TN85金属陶瓷球面偶件ELID超精密磨削技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiC系金属陶瓷材料具有优良的耐磨、耐氧化、耐腐蚀和力学性能,除了成功应用于刀具材料外,还可应用于拉丝模、各类发动机的高温部件及石化工业中各类密封件。TN85金属陶瓷是一种以镍基合金做为粘结剂,以难熔金属碳化物TiC、WC作为硬质相的复合材料。由于具备高硬度、高韧性、高抗弯强度、高耐磨损性能,在一些耐腐蚀、耐磨损等领域有广泛的应用前景。目前关于金属陶瓷的研究热点集中于烧结制备技术及面向应用的摩擦磨损性能、刀具切削性能等方面,而金属陶瓷实用化的超精密加工机理及技术的研究相对较少。因此探索金属陶瓷超精密加工技术及机理,促进其实用化变得日益紧迫和重要。现有的许多加工方法受到加工条件的限制而不能应用于具有小曲率半径凹球面偶件的超精密加工,因此小曲率半径的凹球面偶件超精密加工是目前加工所面临的重要难题。开发新型的适用于小曲率半径的凹球面偶件超精密加工方法有着重要的意义。
     ELID(Electrolytic in process dressing)磨削技术是超精密磨削新技术。本文针对TN85金属陶瓷难加工材料进行小曲率半径凹球面加工而采用的无专用修整电极ELID磨削技术是一种新的加工方法,属于探索性的基础研究工作。具体研究内容包括:
     综述了国内外关于金属陶瓷磨削去除机理,金属陶瓷磨削去除基础实验研究,ELID磨削技术和球面工件加工的研究现状和存在的问题,提出了本文的TN85金属陶瓷小球面偶件无专用电极ELID超精密磨削的研究内容。
     首先针对TN85金属陶瓷磨削去除机理进行了研究。在TN85金属陶瓷磨削去除中,由于TN85金属陶瓷本身的材料组成特点而形成了TN85金属陶瓷磨削过程中的微浮凸机理,由于这一磨削机理的存在使得许多加工方法达到超精密水平变得极为困难,而ELID磨削技术却能保证实现材料的软硬质相接近“均一化”去除;其次分析了TN85金属陶瓷材料的组成特点和磨削去除过程,在此基础上进行了压痕试验研究和单颗粒金刚石刻划试验研究,最后根据压痕和刻划试验所得到的材料硬度特性和刻划去除特点建立了TN85金属陶瓷磨削的去除模型。
     通过TN85金属陶瓷磨削试验后的表面微观形貌分析,对去除模型进行了验证;并在TN85金属陶瓷磨削去除机理研究基础上,进行微粉金刚石砂轮磨削去除基础试验研究,通过试验研究磨削去除过程,进一步解释验证了TN85金属陶瓷材料的磨削去除机制。
     在分析传统ELID磨削、间歇电解修锐ELID磨削、以工件做电极ELID磨削的原理基础上提出采用无专用修整电极ELID磨削技术方案磨削TN85金属陶瓷小球面偶件。针对无专用修整电极ELID磨削技术进行相关的基础性试验研究和凹球面工件做修整电极的应用性研究,研究结果证实了无专用修整电极ELID磨削技术在小球面偶件的超精密磨削中的可行性,为后续的进一步应用研究奠定了基础。
     针对TN85金属陶瓷小球面偶件无专用修整电极ELID超精密磨削技术中的两个关键技术指标:球面度和表面粗糙度的影响因素进行分析。研究结果表明:机床安装调整精度是磨削球面球度误差和球径误差的主要影响因素来源,而磨削采用的铸铁基微粉金刚石砂轮的磨粒粒度和结合剂种类则是表面粗糙度的主要影响因素。误差分析的结果为后续的小球面偶件超精密磨削技术的推广应用奠定了基础。最后,以工件兼做修整电极的间歇ELID磨削直径为12mmTN85金属陶瓷凹球面后粗糙度值Ra23.4nm。
TiC cermets have excellent wear resistance, oxidation resistance, corrosion resistance and mechanical properties. It is not only used as tool materials successfully, but also can be applied in drawing mode, various engine parts under high-temperature and seals in petrochemical industry. TN85 cermets is one kind of composites, in which nickel alloy is binder and the hard phase is TiC, WC. TN85 with the excellent high hardness, high toughness, high bending strength, good wear resistance has a good extensive application prospect in corrosion and wear areas.
     At present, the research of metal-ceramic is focus on the sintering technology and the application-oriented friction and wear properties, however there is less research on ultra-precision machining mechanism and technology of cermets. So the research on the technology and ultra-precision machining mechanism of cermets is becoming increasingly urgent and important. Most of the existing processing methods can not be applied to the ultra-precision machining for the matching parts with small curvature radius concave spherical surface by limit of process conditions, therefore it is an important problem that the ultra-precision machining for the matching parts with small curvature radius concave spherical surface. It has the important significance for the development of new the ultra-precision machining technology for the matching parts with small curvature radius concave spherical surface.
     ELID (Electrolytic in process dressing) grinding technology with simple installation, low cost, portability and good features is the key technology to of ultra-precision grinding, and it has been studied in many countries extensively. In this paper, ELID grinding of non-specific electrode technique is a new method for TN85 cermets to machining small curvature radius concave spherical surface. It is an exploratory research, and this specific study includes:
     The general status of grinding removal mechanism for cermets, the experimental study of grinding removal for cermets, ELID (Electrolytic in process dressing) grinding technology and in both domestic and overseas is reviewed. ELID grinding without special electrode for the matching parts with small curvature radius concave spherical surface is developed.
     The grinding removal mechanism for cermets has been studied. During the process of the removal of TN85 cermets, the embossed mechanism is formed by material composition characteristics of TN85 cermets. It is difficult to achieve the ultra-precision level for most of the existing processing methods because of the embossed mechanism, however, the "uniform" removal of soft and hard phase can be realized by ELID grinding technique.
     The composition characteristics of TN85 cermets and the process of grinding removal are studied, and the removal model of TN85 cermets during grinding is developed. At last, the model is validated by the analysis of the surface micro-morphology of TN85 cermets after grinding. On the basis of the grinding removal mechanism of TN85 cermets, the basic study of the Indentation experiments, the characterization experiments of single-particle diamond and the grinding removal mechanism of micro power diamond grinding wheel has been conducted. Through basic experimental research, the hardness material properties and the characteristics of material grinding removal, the grinding removal mechanism of TN85 cermets has been verified and interprted.
     On the basis of the analysis of traditional ELID Grinding, ELID grinding intermittent electrolytic dressing, ELID grinding uses workpiece as dressing electrode, ELID grinding technique without special electrode is proposed to grind the matching parts with small curvature radius concave spherical surface. The study of the ELID grinding technique without special electrode is conducted, and the applied research on grinding experiments in which concave spherical parts is used as dressing electrode. The feasibility of ELID grinding technique without special electrode on the grinding of the matching parts with small curvature radius concave spherical surface is confirmed by above research, and it is the basis of the further applied research.
     The effects on both spherical degree and surface roughness in the ELID grinding technique without special electrode for the matching parts with small curvature radius concave spherical surface by two processing parameters. The results show that: The installation and adjustment precision of grinding machine is the main factor for spherical degree error and spherical diameter error, and the Granularity of micro power diamond grinding wheel cast iron base and the species of the bond is the main factor for surface roughness. The basis of follow-up popularization and application of the ultra-precision machining for particle reinforced metal matrix composites has been set up by the error analysis. The concave spherical surface of the TN85 cermets workpiece, the diameter of which is 12mm, is machining by intermittent ELID grinding use workpiece as dressing electrode, and after grinding the roughness Ra is 23.4nm.
引文
1袁哲俊,王先逵.精密和超精密加工技术.机械工业出版社. 1999: 10~40
    2 P. A. Mckeown. The Role of Precision Engineering in Manufacturing of the Future. Annals of the CIRP. 1987, 36 (2): 495~501
    3 Y. Namba, M. Abe. Ultra-precision Grinding of OpTiCal Glasses to Produce Super-Smooth Surfaces. Annals of the CIRP. 1993, 42 (1): 417~420
    4于思远,林滨等.国内外先进陶瓷材料加工技术的进展.金刚石与磨料磨具工程. 2001, 4: 66~71
    5 TN85一种新型硬质合金材料的投产. http://www.cnsaw.cn/Tech/Detail 4690. html. 2007
    6潘立,张国林,王磊,谢伟东.陶瓷磨削技术的研究进展.浙江工业大学学报. 2003, 31(6): 641~646
    7苏志强.浅谈特种陶瓷材料磨削加工技术的现状及方法.民营科技. 2007, 9: 33~34
    8荣春兰,刘宁,章晓波,周军,卢茂华.硬质材料中调幅分解的研究展望.硬质合金. 2006, 23(1): 42~46
    9张红芹.粘结相对Ti(C, N)基金属陶瓷组织和切削性能的影响.合肥工业大学硕士学位论文. 2009:1~2
    10李秀兵,方亮,高义民等. WCp增强钢基复合材料的三体磨损性能.铸造技术. 2007, 28(3): 316~318
    11何林,黄传真,刘玉先,孙静. Ti(C,N)基金属陶瓷的力学性能与显微结构的研究.硅酸盐学报. 2003, 31(3): 324~328
    12姜典保. TiC颗粒和TiB2增强复合耐磨堆焊层的制备.吉林大学硕士论文. 2007: 6~7
    13 Zhang B, Zheng X L, Tokura H, et al. Grinding induced damage in ceramics. Journal of Material Processing Technology. 2002, 132: 353~364
    14 D. Djurdjanovic, J. Ni, J. Lee. Time-Frequency Based Sensor Fusion in the Assessment and Monitoring of Machine Performance Degradation. Intnational Mechanical Engineering. Congress and Exposition, paper number IMECE 2002~ 2032
    15周志平,刘劲松.高温结构陶瓷的磨削去除机理及磨削加工技术.工具技术. 2004, 28(8): 71~75
    16 Kathryn V. Johnson. Integration and implementation of a watchdog agent toolbox for performance assessment of machinery systems. Master thesis of university of Michigan, 2005: 450~455
    17 Lawn,B.R. Fracture of Brittle Solids. Cambridge University Press: 2nd Editions, 1993: 249~306
    18周志雄,熊志庆.陶瓷材料磨削裂纹成因分析.机械设计与制造. 2005, (5): 108~109
    19 Zhang B., Yokura H., Yoshikawa M., Study on Surface Cracking of Alumina Scratched by Single-point Diamond. J.Mater.Sci. 1988, 23: 3214~3224
    20王随莲.高性能金属陶瓷刀具材料的研制及其切削性能研究.山东大学博士学位论文. 2005: 81~87
    21庄司克雄.研削加工技術の课题と与最新技術动向.機械と工具. 1997, 5: 10~16
    22武野仲胜. EMOにみ为最新技術动向-研削加工の芯时代を筑く.機械と具. 1995, 8: 82~87
    23森勇藏.次世代を担ぅ原子.电子しミノしの先端技術.精密工学会誌. 1996, 62(6): 766~772
    24难波义治.有機非线性光学晶体の精密研削.精密工学会誌. 1995, 61(6): 841~818
    25田中克敏.電子部件の超精密研削.機械技術. 1990, 3: 36~42
    26井川直哉.最近超精密加工技術發展到了何处. M&E. 1994, 3: 98~107
    27吴琦.高硬度回转球面精密磨削的基础研究.上海交通大学博士学位论文. 2007: 7~8
    28沈剑云.结构陶瓷磨削机理与热特性分析.天津大学博士学位论文. 2003:
    66~71
    29于思远,林彬,林滨等.工程陶瓷超精密磨削表面质量的研究.金刚石与磨料磨具工程. 2002, 131(5): 12~16
    30潘洪平,梁迎春,董申.陶瓷材料加工技术发展概况.工具技术. 1999, (4):
    3~6
    31柯宏发,张耀辉,赵燕.陶瓷半延展性磨削试验研究.金刚石与磨粒磨具工程. 1998, 103(1): 32~36
    32李向东.金刚石砂轮磨削参数对陶瓷加工表面粗糙度影响的研究.天津大学硕士学位论文. 2003: 32~35
    33张飞虎,仇中军,杨永山.应用ELID磨削技术进行高效磨削.机械工人. 2003, (9): 44~45
    34仇中君.硬脆材料精密磨削技术及实验研究.哈尔滨工业大学硕士学位论文. 1999: 9~15
    35仇中君,张飞虎,栾殿荣,高东宇.不同结合剂金刚石砂轮磨削氧化铝陶瓷工艺实验研究.金刚石与磨料磨具工程. 2000, (6): 25~27
    36陈明君.超精密非球面磨削技术的研究.哈尔滨工业大学博士论文. 2001: 46~59
    37铁瑛,赵波,张波,樊全堂.工程陶瓷材料精密磨削加工技术的新发展.焦作工学院学报. 2003, 22(3): 217~220
    38邓朝晖.纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究.湖南大学博士学位论文. 2004: 101~109
    39 Ling Yin, E. Y. J. Vancoille, L. C. Lee, H. Huang, et al. High-quality grinding of polycrystalline silicon carbide spherical surfaces. Wear. 2004, 256: 97~207
    40纳米尔,林滨,关强,于思远.几种工程陶瓷的延性域磨削.天津大学学报. 1999, 32(4): 486~491
    41任敬心,康仁科,黄奇.工程陶瓷磨削的微观研究.磨料磨具与磨削. 1993, 78 (6): 12~16, 20
    42田欣利,于爱兵.工程陶瓷加工的理论与技术.国防工业出版社. 2006: 152~168
    43郭成,原所先,蔡光起.金刚石砂轮磨削Al2O3-Mo金属陶瓷的试验研究.金刚石与磨料磨具工程. 1999, 112 (4): 16~18
    44王生力,原所先,蔡光起,郑焕文.电解磨削金属陶瓷的试验研究.机械工艺师. 1990, 12: 9~10
    45蔡光起,原所先,王生力. Al2O3-Mo金属陶瓷磨削的试验研究和机理分析.磨料磨具与磨削. 1990, 60(6) : 2~7
    46 Xu H., Huang K., Jahamir S.. Microstructure and Material Removal in Scratching of Alumina. J Mater Sci. 1995, 30: 2235~2247
    47 Mingjun Chen, Qingliang Zhao, Shen Dong, Dan Li. The criTiCal conditions of brittle-ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding. Journal of Material ProcessingTechnology. 2005, 168(1): 75~82
    48鲍雨梅.一种陶瓷材料表面/亚表面损伤表征方法及其在磨削损伤检测中的应用.浙江工业大学博士学位论文. 2009: 52~58
    49于爱兵,田欣利,韩建华,林彬,刘家臣.应用压痕断裂力学分析陶瓷材料的磨削加工.硅酸盐通报. 2002, (1): 58~61
    50 K.赫尔曼.压痕测试法的新发展.中国计量学院学报. 2006, 3(17): 173~177, 187
    51张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展. 2002, 32(3): 349~364
    52刘美华,王静,王东爱.对压痕硬度试验方法的分析研究.工程塑料应用. 2005, 33(7): 39~42
    53 Weimin LIN, Hitoshi OHMORI. Electrode-less ELID Grinding on Die and Mould Material. ELID研削研究会报. 30: 98~103
    54 Jun Qian, Wei Li, Hitoshi Ohmori. Precision internal grinding with a metal-bonded diamond grinding wheel. Journal of Materials Processing Technology. 2000, (8): 216~228
    55朴承镐,蔡立.轨迹成形法加工球面光学零件新原理的研究.长春光学精密机械学院学报. 1998, 21(2): 1~5
    56刘允环,郭永丰,刘晋春.电火花加工精密凹凸球面的新方法.机械工程师. 1994, (2): 33~34
    57沈阳高中压阀门厂.阀门制造工艺.机械工业出版社. 1984: 199~209
    58谢代田.标定用球体加工方法.机械制造. 1995, (5):27~28
    59刘元林,刘兴,刘元柱,麻晓红.球体加工方法的研究与应用.煤矿机械. 2000, (4): 31~32
    60任舒宪.大型回转曲面的坐标加工法.机械制造. 1994, (11): 17~18
    61曲恒剑.用经济型数控车床车球体的简易方法.机械工人(冷加工). 2002, (5): 52
    62郑文虎. SR460mm球面副的磨削加工.铁道机车车辆工人. 1994, (3): 1~3
    63杨铁昭.球阀球面的磨削加工.机械工艺师. 1997, (12): 32
    64牟仲德.一种实用简便的球面磨削方法.工具技术. 2005, 39 (12): 15~19
    65左宏.球面滚压加工.现代制造工程. 2003, (12): 112~113
    66王德拥译.球阀球体的滚压加工及专用机床.阀门. 1995, (3): 30~32
    67许铁城.可提高球阀加工效率的制造方法及其装置.申请专利号(中国):96100007.4
    68邱张素月.球阀阀体的制造方法.申请专利号(中国): 02109682.1
    69杨安生,杨文安.一种超硬密封球阀的加工方法.申请专利号(中国): 200310119180.7
    70孔伟时.工程陶瓷的磨削机理和磨削模型.机械工人. 2003, (2): 20~22
    71 Olympus Optical Co. Ltd. Spherical lens grinding device-uses pair of cup type grinding wheels mounted on two independent spindles positioned at opposite sides of lens. Patent Number: JP8132341-A
    72 Arai, Kazuhisa. Apparatus for grinding spherical objects. Pat. No: 6358132(US)
    73大森整,銭軍,李偉.電極レスELID研削による円筒内面仕上げ方式と効果.砥粒加工学会誌. 1999, 43(12): 557~558.
    74郭建強,大森整,林偉民.電極レスマイクロELID研削の効果.精密工学会大会学術講演会講演論文集. 2000: 542
    75浅見.デスクトップマシンツールにおける電極レスELID研削システムの開発. 2004年度砥粒加工学会学術講演会(ABTEC2004)講演論文集. 2004, 9
    76张春河,袁哲俊,张飞虎,王平,大森整.在线电解修整(ELID)超精密镜面磨削的影响因素初探.金刚石与磨料磨具工程. 1996, 93(3): 68~72
    77张春河,王平,张飞虎,袁哲俊,韩荣久. ELID超精密镜面磨削在平面磨床上的实现.航空精密制造技术. 1995, 31 (4): 39~41
    78 Qian Jun, Ohmori Hitoshi. Internal mirror grinding with a metal/metal-resin bonded abrasive wheel. International Journal of Machine Tools and Manufacture. 2001, 41(2): 193~208
    79 Jun Qian, Hitoshi Ohmori, Weimin Lin. Internal mirror grinding with a metal/metal-resin bonded abrasive wheel. International Journal of Machine Tools & Manufacture 2001, 41: 193~208
    80 Martens A. Handbuch der Materialienkunde. Berlin: Springer ,1998: 24~38
    81霍守锋.工程陶瓷的超精密磨削机理与实验研究.河北工业大学硕士学位论文. 2003: 31~37
    82刘子旭.陶瓷磨削机理.磨床与磨削. 1998, (1): 36~42.
    83 X. Liu, V. Piotter. Mapping micro-mechanical properties of carbon-filled polymer composites by TPM. J. Precision Engineering, 2007, 31(2): 162~168
    84董允,林晓娉,邵荷生. Ni-W-Co/SiC复合材料磨损特性与磨损机制.摩擦学学报. 1999, 19(1): 12~17
    85 K. D. Bouzakis, N. Michailidis. Coating elastic–plastic properties determined by means of nanoindentations and FEM-supported evaluation algorithms. Proceedings of the 31st International Conference on Metallurgical Coatings and Thin Films. 2004, 469-470: 227~232
    86章晓波.细晶粒Ti(C, N)基金属陶瓷组织与性能研究.合肥工业大学博士论文. 2008: 15~18
    87叶景风.硬质相原料尺寸对金属陶瓷组织与性能的影响.合肥工业大学硕士论文. 2006: 6~32
    88王平,唐一平,张飞虎,袁哲俊,韩荣久. TiC系钢结硬质合金镜面微浮凸磨削机理的研究.西安交通大学学报. 1998, 32(5): 83~86
    89杨晓红.添加相对CuW合金组织与性能的影响.西安理工大学硕士论文. 2006: 16
    90王云.陶瓷的硬度及测定方法.佛山陶瓷. 1999, 2: 39~42
    91龚江宏,赵喆,吴建军,关振铎.陶瓷材料Vickers硬度的压痕尺寸效应.硅酸盐学报. 1999, 27(6): 693~700
    92贠自明.金刚石钎焊砂轮磨削工程陶瓷的试验研究.南京航空航天大学硕士论文. 2007: 36~42
    93匡仁军.铝复合材料SiCp/Al窄槽磨削技术研究.哈尔滨工业大学硕士论文2006: 28~29
    94 J. Monaghan, D. Brazil, Modelling the flow processes of aparticle reinforced metal matrix composite during machining. Composites Part A. 1998, 29A, 87~99
    95 H. S. Lim. A fundamental study on the mechanism of electrolytic in-process dressing(ELID) grinding. International Journal of Machine Tools &Manufacture. 2002, 42: 935~943
    96 K. Katahira. ELID grinding characteristics and surface modifying effects of aluminum nitride(AlN) ceramics. International Journal of Machine Tools & Manufacture. 2005, 45, 891~896
    97张飞虎,袁哲俊,张春河,王平.硬脆材料超精密镜面磨削的研究.机械工艺师. 1997, (10): 2~4
    98张春河,张飞虎,王平,李伟.一种新的nm级磨削加工技术及应用.仪器仪表学报. 1995, 16(1): 157~161
    99 Ohmori Hitoshi. Ultra-precision Grinding of Optical Materials and Components Applying ELID. The International Society for Optical Engineering. 1995, (11):26~45
    100周曙光,关佳亮,郭东明,袁哲俊. ELID镜面磨削技术—综述.制造技术与机床. 2001, (2): 56~63
    101肖强,朱育权,王丽君. ELID磨削试验电解参数对光学玻璃表面质量的影响研究.表面技术. 2006, (4): 85~91
    102龚庆寿,宁立伟,黄菊生,吴安如,黎小辉. ELID精密镜面磨削技术及其应用研究.湖南工程学院院报. 2003, (9): 48~52
    103 Hitoshi Ohmori, Electrolytic In-process Dressing(ELID) Grinding Technique for Ultra-precision Mirror Surface Machining. Journal of JSPE. 1992, 26(4): 54~57
    104 Chunhe Zhang, Hitoshi Ohmori, Wei Li. Small-hole machining of ceramic material with electrolytic interval-dressing(ELID-II) grinding. Journal of Materials Processing Technology. 2000, 105, 284~293
    105朱波.谢大纲.卢泽生.袁哲俊.于海波.金属基结合剂超硬砂轮的电火花修整.工具技术. 2000, 34 (2): 19~21
    106滕燕,董申.铸铁基金刚石球头砂轮精密修整技术.制造技术与机床. 2001, (11): 24~26
    107王振桃,张萍.球面偶件的展成磨削.液压气动与密封. 2002, (1): 43~47
    108周自力.球面磨削的探讨.制造·材料. 2002, 452 (40): 42~43
    109乔城秦.球面加工误差分析.机械制造. 1991, (9): 65~67
    110杨力.球面范成法成形一般原理及范成表面形状精度分析.光学学报. 1981, 1(3): 64~77
    111上海光学元件厂联合实验组.“范成法”高速抛光工艺总结.仪表技术与传感器. 1972, (2):112~125
    112滕燕,盖玉先,董申.超精密磨削中的超硬砂轮修整技术.航空精密制造技术. 2000, 36(1): 17~20
    113张飞虎,康桂文,罗辉.金属基圆弧成形砂轮的电火花修整.航空精密制造技术. 2005, 41(6): 1~7
    114龚江宏.陶瓷材料断裂力学.清华大学出版社. 2001: 125~162
    115李丹,张永胜,周惠娣,陈建敏. MoSi2增强镍基合金复合材料的摩擦磨损性能研究.摩擦学学报. 2007, 27(4): 336~340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700