圆弧刃金刚石刀具刀尖圆弧的机械研磨及其检测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密切削加工作为超精密加工技术中的代表性技术,现已成为衡量一个国家制造水平高低的重要标志。实现超精密切削加工,不仅需要超精密的切削机床、高精度的检测仪器和超稳定的加工环境,还需要进行切削加工用的高精度圆弧刃金刚石刀具。美日等国高精度圆弧刃金刚石刀具的水平已能达到刃口钝圆半径(锋利度)10nm以内,刀尖圆弧圆度50nm以内。国内高精度刀具的刃口钝圆半径已接近该先进水平,但刀尖圆弧圆度还存在巨大的差距。因此,解决高精度圆弧刃金刚石刀具刀尖圆弧的研磨问题成为当务之急。
     金刚石晶体具有很强的各向异性,不同的晶面上乃至同一晶面不同方向上的机械性能差异明显。在圆弧刃刀具的刀尖圆弧上,各段圆弧所处的晶面不同,使得各段圆弧存在迥然不同的磨削性能。如果还是使用简单的圆弧研磨方法,研磨的效率必然非常低下。但目前还没有行之有效的模型来描述刀尖圆弧上材料的磨削性能。加之现有研磨设备和研磨工艺存在的诸多缺陷,使得刀尖圆弧的研磨很难达到较高的精度。因此本文从晶体学入手,对圆弧刃金刚石刀具刀尖圆弧的研磨机理、研磨设备及检测技术等展开系统的研究。具体的研究内容包括以下几个方面:
     首先运用分子动力学模拟的手段,结合周期键链PBC理论解释了金刚石刀具机械研磨过程中材料去除的微观机理。这是首次在原子的尺度上从晶体学的角度对金刚石刀具机械研磨过程做出的微观解释。该微观解释为金刚石刀具刀尖圆弧的机械研磨奠定了理论基础。并依此建立了评价金刚石晶体各晶面中任意方向研磨难易程度的PBC模型。随后进行的材料去除率试验很好得证实了该模型的正确性。
     其次在PBC模型的基础上,建立了以{100}和{110}晶面为前刀面的金刚石刀具刀尖圆弧上材料去除率比值模型。首次使用数学模型定量地描述了刀尖圆弧上材料的磨削性能。该模型为高效低成本研磨优质圆弧刃金刚石刀具提供了理论依据。并根据该模型得出了不同前刀面刀具刀尖圆弧的优选研磨方向及优选的刀具晶面组合R(110)F(110)。结合材料去除量公式,提出了适于刀尖圆弧研磨的变研磨压力和变研磨时间两种研磨方法。
     然后在总结现有圆弧刃金刚石刀具研磨机缺点的基础上,使用Pro/Engineering自顶向下设计了一台新型的圆弧刃金刚石刀具研磨机。该研磨机采用T型布局,消除了研磨主轴C轴和往复摆轴X轴重叠布置所带来的相互误差耦合。刀具摆轴使用速度与位置闭环控制,可实现变研磨压力及变研磨时间两种刀尖圆弧的研磨方式。这里还建立了研磨机的空间误差模型,分析了影响刀尖圆弧研磨精度的主要因素。
     对磨损的金刚石刀具刀尖圆弧的重新修磨,一直以来都是未解决的技术难题。本文分析了刀具重磨的难点问题,详细探讨了刀具重磨中的关键技术及实现手段,制定了一整套圆弧刃金刚石刀具刀尖圆弧的重新修磨工艺流程。
     目前还没有合适的方法来测量金刚石刀具刀尖圆弧的圆度。最后本文针对金刚石刀具的测量要求,提出了基于AFM的刀尖圆弧检测方法。对现有的AFM系统进行改造,附加一套精密回转气浮轴系,建立了一套新型的金刚石刀具刀尖圆弧圆度的测量系统。并分析了整个系统的误差来源和误差组成,评定了系统的测量精度。针对金刚石刀具测量的特点,提出了一种带有半径约束最小二乘圆拟合的数据处理方法。该方法为工程实际中圆弧刃金刚石刀具刀尖圆弧圆度的检测与评定提供了技术支持。
As the representative technology of ultra-precision machining, the ultra-precision cutting becomes an important mark of the manufacturing level of a country. The ultra-precision cutting needs not only cutting machine, high accurate detecting instruments and ultra-stable machining environment, but also high-precision rounded diamond cutting tools. In America and Japan, the cutting edge radius (sharpness) of the tools is minimized less than 10nm and the nose roundness of the tools is improved no more than 50nm. Compared to the cutting edge radius of the tools, domestic has approached the international advanced level, but the nose roundness is left behind a great distance with that. Therefore, it is urgent to solve the high-precision lapping problem of rounded diamond cutting tools’nose arc.
     The diamond crystal has strongly anisotropy. Mechanical properties in different crystal planes even in different orientations of the same plane are obviously different. Each part of the tool’s nose arc has different lapping performance as they are in different crystal planes. Thus, the simple cylindrical lapping method is not efficient to lap the nose arc of rounded tools. So far there is no effective model for the lapping of the nose arc. And the existing lapping equipments and process has many drawbacks. Therefore, the nose roundness of the lapped nose arc cannot reach the high precision. With the result that, this paper develops the lapping mechanism, equipment and detecting technology of the tool’s nose arc based on crystallology. The research contents are detailed as following:
     Firstly, the microscopic mechanism of material removal in mechanical lapping of diamond cutting tools is discussed using the period bond chain (PBC) theory and molecular dynamics simulation. It is the first time that this microscopic interpretation for mechanical lapping of diamond cutting tools exposed on atomic scale from the crystallography. And the theoretic basis is established for mechanical lapping of nose arc of the tools by this interpretation. According to this interpretation, a PBC model is built to evaluate the extent of hard lapping in different orientations on different crystal planes in diamond. This model is confirmed by the subsequent experiments of material removal rate in mechanical lapping.
     Secondly, based on the PBC model, ratio models of material removal rate are proposed for nose arc of tools which use the {100} and {110} crystal plane as the rake faces. The materials lapping performance on nose arc is described by mathematical model for the first time. Further more, these models will give strong support to effective mechanical lapping of the rounded diamond cutting tools’nose arc. And then, the optimization lapping direction is obtained for the nose arc of tools with different rake face. And the optimization composition of the crystal plane is R(110)F(110) for the rounded tools. More over, two lapping methods are proposed for nose arc according to the formula of material removal amount. One is varying lapping pressure; the other is varying lapping time.
     Thirdly, summarizing of the disadvantages of the existing lapping machine, a new type lapping machine is designed by top-down method of Pro/Engineering for mechanical lapping of rounded diamond cutting tools. This lapping machine uses T-type layout in order to eliminate the coupling error introduced by the overlapping layout of mainshaft (C-axis) and pendulum shaft (X-axis). Oscillating shaft is controlled by the position and speed closed-loop. This ensures the varying lapping pressure and varying lapping time two kinds of lapping methods feasible. In addition, the space error model of the lapping machine is established by means of lower body array to describe the topological structures. And the principal factors are obtained for influencing the lapping quality of rounded diamond cutting tools’nose arc.
     Re-lapping of the worn diamond cutting tool is an urgent problem to be solved. This paper discussed the key technology and implementation method of tools’re-lapping based on the analysis of key difficulty. Whereafter, a whole process plan is set down for re-lapping of rounded diamond cutting tools’nose arc.
     The measuring apparatus is necessary to evaluate the lapping quality of the diamond cutting tool. As yet no measuring method is applicable for the nose roundness of the rounded diamond cutting tool. Lastly, this paper put forward a measuring method based on atomic force microscope (AFM) according to the requirements of the diamond cutting tool. A measurement apparatus which composes of a reconstructed AFM and a precision aerostatic bearing is developed. Thereafter the error source and composition of the whole system is analyzed, especially the error caused by alignment. And the measuring accuracy of the measuring system is worked out. Then a new data processing method with radius constraint least-square circle fitting is put forward. This new method will give a strong support to the measurement and evaluation of the nose roundness of rounded diamond cutting tools in engineering practice.
引文
1袁哲俊,王先逵.精密和超精密加工技术(第二版).北京:机械工业出版社, 2007: 1~106
    2袁哲俊,周明,韩向利.精密机床的新发展(上).机械工艺师. 1994, (11): 40~42
    3袁哲俊,周明,韩向利.精密机床的新发展(下).机械工艺师. 1994, (12): 35~36
    4王先逵,李庆祥,刘成颖,等.精密加工技术实用手册.北京:机械工业出版社, 2001: 1~106
    5刘贺云,柳世传.精密加工技术.广州:华南理工大学出版社, 1991
    6吴敏镜.超精密加工的概况与展望(上).机械工艺师. 1992, (7): 37~38
    7吴敏镜.超精密加工的概况与展望(下).机械工艺师. 1992, (8): 33~34
    8杨辉,吴明根.现代超精密加工技术.航空精密制造技术. 1997, 33(1): 1~8
    9 P.A. Mckeown. The Role of Precision Engineering in Manufacturing of the Future. Annals of the CIRP. 1987, 36(2): 495~501
    10 N. Ikawa, N.N. Donaldson, R. Komanduri, et al. Ultra-precision Metal Cutting-the Past, the Present and the Future. Annals of the CIRP. 1991, 40(2): 587~594
    11 N. Ikawa, S. Shimada and H. Tanaka. Minimum Thickness of Cut in Micromachining. Nanotechnology. 1992, (3): 6~9
    12秦善.晶体学基础.北京:北京大学出版社, 2004: 1~151
    13周乐光.矿石学基础(第3版).北京:冶金工业出版社, 2007: 50~198
    14万隆,陈石林,刘小磐.超硬材料与刀具.北京:化学工业出版社, 2006: 20~40
    15 K. Uegami, K. Tamamura and K.K. Jang. Lapping and Frictional Properties of Diamond and Characteristics of Diamond Cutting Tool. Journal of mechanical working technology. 1988, 17(8): 147~155
    16张竞敏.天然金刚石刀具技术的发展概况.工具技术. 2001, 35(4): 3~13
    17 Z.J. Yuan, M. Zhou and J.C. He. A Study of the Mechanism of Lapping Single Crystal Diamond. Proceedings of the 4th SJCUM Internationalconference. Tokyo, 1992: 282~287
    18 Z.J. Yuan, Y.X. Yao, M. Zhou, et al. Lapping of Single Crystal Diamond Tools. Annals of the CIRP, 2003, 52(1): 285~288
    19 K. Uegami, K.K. Jang, K. Tamamura, et al. Study on Lapping of Diamond Tool (1st report). International Journal of the Japan Society for Precision Engineering. 1988, 54(11): 2138~2143
    20 K. Uegami, K.K. Jang, K. Tamamura, et al. Study on Lapping of Diamond Tool (2nd report). International Journal of the Japan Society for Precision Engineering. 1990, 56(6): 1039~1045
    21 K.K. Jang, K. Uegami, K. Tamamura, et al. Study on Lapping of Diamond Tool (3rd report). International Journal of the Japan Society for Precision Engineering. 1994, 28(1): 23~28
    22 W.J. Zong, D. Li, T. Sun, et al. Contact Accuracy and Orientations Affecting the Lapped Tool Sharpness of Diamond Cutting Tools by Mechanical Lapping. Diamond & Related Materials. 2006, (15):1424– 1433
    23 B. Koslowski, S. Strobel and P. Ziemann. Ion Polishing of a Diamond (100) Surface Artificially Roughened on the Nanoscale. Diamond and Related Materials. 2000, (9): 1159~1163
    24 I. Miyamoto, T. Ezawa and K. Nishimura. Ion Beam Machining of Single-point Diamond Tools for Nano-precision Turning. Nanatechnology. 1990, (1): 44~49
    25 J.A. Weima, W.R. Fahrner and R. Job. Experimental Investigation of the Parameter Dependency of the Removal Rate of the Thermochemically Polished CVD Diamond Films. Journal of Solid State Electrochem. 2001, (5): 112~118
    26 A.M. Zaitsev, G. Kosaca, B. Richarz, et al. Thermochemical Polishing of CVD Diamond Films. Diamond and Related Materials. 1998, (7): 1108~1117
    27 J. Haisma, F.J.H.M. van der Kruis, B.A.C.M. Spierings, et al. Damage-free Tribochemical Polishing of Diamond at Room Temperature: A Polishing Technology. Precision Engineering. 1992, 14(1): 20~27
    28 M. Frederick. Atomic Machining of Diamond Tools. American Machinist. 1990, (3): 49~52
    29 C.D. Ollison, W.D. Brown, A.P. Malshe, et al. A Comparison of MechanicalLapping versus Chemical-assisted Mechanical Polishing and Planarization of Chemical Vapor Deposited (CVD) Diamond. Diamond and Related Materials. 1999, (8): 1083~1090
    30 J. Kühnle, O. Weis. Mechanochemical Superpolishing of Diamond Using NaNO3 or KNO3 as Oxidizing Agents. Surface Science. 1995, (340): 16~22
    31 F.K. de Theije, O. Roy, N.J. van der Laag, et al. Oxidative Etching of Diamond. Diamond and Related Materials. 2000, (9): 929~934
    32 F.K. de Theije, E. van Veenendaal, W.J.P van Enckevort, et al. Oxidative Etching of Cleaved Synthetic Diamond {111} Surfaces. Surface Science. 2001, (492): 91~105
    33 A.P. Malshe, B.S. Park, W.D. Brown, et al. A Review of Techniques for Polishing and Planarizing Chemically Vapor-deposited (CVD) Diamond Films and Substrates. Diamond and Related Materials. 1999, (8): 1198~1213.
    34 S.E. Grillo, J.E. Field. Investigation of the Possibility of Electrical Wear by Sparking in Diamond Polishing. Wear. 1997, (211): 30~34
    35 M. Tolkowsky. Research on the Abrading, Grinding or Polishing of Diamond. D. Sc. Thesis, University of London, 1920
    36 M. Casey, J. Wilks. The Friction of Diamond Sliding on Polished Cube Faces of Diamond. Journal of Physics D: Applied Physics. 1973, (6): 1772~1782
    37 E.M. Wilks, J. Wilks. The Resistance of Diamond Abrasion. Journal of Physics D: Applied Physics. 1972, (5): 1902~1919
    38 F.P. Bowden, D. Tabor. Physical Properties of Diamond. Oxford: Clarendon Press. 1965: 184~220
    39 B. Brezoczky, H. Seki. Triboattraction: Friction under Negative Load. Langmuir. 1990, 6(6): 1141~1148
    40 M. Couto, W.J.P. van Enckevort, M. Seal, et al. Scanning Tunneling Microscopy of Polished Diamond Surfaces. Applied Surface Science. 1992, 62(4): 263~268
    41 M. Couto, W.J.P. van Enckevort, M. Seal, et al. On the Mechanism of Diamond Polishing in the Soft Directions. Journal of Hard Materials. 1994, 5(2): 31~47
    42 F.M. van Bouwelen. Mechanically Induced Degradation of Diamond. PhD Thesis, University of Cambridge, 1996
    43 S.E. Grillo, J.E. Field and F.M. van Bouwelen. Diamond polishing: the Dependency of Friction and Wear on Load and Crystal Orientation. Journal of Physics D: Applied Physics. 2000, (33): 985~990
    44 S.E. Grillo, J.E. Field. The Polishing of Diamond. Journal of Physics D: Applied Physics. 1997, (30): 202~209
    45 Y.G. Gogotsi, A. Kailer and K. Nickel. Pressure-induced Phase Transformations in Diamond. Journal of Applied Physics. 1998, 84(3): 1299~1304
    46 M.R. Jarvis, R. Pérez, F.M. van Bouwelen, et al. Microscopic Mechanism for Mechanical Polishing of Diamond (110) Surfaces. Physical Review Letters. 1998, 80(16): 3428~3431
    47 F.M. van Bouwelen, W.J.P. van Enckevort. A Simple Model to Describe the Anisotropy of Diamond Polishing. Diamond and Related Materials. 1999, (8): 840~844
    48 Y.G. Gogotsi, A. Kailer and K. Nickel. Transformation of Diamond to Graphite. Nature. 1999, (401): 663~664
    49 V. Blank, M. Popov, G. Pivovarov, et al. Mechanical Properties of Different Types of Diamond. Diamond and Related Materials. 1999, (8): 1531~1535
    50 F.M. van Bouwelen. Diamond Polishing from Different Angles. Diamond and Related Materials. 2000, (9): 925~928
    51 J.R. Hird. The Polishing of Diamond. PhD Thesis, University of Cambridge, 2002
    52 K. Nakayama, M. Arai and X.D. Wang. Evaluation of Cutting Edge Sharpness by Transcribing the Edge on Thin Wire. Journal of the Japan Society for Precision Engineering (Japanese). 1989, 55(12): 2261~2266
    53 A. Lucca, Y.W. Seo and R. Komanduri. Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining. Annals of the CIRP. 1993, 42(1): 83~86
    54唐文彦.利用散射光测量有椭圆形刃口的金刚石刀具锋利度的原理.仪器仪表学报. 1994, 15(3): 229~234
    55 X.P. Li, M. Rahman, K. Liu, et al. Nano-precision Measurement of Diamond Tool Edge Radius for Wafer Fabrication. Journal of Materials Processing Technology. 2003, (140): 358~362
    56孙涛,谭久彬,董申.天然金刚石刀具的研磨及其切削刃钝圆半径检测技术.制造技术与机床. 1998, (8): 24~26
    57孙涛,谭久彬,董申.基于原子力显微镜扫描的金刚石刀具纳米刃口轮廓测量方法研究.仪器仪表学报. 2000, 21(3): 54~57
    58孙涛,谭久彬,董申.用原子力显微镜扫描测量金刚石刀具刃口半径.工具技术. 1999, 33(1): 30~32
    59田春林.固着磨粒高速研磨机理及工件表面质量的研究.长春:长春理工大学博士论文. 2005: 1~21
    60杨建东,田春林.高速研磨技术.北京:国防工业出版社, 2003: 1~75
    61李伯民,赵波.现代磨削技术.北京:机械工业出版社, 2003:1~60
    62 [美]S. Malkin.磨削技术理论与应用.蔡光起,巩亚东,宋贵亮译.沈阳:东北大学出版社, 2002: 1~59
    63谭美田.金属切削微观研究.上海:上海科学技术出版社, 1988: 1~80
    64仇启源,庞思勤.现代金属切削技术.北京:机械工业出版社, 1992: 1~55
    65 Y. Ohbuchi, T. Obikawa. Finite Element Modeling of Chip Formation in the Domain of Negative Rack Angle Cutting. Transactions of the ASME. 2003, (125): 324~332
    66 G. Warnecke, U. Zitt. Kinematic Simulation for Analyzing and Predicting High-performance Grinding Processes. CIRP Annals-Manufacturing Technology. 1998, 47 (1): 265~270
    67陈勇平,唐进元.磨削加工过程建模的研究进展.制造技术与机床. 2007, (1): 44~48
    68林滨,韩雪松,于思远等.纳米磨削过程中分子动力学计算仿真实验.天津大学学报. 2000, 33(5): 652~656
    69 D.C. Rapaport. The Art of Molecular Dynamics Simulation. England: Cambridge University Press, 2004: 1~200
    70 Y.D. Yan, T. Sun, S. Dong, et al. Molecular Dynamics Simulation of Processing Using AFM Pin Tool. Applied Surface Science. 2006, (252): 7523~7531
    71 I. Zarudi, W.C.D Cheong, J. Zou, et al. Atomistic Structure of Monocrystalline Silicon in Surface Nano-modification. Nanotechnology. 2004, (15): 104~107
    72唐玉兰.基于分子动力学单晶材料纳米切削过程及相关技术的研究.哈尔滨:哈尔滨工业大学博士学位论文, 2004
    73 K. Maekawa, A. Itoh. Friction and Tool Wear in Nano-scale Machining—a Molecular Dynamics. Wear. 1995, (188): 115~122
    74 Y.Y. Ye, R. Biswas, J.R. Morris, et al. Molecular Dynamics Simulation of Nanoscale Machining of Copper. Nanotechnology. 2003, (14): 390~396
    75 K. Cheng, X.C. Luo, R. Ward, et al. Modeling and Simulation of the Tool Wear in Nanometric Cutting. Wear. 2003, (255): 1427~1432
    76 J. Shimizu, L.B. Zhou and H. Eda. Simulation and Experimental Analysis of Super High-Speed Grinding of Ductile Materials. Journal of Materials Processing Technology. 2002, 129: 19~24
    77 Y.S. Kim, S.H. Yang, C.I. Kim, et al. Molecular Dynamics Simulation of AFM-based Nano Lithography Process for Fabrication of MEMS Components. Materials Science Forum. 2003, 426-432(3): 2243~2248
    78 D. Mulliah, S.D. Kenny, R. Smith, et al. Molecular Dynamic Simulations of Nanoscratching of Silver (100). Nanotechnolgoy. 2004, (15): 243~249
    79 B.J. Alder, T.E. Wainwright. Phase Transition in Elastic Disks. Physical Reviews. 1962, (127): 359~361
    80 L.A. Girifalco, V.G. Weizer. Application of the Morse Potential Function to Cubic Metals. Phys. Rev. B. 1959, 114(3): 687~693
    81 M.S. Daw, M.I. Baskes. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Phy. Rev. Lett. 1983, 50(17): 1285~1288
    82 J. Tersoff. Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon. Phy. Rev. Lett. 1988, 61(25): 2879~2882
    83 S.J. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comp Phys. 1995, 117: 1~19
    84 W. Humphrey, A. Dalke and K. Schulten. VMD: Visual Molecular Dynamics. J. Molec. Graphics. 1996, (14): 33~38
    85闫永达.基于AFM的纳米加工机理及相关工艺技术研究.哈尔滨:哈尔滨工业大学博士学位论文, 2006
    86杨小震.分子模拟与高分子材料.北京:科学出版社. 2002: 1~50
    87 [荷] S. Frenkel, B. Smit.分子模拟—从算法到应用.汪文川译.北京:化学工业出版社. 1995: 1~101
    88 Y.D. Yan, S. Dong and T. Sun. Investigation on Influencing Factors of AFMMicro Probe Nanomachining. Materials Science Forum. 2004, 471-472: 816~820
    89 Y.D. Yan, S.Dong and T. Sun. 3D Force Components Measurement in AFM Scratching Tests. Ultramicroscopy. 2005, (105), 62~71
    90王超群,康敏.超声波加工工艺的材料去除率建模及试验研究.机床与液压. 2006, (12):18~23
    91 [美]F.R. Giordano, M.D. Weir, W.P. Fox.数学建模(原书第3版).叶其孝,姜启源等译.北京:机械工业出版社, 2005:1~186
    92侯珍秀.机械系统设计.哈尔滨:哈尔滨工业大学出版社, 2000: 1~125
    93李圣怡,戴一帆,尹自强.精密和超精密机床精度建模技术.长沙:国防科技大学出版社, 2007: 1~178
    94 V.S.B. Kiridena, P.M. Ferreira. Kinematic Modeling of Quasistatic Errors of Three-axis Machining Centers. International Journal of Machine Tools & Manufacture. 1994, (34): 85~1145
    95 M. Rahman, J. Heikkala and K. Lappalainen. Modeling, Measurement and Error Compensation of Multi-axis Machine Tools. PartⅠ: Theory. International Journal of Machine Tools & Manufacture. 2000, (40): 1535~1546
    96 D.J. Whitehouse. Across Convolution– a Proposed Surface System Operator.纳米技术与精密工程. 2006, 4(3): 167~175
    97栗时平,李圣怡,王贵林.基于空间误差模型的加工中心几何误差辨识方法.机械工程学报. 2002, 7(38): 121~125
    98栗时平,李圣怡,王贵林.三轴机械几何误差辨识新方法的研究.中国机械工程学报. 2002, 13(21): 1818~1820
    99栗时平,李圣怡,王贵林.基于鞍点规划法的形位误差计算机评定.计量学报. 2002, 24(1): 26~28
    100栗时平.多轴数控机床精度建模与误差补偿方法研究.长沙:国防科技大学博士学位论文, 2002
    101康念辉.大中型非球面磨削成型的理论与实验研究.长沙:国防科技大学博士学位论文, 2004
    102 [英]J.W. Powell.空气静压轴承设计.丁维刚,林向群译.北京:国防工业出版社, 1978
    103 D.L. Martin, A.N. Tabenkin and F.G. Parsons. Precision Spindle and BearingError Analysis. International Journal of Machine Tools & Manufacture. 1995, (2): 187~193
    104 G. Abadal, F.P. Murano, N. Barniol, et al. Field Induced Oxidation of Silicon by SPM: Study of the Mechanism at Negative Sample Voltage by STM, ESTM and AFM. Appl. Phys. 1998, 66 (A): 791~795
    105 J.Q. Song, Z.F. Liu, C.Z. Li, et al. SPM-Based Nanofabrication Using a Synchronization Technique. Appl. Phys. 1998, A66(S715): 1247~1251
    106 T.H. Fang, W.J. Chang. Effects of AFM-based Nanomachining Process on Aluminum Surface. Journal of Physics and Chemistry of Solids. 2003, 64: 913~918
    107 T.F. Fang, C.I. Weng and J.G. Chang. Machining Characterization of the Nano-lithography Process Using Atomic Force Microscopy. Nanotechnology, 2000, 11: 181~187
    108闫永达,孙涛,董申等.基于SPM的纳米加工技术研究进展.机械工程学报. 2003, 39(9): 38~43
    109闫永达,孙涛,董申.利用AFM探针机械刻划方法加工微纳米结构.传感技术学报. 2006, 19(5): 1451~1454
    110 T. Sun, Y.D. Yan, D.Z. Gao, et al. Processing Technique of Target Capsule’s Micro Inflation Hole with the Scanning Probe. Science in China (Series E Technological Science). 2004, 47(1): 77~84
    111王明佳,张旭光,王延杰.利用广义霍夫变换对相交目标进行轨迹预测.光学技术. 2006, 32(2): 428~433
    112 C.M. Shakarji. Least-squares Fitting Algorithms of the Nist Algorithm Testing System. Journal of Research of the National Institute of Standards and Technology. 1998, 103(6): 633~641
    113 W. Gander, G.H. Golub and R. Strebel. Least-squares Fitting of Circles and Ellipses. BIT Numerical Mathematics. 1994, (34): 558~578
    114 R.L. Mceachern, C.E. Moore, and R.J. Wallace. The Design, Performance, and Application of an Atomic Force Microscope-based Profilometer. J. Vac. Sci. Technol. A. 1995, (13): 893~989
    115 X.S. Zhao, T. Sun, Y.D. Yan, et al. The Measurement of Roundness and Sphericity of the Micro Sphere Based on Atomic Force Microscope. Key Engineering Materials. 2006, 315-316: 796~799
    116孙涛,高党忠,唐永建等.激光核聚变靶表面几何参数扫描探针测量技术.原子能科学技术. 2002, 36(4/5): 361~363
    117孙涛. SPM在ICF玻璃微球靶加工和形貌测量技术中的应用.中国工程物理研究院博士后出站报告. 2003: 31~54
    118赵学森.激光靶丸表面几何状态的测量系统及评价方法研究.哈尔滨:哈尔滨工业大学博士学位论文, 2007
    119朱训生,王超.各种球度测量方法的分析与展望.机械制造. 2003, 41(9): 34~36
    120 T.R. Murthy. Evaluation of Spherical Surface. Wear. 1979, 57: 167~184
    121 J.A. Lipa, G.J. Siddal. High Precision Measurement of Gyro Rotor Sphericity. Precision Engineering. 1980, 2(3): 26~12
    122谭静,任粉梅,温秀兰.球度误差及其评定方法综述.计量与测试技术. 2004, 31(1): 10~11
    123温秀兰,宋爱国.基于免疫进化计算的球度误差评定.计量学报. 2005, 26(1): 12~15
    124 L. Zhu, Y. Ding and H. Ding. Algorithm for Spatial Straightness Evaluation Using Theories of Linear Complex Chebyshev Approximation and Semi-Infinite Linear Programming. Journal of manufacturing science and engineering. 2006, 128(1): 167~174
    125刘元朋,张定华,桂元坤等.用带约束的最小二乘法拟合平面圆曲线.计算机辅助设计与图形学学报. 2004, 16(10): 1382~1385
    126刘珂,周富强,张广军.半径约束最小二乘圆拟合方法及其误差分析.光电子·激光. 2006, 17(5): 604~607
    127 A. Fitsgibbon, M. Pilu and R.B. Fisher. Direct Least-square Fitting of Ellipse. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(5): 476~480.
    128 C.M. Shakarji. Least-squares Fitting Algorithms of the NIST Algorithm Testing System. Journal of Research of the National Institute of Standards and Technology. 1998, 103(6): 633~641
    129 D. Sun. A Regularization Newton Method for Solving Nonlinear Complementarity Problems. Appl. Math. Optim. 1999, 40 (3): 315~339
    130 D.Q. Li. A New SQP-filter Method for Solving Nonlinear Programming Problems. Journal of Computational Mathematics. 2006, 24(5): 609~634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700