微纳器件中近场热辐射现象及其测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近场热辐射是当前国内外的一个研究热点。研究微纳器件中的近场热辐射对提高器件的绝热性能和开发新型器件都有重要的意义。本文开展了对微纳器件中近场热辐射现象及其测试技术的研究,并通过研制微纳米间隙分隔的、自对准的双层悬空微热板新型器件(简称双微热板器件),实现了平行二氧化硅(Si02)平板间近场辐射传热的实验测量。本文内容涵盖了对微纳器件中近场热辐射的理论研究,双微热板器件的设计和制作、双微热板器件的特性参数测试及其近场辐射传热的实验测量。
     首先,进行了微纳器件中近场热辐射的理论研究,并建立了实验模型。利用涨落耗散原理描述物质内部的涨落电流,利用格林函数法求解频域麦克斯韦方程,得到涨落电流辐射的电磁场,通过计算电磁场坡印廷矢量的系综平均值,给出了平行平板间辐射传热的计算方法。在此基础上,建立了平行Si02平板间近场辐射传热的实验模型,获得了Si02平板间距在1μm或更小时其间近场辐射传热显著增强的仿真结果。因此,选择平板间距分别为550nm和1μm两种情况进行实验测量。这一研究工作为双微热板间距的设计提供理论依据,所得研究数据可供微纳器件设计人员参考。
     其次,研究了双微热板器件的设计及加工技术。基于表面微加工技术设计双微热板器件的加工流程,利用独特的双层牺牲层技术,通过研制自对准的双层悬空薄膜结构,实现双微热板器件的制作。基于上华0.5μm CMOS数模混合集成电路工艺设计加工了两层微热板间距为550nm的双微热板器件;基于定制的MEMS工艺设计加工了两层微热板间距为1μm的双微热板器件。在上述工作中,通过探索合理的工艺流程,研究并解决了在器件加工过程中的腐蚀窗刻蚀、牺牲层腐蚀、牺牲层腐蚀完成的辅助判断和结构层薄膜残余应力控制等若干关键技术,实现了双微热板器件的加工,提高了加工成品率。
     再次,组建了双微热板器件性能参数测试系统。该系统由真空系统和计算机采集控制器部分组成。在真空(10-7mbar)、环境温度293K的条件下,对器件中每层微热板的最大加热电流和热延迟时间,以及两层微热板之间的绝热性进行了测试,得出双微热板器件的特性参数。
     最后,完成了双微热板间近场热辐射的测试。测试中,采用恒电流方式加热下层微热板作为热辐射的发射器,上层微热板作为吸收器,通过测定吸收器的温升与其吸收热功率的关系,以及比较有无上层吸收器时,下层发射器达到相同温度的加热功耗差值,实现对两层微热板间近场辐射传热的测量。对于间距分别为550nm和1μm两种样品,所测近场辐射热导与文献中的近场辐射热导数值相近。表明本文提出的测试技术能实现对微纳器件中近场辐射传热的实验测量,为相关研究提供了新途径。
The research on the near-field thermal radiation attracts many focuses recently. The study on the near-field thermal radiation in micro devices is important to improve the thermal insulated property of micro devices and develop new micro devices. Based on developing a novel device with self-aligned double suspended mciro-hotplates separated by a micro-nano gap (DMHP for short), the experimental measurement technology of the near-field thermal radiation in micro devices is studied in this thesis. By using DMHP, the near-field thermal radiation of silicon oxide was systematically investigated. The main contents of this thesis include the theoretical research of near-field thermal radiation, the design and fabrication of DMHP, the characteristic parameters measurement of DMHP and the experiment measurement of the near-field thermal radiation.
     Firstly, the micro mechanisms of thermal radiation were researched and a model was formed. The electromagnetic field of the thermal current was calculated by describing the spatial correlation function of the thermal current fluctuations based on the fluctuation-dissipation theorem and Maxwell's equations solved by green's function method. By taking an ensemble average on the Poynting vector, a calculation method of the near-field radia-tive heat transfer between two semi-infinite planes was given. Then, a model of near-field radiative heat transfer between two silicon oxide plates was formed. We obtained that the near-field thermal radiation is significantly enhanced while the distance between two silicon plates is less than1μm. So the near-field thermal radiation between two SiO2plates separated by the distances of550nm and1μm are chosen to study in this thesis. This work not only presents a theoretical basis for DMHP design, but provides reference data for related researchers.
     Secondly, the technologies of design and fabrication of DMHPs were investigated. Based on surface micromachining technology, the process flow of the two types of DMHP were designed. By using double sacrificial layers, the self-aligned double freestanding membranes of a DMHP were fabricated. By using CSMC0.5μm CMOS technology, a CMOS DMHP was developed, which the gap between the two freestanding membrane of the device is550nm; by using a customized MEMS (MicroElectroMechanical Systems) technology, a MEMS DMHP was developed, which the gap between the two freestanding membrane of the device is1μm. The appropriate manufacturing processed were designed, with many key technics were researched and solved, including window etching,sacrificial layer wet etching, the Auxiliary structure for judging the end of sacrificial layer etching and residual stress control of thin films. So, the output capacity was guaranteed.
     Thirdly, the performance testing system of DMHP were built up. First, we built the system above with a vacuum system and a computer. Then, under the conditions of the ambient temperature293K and vacuum (10-7mbar), the heating current limit of each micro-hotplate of DMHP, the thermal insulation performance of the two micro-hotplates and the thermal delay time of each micro-hotplate of DMHP were tested. The works above provide the necessary parameters for DMHP's applications.
     Finally, experimental measurements of the near-field radiative heat transfer between two micro-hotplates was carried out. In these experiments, the bottom micro-hotplate was heated by constant currents and worked as a heat emitter, the top micro-hotplate worked as a heat absorber, the near-field thermal radiative heat transfer between the two micro-hotplate of DMHPs were evaluated by calibrating the relationship between the temperature rising and heating power of the absorber, and by detecting the heating power difference between heating the emitter to the same temperature before and after removing the absorber. For the cases that two SiO2plates separated by the distances of550nm or1μm, the measured values of thermal conductance of near-field thermal radiation are similar with others. The results above indicate the test technology brought forward in this thesis can be applied for investigating the near-field thermal radiation happened in micro-nano devices, and provide a new method for the measurement of the near-field thermal radiation.
引文
[1]刘静.微米/纳米尺度传热学[M].北京:科学出版社:iii-vii,179-184.
    [2]CHEN G. Challenges in microscale conductive and radiative heat transfer[J]. Journal of Heat Transfer,1994,116:799-807.
    [3]唐祯安,王立鼎.关于微尺度理论[J].光学精密工程,2001,9(6):493--498.
    [4]CRAVALHO E, DOMOTO G, TIEN C. Measurements of Thermal Radiation of Solids at Liquid-Helium Temperatures[C]//AIAA 3rd thermophysics conference.1968. Los Angeles:American Institute of Aeronautics and Astronautics,774, vol.68.
    [5]HARGREAVES C. Anomalous radiative transfer between closely-spaced bodies[J]. Physics Letters A,1969,30(9):491-492.
    [6]XU J, LAUGER K, MOLLER R,等.Heat transfer between two metallic surfaces at small distances[J]. Journal of applied physics,1994,76(11):7209-7216.
    [7]张春,曾志刚,杨艳,等.近场热辐射研究的最新进展[J].红外,2010,31(12):1-6.
    [8]CHANDLER D L. Breaking the law, at the nanoscale:bring objects close together can boost radiation heat transfer, according to new study that shows breakdown in Plack's law[EB/OL]. http://web.mit.edu/newsoffice/2009/heat-0729.html.
    [9]KITTEL A. Nanophotonics:Probing near-field thermal radiation[J]. Nat Photon,3(9):492-494.
    [10]维基百科. 热辐射[EB/OL].http://zh.wikipedia.org/w/index.php?title=$\protect\ protect\protect\edefOT1{OT1}\let\enc@update\relax\protect\edefcmr{cmr}\ protect\edefm{m}\protect\edefn{n}\protect\xdef\C19/song/m/n/10.5/55{\OT1/ cmr/m/n/10.5}\C19/song/m/n/10.5/55\size@update\enc@update\ignorespaces\relax\ protect\relax\protect\edefcmr{cmr}\protect\xdef\C19/song/m/n/10.5/55{\OT1/cmr/ m/n/10.5}\C19/song/m/n/10.5/55\size@update\enc@update{%E7}%86%B1%E8%BC%BB%E5% B0y%84&oldid=21914354$.
    [11]西格尔,豪厄尔,曹玉璋,等.热辐射传热[M].北京:科学出版社,1990:1-29,172-178,602-603.
    [12]CENGEL Y, KLEIN S, BECKMAN W. Heat transfer:a practical approach[M]. New York: McGraw-Hill,1998:375-377.
    [13]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998:238-260.
    [14]白长城,张海兴,方湖宝.红外物理[M].北京:电子工业出版社,1989:35-46.
    [15]MULET J, JOULAIN K, CARMINATI R,等.Enhanced radiative heat transfer at nanometric distances[J]. Microscale thermophysical engineering,2002,6(3):209-222.
    [16]DOMOTO G, BOEHM R, TIEN C. Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures [J]. Journal of Heat Transfer,1970,92:412-417.
    [17]HARGREAVES C. Radiative transfer between closely spaced bodies[M]. Eindhoven:NV Philips' Gloeilampenfabrieken,1973:1-80.
    [18]SONG Q, CUI Z, XIA S,等An AC microcalorimeter for measuring specific heat of thin films[J]. Microelectronics journal,2004,35(10):817-821.
    [19]MAILLY F, GIANI A, BONNOT R,等Anemometer with hot platinum thin film[J]. Sensors and Actuators A:Physical,2001,94(1):32-38.
    [20]ZHANG F, TANG Z, YU J,等A micro-Pirani vacuum gauge based on micro-hotplate technol-ogy[J]. Sensors and Actuators A:Physical,2006,126(2):300-305.
    [21]COLE B, HIGASHI R, WOOD R. Monolithic two-dimensional arrays of micromachined mi-crostructures for infrared applications[J]. Proceedings of the IEEE,1998,86(8):1679-1686.
    [22]TEACAN D, EMINOGLU S, AKIN T. A low-cost uncooled infrared microbolometer detector in standard CMOS technology[J]. Electron Devices, IEEE Transactions on,2003,50(2):494-502.
    [23]NEUZIL P, MEI T. A method of suppressing self-heating signal of bolometers[J]. Sensors Journal, IEEE,2004,4(2):207-210.
    [24]UNEWISSE M, PASSMORE S, LISSIARD K,等Performance of uncooled semiconductor film bolometer infrared detectors[J]. SPIE Infrared Technology,2269:43-52.
    [25]TANAKA A, MATSUMOTO S, TSUKAMOTO N,等.Infrared focal plane array incorporating silicon IC process compatible bolometer[J]. Electron Devices, IEEE Transactions on,1996, 43(11):1844-1850.
    [26]LEE H, YOON J, YOON E,等A high fill-factor IR bolometer using multi-level electrothermal structures [J]. Electron Devices,IEEE Transactions on,1999,46(7):1489-1491.
    [27]LIDDIARD K. The active microbolometer:a new concept in infrared detection[C]//. Belingham: International Society for Optics and Photonics,2004.第5274卷:227-238.
    [28]汪家奇,唐祯安.一种与CMOS工艺兼容的钨微热板[J].传感技术学报,2009,22(1):42-44.
    [29]Yu J, TANG Z, ZHANG F,等Measurement of heat capacity of copper thin films using a micropulse calorimeter[J]. Journal of Heat Transfer,2010,132(1):012403-012403:6.
    [30]WHALE M, CRAVALHO E. Modeling and performance of microscale thermophotovoltaic energy conversion devices[J]. Energy Conversion, IEEE Transactions on,2002,17(1):130-142.
    [31]FRANCOEUR M, VAILLON R, MENGUC M. Cascaded Photovoltaic and Thermophotovoltaic Energy Conversion Apparatus with Near-Field Radiation Transfer Enhancement at Nanoscale Gaps:U.S.A, US2010/0031990 A1[P]. Washington:Google Patents, Feb.11,2010.
    [32]RYTOV S. Correlation theory of thermal fluctuations in an isotropic medium[J]. Soviet Journal of Experimental and Theoretical Physics,1958,6:130-140.
    [33]BOEHM R, TIEN C. Small spacing analysis of radiative transfer between parallel metallic surfaces[J]. Journal of Heat Transfer,1970,92:405-411.
    [34]LEVIN M, POLEVOI V, RYTOV S. Contribution to the. theory of heat exchange due to a fluctuating electromagnetic field[J]. Soviet Journal of Experimental and Theoretical Physics, 1980,52:1054-1063.
    [35]ROUSSEAU E, SIRIA A, JOURDAN G,等Radiative heat transfer at the nanoscale [J]. Nature photonics,2009,3(9):514-517.
    [36]VOLOKITIN A, PERSSON B. Resonant photon tunneling enhancement of the radiative heat transfer[J]. Physical Review B,2004,69(4):045417-045417:5.
    [37]POLDER D, VAN HOVE M. Theory of radiative heat transfer between closely spaced bodies[J]. Physical Review B,1971,4(10):3303-3314.
    [38]LOOMIS J, MARIS H. Theory of heat transfer by evanescent electromagnetic waves[J]. Physical Review B,1994,50(24):18517-18524.
    [39]CARMINATI R, GREFFET J. Near-field effects in spatial coherence of thermal sources [J]. Phys-ical review letters,1999,82(8):1660-1663.
    [40]SHCHEGROV A, JOULAIN K, CARMINATI R,等Near-field spectral effects due to electromag-netic surface excitations[J]. Physical review letters,2000,85(7):1548-1551.
    [41]MULET J, JOULAIN K, CARMINATI R,等Nanoscale radiative heat transfer between a small particle and a plane surface[J]. Applied Physics Letters,2001,78:2931-2933.
    [42]JOULAIN K, CARMINATI R, MULET J,等Definition and measurement of the local density of electromagnetic states close to an interface[J]. Physical Review B,2003,68(24):245405-245405:10.
    [43]MARQUIER F, JOULAIN K, MULET J. Engineering infrared emission properties of silicon in the near field and the far field[J]. Optics communications,2004,237(4):379-388.
    [44]LAROCHE M, CARMINATI R, GREFFET J. Near-field thermophotovoltaic energy conversion[J]. Journal of applied physics,2006,100:063704-063704:10.
    [45]CHAPUIS P, LAROCHE M, VOLZ S,等.Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution[J]. Physical Review B,2008,77(12):125402-125402:5.
    [46]FRANCOEUR M, PINAR MENGUC M. Role of fluctuationl electrodynamics in near-field ra-diative heat transfer [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2008, 109(2):280-293.
    [47]CHAPUIS P, VOLZ S, HENKEL C,等Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces[J]. Physical Review B,2008,77(3):035431-035431:9.
    [48]CHAPUIS P, LAROCHE M, VOLZ S,等.Radiative heat transfer between metallic nanoparti-cles[J]. Applied Physics Letters,2008,92(20):201906-201906:3.
    [49]ROUSSEAU E, LAROCHE M, GREFFET J. Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer[EB/OL]. http//:hal.archives-ouvertes.fr/hal-002-428574.
    [50]FRANCOEUR M, MENGUC M, VAILLON R. Spectral tuning of near-field radiative heat flux be-tween two thin silicon carbide films[J]. Journal of Physics D:Applied Physics,2010,43:075501-075501:12.
    [51]FRANCOEUR M, VAILLON R, MENGUC M. Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators[J]. Energy Conversion, IEEE Transactions on, 2011(99):1-13.
    [52]FRANCOEUR M, MENGUC M, VAILLON R. Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared [J]. Physical Review B,2011,84(7):075436-075436:9.
    [53]JOULSIN K, MLIET J, MARQUIER F,等Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field [J]. Surface Science Reports,2005,57(3):59-112.
    [54]NARAYANASWAMY A, CHEN G. Direct computation of thermal emission from nanostruc-tures[J]. Annual Reviews of Heat Transfer,2005,14(14):169-195.
    [55]SHEN S, NARAYANASWAMY A, CHEN G. Surface phonon polaritons mediated energy transfer between nanoscale gaps[J]. Nano letters,2009,9(8):2909-2913.
    [56]CHEN D, NARAYANASWAMY A, CHEN G. Surface phonon-polariton mediated thermal con-ductivity enhancement of amorphous thin films[J]. Physical Review B,2005,72(15):155435-155435:4.
    [57]CHEN D, CHEN G. Heat flow in thin films via surface phonon-polaritons[J]. Frontier in Heat and Mass Transfer,2010,1:023005-023005:6.
    [58]FU C, ZHANG Z. Nanoscale radiation heat transfer for silicon at different doping levels[J]. International journal of heat and mass transfer,2006,49(9):1703-1718.
    [59]LEE B J, ZHANG Z M. Lateral Shifts in Near-Field Thermal Radiation with Surface Phonon Polaritons [J]. Nanoscale and Microscale Thermophysical Engineering,12(3):238-250.
    [60]BASU S, ZHANG Z. Ultrasmall penetration depth in nanoscale thermal radiation[J]. Applied Physics Letters,2009,95:133104-133104:3.
    [61]BASU S, ZHANG Z. Maximum energy transfer in near-field thermal radiation at nanometer distances[J]. Journal of applied physics,2009,105(9):093535-093535:6.
    [62]Fu C, TAN W. Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2009, 110(12):1027-1036.
    [63]黄勇,梁新刚.球形微粒子近场辐射换热研究[J].工程热物理学报,2004(02):290-292.
    [64]HAN M, LIANG X, TANG Z. Size effect on heat transfer in micro gas sensors[J]. Sensors and Actuators A:Physical,2005,120(2):397-402.
    [65]韩茂华,梁新刚.球形粒子的近场辐射换热研究[J].工程热物理学报,2007(01):107-109.
    [66]帅永,江乐,车志钊,等.球形纳米粒子与半无限大介质间的近场辐射换热研究[J].工程热物理学报,2009(02):279-281.
    [67]帅永,车志钊,张昊春,等.平面近场辐射的单色效应和偏振态[J].工程热物理学报,2008(06):1002-1004.
    [68]车志钊.基于涨落电磁理论的平面微纳米尺度热辐射机理研究[D].哈尔滨:哈尔滨工业大学,2007.
    [69]江乐.球形纳米粒子与半无限大介质的近场辐射换热研究[D].哈尔滨:哈尔滨工业大学,2007.
    [70]ZHENG Z, XUAN Y. Theory of near-field radiative heat transfer for stratified magnetic media[J]. International journal of heat and mass transfer,2011,54(5):1101-1110.
    [71]郑志恒,宣益民.薄膜和半无限大介质间的近场辐射换热研究[J].工程热物理学报,2012,3:033.
    [72]赵越唐桂华.材料介电函数对两球形纳米颗粒间近场辐射特性的影晌[J].化工学报,2012,63(S1):32-35.
    [73]崔大复,陈正豪,周岳亮,等.表面电磁波[J].物理,1982(03):140-145.
    [74]史杭.表面电磁波[J].大学物理,1986(05):1-6.
    [75]黄志洵.表面波波导理论的研究[J].北京广播学院学报(自然科学版),2005(03):4-16.
    [76]黄志洵,姜荣.表面电磁波与表面等离子波[J].中国传媒大学学报(自然科学版),2011,18(02):1-13.
    [77]KITTEL A, WISCHNATH U, WELKER J,等Near-field thermal imaging of nanostructured surfaces[J]. Applied Physics Letters,93:193109-193109:3.
    [78]MULLER-HIRSCH W, KRAFT A, HIRSCH M,等Heat transfer in ultrahigh vacuum scanning thermal microscopy [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1999,17:1205-1210.
    [79]KITTEL A, MULLER-HIRSCH W, PARISI J,等Near-field heat transfer in a scanning thermal microscope[J]. Physical review letters,2005,95(22):224301-224301:4.
    [80]WISCHANTH U, WELKER J, MUNZEL M. The near-field scanning thermal microscope[J]. Review of scientific instruments,2008,79:073708-073708:7.
    [81]SHEN S, NARAYANASWAMY A, GOH S,等Thermal conductance of bimaterial microcantilever-s[J]. Applied Physics Letters,2008,92(6):063509-063509:3.
    [82]NARAYANASWAMY A, SHEN S, CHEN G. Near-field radiative heat transfer between a sphere and a substrate[J]. Physical Review B,2008,78(11):115303-115303:4.
    [83]Hu L, NARAYANASWAMY A, CHEN X,等Near-field thermal radiation between two closely spaced glass plates exceeding Planck's blackbody radiation law[J]. Applied Physics Letters, 2008,92:133106-133106:3.
    [84]LE GALL J, OLIVIER M, GREFFET J. Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton[J]. Physical Review B,1997,55(15):10105-10105:10.
    [85]GREFFET J, CARMINATI R, JOULAIN K,等Coherent emission of light by thermal sources [J]. Nature,2002,416(6876):61-64.
    [86]MARQUIER F, JOULAIN K, MULET J,等Coherent spontaneous emission of light by thermal sources[J]. Physical Review B,2004,69(15):155412-155412:11.
    [87]DE WILDE Y, FORMANEK F, CARMINATI R,等Thermal radiation scanning tunnelling mi-croscopy[J]. Nature,2006,444(7120):740-743.
    [88]HILLENBRAND R, KEILMANN F. Complex optical constants on a subwavelength scale[J]. Physical review letters,2000,85(14):3029-3032.
    [89]HILLENBRAND R, TAUBNER T, KEILMANN F. Phonon-enhanced light-matter interaction at the nanometre scale[J]. Nature,2002,418(6894):159-162.
    [90]CHEN Y, ZHANG Z, TIMANS P. Radiative properties of patterned wafers with nanoscale linewidth[J]. Journal of Heat Transfer,2007,129:79-90.
    [91]PARK K, CROSS G, ZHANG Z. Experimental investigation on the heat transfer between a heated microcantilever and a substrate [J]. Journal of Heat Transfer,2008,130:102401-102401:9.
    [92]ZAYATS S I A.V., MARADUDIN A. Nano-optics of surface plasmon polaritons[J]. Physics reports,2005,408(3):131-314.
    [93]RYTOV S, SERGEJ M, KRASTOV Y A,等Principles of Statistical Radiophysics 3, Elements of the Random Fields[M]. New York:Springer,1987:118-128.
    [94]D G, R C. Introduction to electrodynamics[M]. New Jersey:Prentice Hall,2005:285-312.
    [95]KONG J. Electromagnetic wave theory[M]. Cambridge:Higher Education Press,2002:89-92.
    [96]戴振铎,鲁述.电磁理论中的并矢格林函数[M].武汉:武汉大学出版社,2005:30-36.
    [97]SIPE J. New Green-function formalism for surface optics[J]. JOSA B,1987,4(4):481-489.
    [98]BROWN J, CHURCHILL R. Complex variables and applications[M]. New York:McGraw-Hill Higher Education,2009:172-174.
    [99]TSANG L, KONG J, DING K,等Scattering of electromagnetic waves[M]. New York:Wiley Online Library,2001:53-57.
    [100]PALIk E, GHOSE G. Handbook of optical constants of solids[M].1998, Orlando:Academic press,卷3.
    [101]Fox A, Fox M. Optical properties of solids[M].2009,北京:科学出版社,卷131.
    [102]FRANK P, DAVID P, THEODORE L,等. foundations of heat transfer[M]. Singapore:John Wiley & Sons,2013:828-836.
    [103]王酷垚.微系统设计与制造[M].北京:清华大学出版社,2008:93-115.
    [104]魏长征,周伟,李听欣.基于表面微机械技术的压阻式加速度传感器[J].仪表技术与传感器,2012(11):4-7.
    [105]QUIRK M, SERDA J,韩郑生.半导体制造技术[M].北京:电子工业出版社,2004:193-206.
    [106]ISHIKAWA T, UENO M, ENDO K,等Low-cost 320x240 uncooled IRFPA using a conventional silicon IC process[J]. Opto-Electronics Review,7(4):297-303.
    [107]BALTES H, PAUL O, BRAND O. Micromachined thermally based CMOS microsensors[J]. Proceedings of the IEEE,1998,86(8):1660-1678.
    [108]PAUL O, BALTES H. Novel fully CMOS-compatible vacuum sensor[J]. Sensors and Actuators A:Physical,1995,46(1):143-146.
    [109]格雷戈里T.A.,科瓦奇,掌纹栋.微传感器与微执行器全书[M].北京:科学出版社,2003:15-20.
    [110]RAMAKRISHNA M, KARUNASIRI G, NEUZIL P,等Highly sensitive infrared temperature sensor using self-heating compensated microbolometers[J]. Sensors and Actuators A:Physical,2000, 79(2):122-127.
    [111]BALTES H, BRAND O. CMOS-based microsensors and packaging[J]. Sensors and Actuators A:Physical,2001,92(1):1-9.
    [112]WILLIAMS K, MULLER R. Etch rates for micromachining processing[J]. Microelectromechan-ical Systems, Journal of,1996,5(4):256-269.
    [113]PAUL O, WESTBERG D, HORNUNG M,等. Sacrificial aluminum etching for CMOS microstruc-tures[C]//Tenth Annual International Workshop on Micro Electro Mechanical Systems. Nagoy-a:IEEE:523-528.
    [114]PIERCE J, LEHRER W, RADIGAN K. Process for patterning metal connections on a semi-conductor structure by using a tungsten-titanium etch resistant layer:U.S.A. US4267012[P]. Calif.:Google Patents, May.12,1981.
    [115]LYTLE W. Method of chemically etching TiW and/or TiWN:U.S.A. US4787958[P]. Schaum-brug:Google Patents, Nov.29,1988.
    [116]VAN DEN MEERAKKER J, SCHOLTEN M, VAN OEKEL J. The etching of Ti-W in concetrated H2O2 solutions[J]. Thin solid films,1992,208(2):237-242.
    [117]YAN G, CHAN P, HSING I,等An improved TMAH Si-etching solution without attacking exposed aluminum[J]. Sensors and Actuators A:Physical,2001,89(1):135-141.
    [118]FENG C, TANG Z, YU J. A Novel CMOS Device Capable of Measuring Near-Field Thermal Radiation [J]. Chinese Physics Letters,2012,29(3):038502038502:4.
    [119]WARD M, BOZEAT R, BRUNSON K,等Surface micromachining materials[C]//IEE Colloqui-um on Microengineering Technologies and How to Exploit Them 1997. London:Institution of Electrical Engineers:7-7:3.
    [120]BUSILLO J M, HOWE R T, MULLER R S. Surface micromachining for microelectromechanical systems[J]. Proceedings of the IEEE,1998,86(8):1552-1574.
    [121]Rossi C, TEMPLE-BOYER P, ESTEVE D. Realization and performance of thin SiO2/SiNx membrane for microheater applications[J]. Sensors and Actuators A:Physical,1998,64(3):241-245.
    [122]Lacy F. Using nanometer platinum films as temperature sensors (constraints from experi-mental, mathematical, and finite-element analysis)[J]. Sensors Journal, IEEE,2009,9(9):1111-1117.
    [123]TELARI K, ROGERS B, FANG H,等Characterization of platinum films deposited by focused ion beam assisted chemical vapor deposition[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,2002,20(2):590-595.
    [124]ZHANG J, NAGAO Y, KUWANO S,等Microstructure and temperature coefficient of resistance of platinum films[J]. Japanese journal of applied physics,1997,36(part 1):834-839.
    [125]徐淦卿,程东杰.红外物理与技术[M].西安:西安电子科技大学出版社,1989:224-228.
    [126]SMITH R, JONES F, CHASMAR R. The detection and measurement of infra-red radiation[M]. London:Clarendon press,1968:94-103.
    [127]LIDDIARO K. Thin-film resistance bolometer IR detectors[J]. Infrared physics,1984,42(1):57-64.
    [128]WOOD R, HAN C, KRUSE P. Integrated uncooled infrared detector imaging arrays[C]//. Bloomington:IEEE:132-135.
    [129]LIDDIARD K, UNEWISSE M, REINHOLD O. Design and fabrication of thin film monolithic uncooled infrared detector arrays[J]. SPIE,2225:62-71.
    [130]JANSSON C, RINGH U, LIDDIARD K. Theoretical analysis of pulse bias heating of resistance bolometer infrared detectors and effectiveness of bias compensation[J]. SPIE,2552:644-652.
    [131]WOOD R. Uncooled thermal imaging with monolithic silicon focal planes[J]. SPIE milestone series,2004,179:571-578.
    [132]MICHALSKI L, ECKERSDORDF K, MCGHEE J. Temperature measurement[M]. Chichester: Wiley,2001:85-38.
    [133]VONn ARX M, PAUL O, BALTES H. Process-dependent thin-film thermal conductivities for thermal CMOS MEMS[J]. Microelectromechanical Systems, Journal of,2000,9(1):136-145.
    [134]IRACE A, SARRO P. Measurement of thermal conductivity and diffusivity of single and mul-tilayer membranes[J]. Sensors and Actuators A:Physical,1999,76(1):323-328.
    [135]BIEHS S A, REDDIG D, HOLTHAUS M. Thermal radiation and near-field energy density of thin metallic films[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2007,55(3):237-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700