferriss R. Role of Acremonium endophyte of fescue on inhibition of colonization and reproduction of mycorrhizal fungi. Mycologia,1992,84: 882-885.
    [74]Gwinn KD, Galvin AM. Relationship between endophyte infection level of tall fescue seed lots and Rhizoctonia zeae seedling disease. Plant Dis,1992,76:911-914.
    [75]He XH, Duan YH, Chen YL, Xu MGA 60-year journey of mycorrhizal research in China: Past, present and future directions. Science China:Life Sciences,2010,53:1374-1398.
    [76]Humphries SS, Gwinn KD, Stewart AJ. Effects of endophyte status of tall fescue tissues on the earthworm. Environ. Toxicol. Chem,2001,20:1346-1350.
    [77]Iannone LJ, Cabral D. Effects of the Neotyphodium endophyte status on plant performance of Bromus auleticus, a wild native grass from South America. Symbiosis,2006,41:61-69.
    [78]Jakobsen, I., Gazey, C.& Abbott, L.K. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phylologist,2001,149:95-103.
    [79]Jin H, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2005,168:687-696.
    [80]Johnson NC, Wolf J, Koch, GW. Interactions among mycorrhizae, atmospheric CO2 and soil N impact plant community composition. Ecology Letters,2003,6,532-540. Joost RE and Quinsenberry SS Proc. of Int. Sym. on Acremonium/grass Inter. Ed. Louisiana, USA,1990.
    [81]Kaya C, Higgs D, Kimak H, Tas I.Myorrhiza colonization improves fruit yield and water use efficieney in watermelon(Citrullus lanatus Thunb) grown under well-watered and water-stressed conditions[J]. Plant Soil,2003,253(2):287-292.
    [82]Kogel KH, Franken P, Huckelhoven R. Endophyte or parasite-what decides? Curr Opin Plant Biol,2006,9:358-363.
    [83]Larmier AL, Bever JD, Clay K. Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass, Oikos,2012, 121(12):2090-2096.
    [84]Lewis GC. Effect of drought stress on genotypes of Lolium perenne and other grass species with and without Neotyphodium/Epichloe-infection. In:Proceeding of 4th International Neotyphodium/Grass Interaction. Soest, Germany,2000,27-29.
    [85]Li CJ, Nan ZB, Paul V, Dapprich P, Liu Y. A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon,2004,90:141-147.
    [86]Li CJ. Zhang XX, Li F, Nan ZB, Schardl LC. Disease and pest resistance of endophyte infected and non-infected drunken horse grass[M], In:Popay A, Thorn ER (eds). Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses. New Zealand Grassland Association, Dunedin,2007, pp 111-114.
    [87]Li XL, Marschner H, George E. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil,1991,136:49-57.
    [88]Liu QH, Parsons AJ, Xue H, Fraser K, Ryarn GD, Newman JA, Rasmussen S. Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Functional Ecology,2011, 25,910-920.
    [89]Lyons PC, Evans JJ, Bacon CW. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue[J]. Plant Physiology,1990, 92:726-732.
    [90]Mack KML and Rudgers JA. Balancing multiple mutualists:asymmetric interactions among plants, arbuscular mycorrhizal fungi and fungal endophytes. Oikos,2008,117:310-320.
    [91]Malinowski DP, Alloush GA, Belesky DP. Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil,2000,227:115-126.
    [92]Malinowski DP, Zuo H, Belesky DP, Alloush GA. Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil,2004,267:1-12.
    [93]Marks S and Clay K. Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytol,1996,133:727-733.
    [94]Marulanda A, Azcon R, Ruiz-Lozano JM. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa L. plants under drought stress. Physiol Plant,2003, 119:526-533.
    [95]Miller RM, Miller SP, Jastrow JD, Rivetta CB. Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Pkytologist,2002, 155:149-162.
    [96]Morgan-Jones G and Gams W. An endophyte of Festuca arundinacea and the anamorph of Epichloe typhina, new taxa in one of the two new sections of Acremonium. Mycotaxon,1982, 15:311-318.
    [97]Muller J. Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Functional Plant Biology,2003,30,419-424.
    [98]Nan and Li, Proceedings of 8th International Symposium on Fungal Endophyte of Grasses, Lanzhou, China,2012.
    [99]Newman JA. Effects of elevated CO?, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Global Change Biol,2003,9: 425-437.
    [100]Newsham K, Fitter A. and Watkinson A. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology,1995,83:991-1000.
    [101]Novas MV, Cabral D, Godeas AM. Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis,2005,40:23-30.
    [102]Novas MV, Gentile A, Cabral D. Comparati ve study of growth parameters on diaspores and seedlings between populations of Bromus setifolius form Patagonia, differing in Neotyphodium endophyte infection. Flora,2003,198:1-6.
    [103]Novas MV, Iannone LJ, Godeas AM, Scervino JM. Evidence for leaf endophyte regulation of root symbionts:effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi. Symbiosis,2011,55:19-28.
    [104]O'Connor PJ, Smith SE, Smith FA. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytohgist,2002,154:209-218.
    [105]Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH. Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Functional Ecology, 2006,20:226-232.
    [106]Omacini M, Semmartin M, Perez LI, Gundel PE. Grass-endophyte symbiosis:A neglected aboveground interaction with multiple belowground consequences. Applied Soil Ecology, 2012,61:273-279.
    [107]Pan JJ and Clay K. Epihloe glyceriae infection affects carbon translocation in the clonal grass Glyceria striata. New Phytol,2004,164:467-475.
    [108]Parida AK, Das AB. Salt tolerance and salinity effects on plants. Ecotoxicol Environ Safe, 2005,60:324-349.
    [109]Petrini O. Fungal Endophytes of Tree Leaves [A]. eds Andrews J H, Hirano S S. In Microbial Ecology of Leaves[C].New York, Springer-Verlag,1991,179-197.
    [110]Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuseular mycorrhizal fungi for rapid assessment of infection[J]. Trans Br mycol Society,1970,55:158-161.
    [111]Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM. Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass(Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem. Syst. Ecol,2009,37:245-253.
    [112]Rabie GH. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with sea water[J]. Mycorrhiza,2005,15(3):225-230.
    [113]Rahman MH and Saiga S. Endophytic fungi(Neotyphodium coenophialum) affect the growth and mineral uptake, transport and efficiency ratios in tall fescue(Festuca arundinacea). Plant Soil,2005,272:163-171.
    [114]Raj J, Bagyaraj DJ, Manjunath A. Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and 32P-uptake. Soil biology and biochemistry,1981,13:105-108.
    [115]Richardson DM, Allsopp N, D'Antonio CM, Milton SJ, Rejmanek M. Plant invasions-the role of mutualisms. Biol Rev Camb Philos Soc,2000,75:65-93.
    [116]Rillig MC and Steinberg PD. Glomalin production by an arbuscular mycorrhizal fungus:a mechanism of habitat modification? Soil Biology and Biochemistry,2002,34:1371-1374.
    [117]Rudgers JA and Orr S. Non-native grass alter growth of native trees species via leaf and soil microbes. Journal of Ecology,2009,97:247-255.
    [118]Ruiz-Lozano JM, Porcel R, Azcon R, Aroca R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants:new challenges in physiological and molec-ular studies. J Exp. Bot.,2012,63:4033-4044.
    [119]Sabzalian MR and Mirlohi A. Neotyphodium endophytes trigger salt resistance in tall and meadow fescues[J]. Plant Nutr. Soil Sci.,2010,173:952-957.
    [120]Schardl CL and Phillips TD. Protective grass endophytes where are they from and where are they going? Plant Disease,1997,81(5):430-438.
    [121]Schardl CL, Luechtmann A, and Spiering M J. Symbioses of grasses with seed borne fungal endophytes. Annual Review of Plant Biology,2004,55:315-340.
    [122]Scheublin TR, van Logtestijn RSP, van der Heijden, MGA. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. Journal of Ecology,2007,95:631-638.
    [123]Siege MR, Latch GCM, Johnson MC. Fungal endophytes of grasses. Annu. Review. Phytopathology,1987,25:293-315.
    [124]Smith SE, Read DJ. Mycorrhizal symbiosis.2nd edn. Academic Press,1997, London.
    [125]Snellgrove RC, Splittstoesser WE, Stribley D P, Tinker P B. The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular arbuscular mycorrhizas. New Phytol,1982,92:75-87.
    [126]Spiering MJ, Lane GA, Christensen MJ, Schmid J. Distribution of the fungal endophyte Neoyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry,2005,66:195-202.
    [127]Stachowicz JJ. Mutualisms, positive interactions, and the structure of ecological communities. Bioscience,2001,51:235-246.
    [128]Stampe ED and Daehler CC. Mycorrhizal species identity affects plant community structure and invasion a microcosm study. Oikos,2003,100:362-372.
    [129]Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig HM. Flavonoids and strigolactones in root exudates assignals in symbiotic and pathogenic plant-fungus interactions. Molecules,2007,12,1290-1306.
    [130]Suanne Krmer, Douglas M. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid wood land[J]. Soil Biology & Biochemistry,2000,32: 179~188.
    [131]Thingstrup I, Kahiluoto H, Jakoben I. Phosphate transport by hyphae of field communities of arbuscular mycorrhizal fungi at two levels of P fertilization. Plant and Soil,2000, 221:181-187.
    [132]Tian P, Nan ZB, Li CJ. Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. EurJ Plant Pathol,2008, 122:593-60.
    [133]Titus JH and Leps J. The response of arbuscular mycorrhizae to fertilization, mowing, and removal of dominant species in a diverse oligotrophic wet meadow. Am. J. Bot,2000,87: 392-401.
    [134]Toussaint JP, St-Arnaud M, Charest C. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system[J]. Canadian Journal of Microbiology, 2004,50:251-260.
    [135]Van der Heijden MGA and Horton TR. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation m natural ecosystems. Journal of Ecohgy, 2009,97:1139-1150.
    [136]Van der Heijden MGA, Klironomos JN, Ursic M, Moutoghs P, Streitwolf-Engel R, Thomas B, Wiemken A, Sander IR. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature,1998,396:69-72.
    [137]Vicari M, Hatcher PE, Ayres PG. Combined effect of floia and mycorrhizal endophytes on an insect herbivore. Ecology,2002,83(9):2452-2464.
    [138]Wang WX, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta,2003,218:1-14.
    [139]White JF, Morgan-Jones G, Morrow AC. Taxonomy, life cycle, reproduction and detection of Acremonium endophytes.Agriculture, Ecosystems and Environment,1993,44:13-37.
    [140]Wilson GWT and Hartnett DC. Interspecific variation in plant responses to mycorrhizal colonization in tall grass prairie Am. J. Bot,1998,85:1732-1738.
    [141]Zabalgogeazcoa I, Romo M, Keck E, Vazquez de Aldana BR, Garcfa Ciudad A and Garcia Criado B. The infection of Festuca rubra subsp. pruinosa by Epichloe festucae. Grass and Forage Science,2006,61:71-76.
    [142]Zhang XX, Li CJ, Nan ZB, Matthew C. Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators[J]. Weed Research.2012,52(1):70-78.
    [143]Zhu,YG and Miller, RM. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems Trends in Plant Science,2003,8:407-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700