均匀球形微米级粒子的制备及评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均匀球形微米级粒子是一种特殊的球形粉末颗粒,具有广泛的应用空间。无论是直接将微粒子应用在BGA电子封装、球形半导体等方面,还是利用产生的液滴实现净成形及快速沉积等领域,都要求其具有粒径均匀、圆球度高、粒径可控以及热履历一致等特点。而传统的微粒子制备方法,如切丝打孔重熔法、雾化法以及均匀液滴成型法等都有或多或少的缺点,不能满足上述应用领域的使用要求。因此本文旨在进行原理上的创新,研制出能够实现按需喷射的均匀球形微粒子制备设备。
     本工作研制了脉冲小孔低温喷射设备,包括以下几大组成部分:均匀液滴产生系统、加热冷却系统、差压控制系统、压电陶瓷驱动系统以及粒子收集和真空系统等。利用该低温设备制备出了均匀球形的63Sn-37Pb共晶成分的微粒子,探讨了工艺参数对粒径大小及分散程度的影响。并对高温设备制备出的Fe-Co基金属玻璃合金微粒子进行了评价,讨论了该成分合金获得全玻璃相的临界冷却速率。通过研究,得到以下结论:自主开发的低温设备可以稳定制备粒径均匀、圆球度高、表面质量好、晶粒细小且满足BGA精密封装要求的63Sn-37Pb的微粒子;所制备粒子的大小及分散程度和工艺参数,如压电陶瓷两端施加的脉冲信号的波形、电压大小、频率以及熔池和腔体的压力差等关系密切;使用孔径为200gm的小孔制备63Sn-37Pb微粒子的最优参数组合为:选用梯形波作为压电陶瓷的驱动信号,波形的电压范围为90-120V,梯形波的上升时间为250μs,保持和下降时间各为1000μs,频率为10-200Hz,熔池和腔体的压力差范围为2-3torr;利用脉冲小孔喷射法高温设备可在纯He和50%Ar+50%He混合气氛下制备出不同粒径的,且粒径均匀、圆球度高的[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4金属玻璃微粒子;在纯He和50%Ar+50%He混合气氛下制备出的全玻璃相粒子的临界尺寸分别为645μm和515μm,任何气氛条件下,随着粒径的减小,所制备的微粒子的微观结构由全结晶相向金属玻璃相与结晶相的混合相最终向完全玻璃相转变;该方法制备[(Fe0.5Co0.5)o.75Bo.2Si0.05]96Nb4金属玻璃单分散粒子的临界冷却速率为800-1100K/s,不随气体的改变而改变。
Mono-sized spherical micro particles are a special kind of spherical powder particles, which have a wide application. As for various applications, not only the particles applied directly in BGA electronic packaging, spherical semiconductor and so on, but also droplets used in net-form manufacture, rapid deposition and so on, all the particles or droplets prepared by different methods are required to be with characteristics of narrow size distribution, high sphericity, particle size controllable and the identical cooling history. While, the traditional preparation methods of micro particles, such as Cutting Punching Remelting Method, Atomization, Uniform Droplet Spray Method (UDS) have more or less faults, and cannot meet the requirements of the above application fields. Therefore, this work aims to innovate in principle, and consequently develop a new kind of equipment used for preparing mono-sized spherical particles with the desired size.
     The main parts of independently developed low temperature POEM, including uniform droplets generating system, heating and cooling system, pressure difference controlling system, piezoelectric actuator driving system, particles collecting system, vacuum system and etc., have been introduced in this paper. Spherical and mono-sized micro particles of63Sn-37Pb eutectic composition have been prepared by above low temperature equipment. The effects of technological parameters on the particle size and size distribution are discussed. Furthermore, characterization for Fe-Co based metallic glass alloy particles prepared by high temperature POEM is carried out, and critical cooling rate to realize fully crystalline phase is also estimated. Based on results and discussion, some conclusions can be drawn in the following.63Sn-37Pb micro particles with the characterization of narrow size distribution, high sphericity, good surface quality and fine grains can be stably prepared by independently developed low temperature POEM. The obtained micro particles meet requirements of the BGA packaging. Technological parameters, such as the pulse signal waveform applied to piezoelectric actuator, applied voltage, frequency and pressure difference between the crucible and chamber, have important effects on particle size and size distribution. With the orifice size of200μm, the optimal parameters applied in preparation of63Sn-37Pb particles is as followed:trapezoidal wave is selected as driving signal for piezoelectric actuator; the applied voltage ranges from90V to120V; the time to reach the pulse voltage from zero (tup) is set as250μs, and the holding time (thold) and the time to return back from pulse voltage to zero (tfall) are both1000μs; frequency of piezoelectric actuator motion ranges from10Hz to200Hz; the applied pressure, which is the difference between the pressure in the crucible and chamber is adjusted within the range of2-3torr.[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4metallic glass alloy particles of different particle size with narrow size distribution and high sphericity were separately prepared by high temperature POEM in He or50%Ar+50%He atmosphere, respectively. The particles obtained in the fully glassy phase have a diameter of less than645μm in He atmosphere and less than515μm in50%Ar+50%He atmosphere. The phase transitions of particles from the fully crystalline phase to the mixed phase which was mixture of the glassy phase and the crystalline phase to the fully glassy phase occurred as the particle diameter is decreased regardless of any atmosphere. Critical cooling rate for fully glassy phase of [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4metallic glass alloy particles prepared by POEM is estimated to be within the range of800-1100K.sec-1. No changes of the critical cooling rate occur in any atmosphere.
引文
[1]CUBBERLY W H, STEDFELD R L, MILLS K, et al. Metals Handbook Ninth Edition Volume 7:Powder Metallurgy [M], Ohio:American Society for Metals,1984.
    [2]KURIBAYASIH K, NAGASHIO K, TAJIMA M. Spherical crystallization of Si during free fall in drop-tubes [J]. Journal of Crystal Growth,2009,311:722-726.
    [3]MASUDA S, TAKAGI T, DONG W, et al. Solidification behavior of falling germanium droplets produced by Pulsated Orifice Ejection Method [J]. Journal of Crystal Growth,2008,310: 2915-2922.
    [4]吴萍,ANDO T, FUKUDA H,等.Sn-Pb合金微粒的制备和微结构[J].材料研究学报,2003,17(1):92-96.
    [5]WANG C P, LIU X J,OHNUMA I, et al. Formation of immiscible alloy powders with egg-type microstructure [J]. Science,2002,297:990-993.
    [6]MIURA A, DONG W, FUKUE M, et al. Preparation of Fe-based monodisperse spherical particles with fully glassy phase [J]. Journal of Alloys and Compounds,2011,509:5581-5586.
    [7]ROY S, ANDO T. Nucleation kinetics and microstructure evolution of traveling ASTM F75 droplets [J]. Advance Engineering Materials,2010,12 (9):912-919.
    [8]李承亮,郝少吕,赵兴宇,等.注凝工艺制备二氧化锆陶瓷微球[J].材料工程,2007,12:63-67.
    [9]徐志吕,张萍.陶瓷U02微球尺寸与球度的控制方法[J].核科学与工程,1997,17(1):52-59.
    [10]韩雅芳,戴圣龙,杨守杰,等.均匀液滴喷射沉积模拟研究[J].航空制造技术,2003,7:2527.
    [11]YAO Y X, GAO S D, CUI C S. Rapid prototyping based on uni form droplet spraying[J]. Journal of Materials Processing Technology,2004,146:389-395.
    [12]刘海霞,雷永平,夏,志东,等.切丝重熔法制备的BGA焊球及其表面形貌[J].电子元件与材料,2005,24(5):21-23.
    [13]张曙光,何礼君,米学新,等.适用于先进电子封装的精密焊球制备技术[J].中国有色金属学报,2004,14(3):501-505.
    [14]郭晓晓.高密封装用钎焊球制备技术及工艺研究[D].河南:河南科技大学材料学院,2009.
    [15]高德云,夏志东,雷永平,等.BGA封装锡球制备技术研究[J].电子元件与材料,2005,24(10):56-60.
    [16]DONG W, MASUDA S, TAKAGI K, et al. The development of mono-sized micro silicon particles for spherical solar cells by Pulsated Orifice Ejection Method[J]. Materials Science Forum, 2007,534-536:149-152.
    [17]OMAE S, MINEMOTO T, MUROZONO M, et al. Crystal evaluation of spherical silicon produced by dropping method and their solar cell performance [J]. Solar Energy Materials & Solar Colls, 2006,90:3614-3623.
    [18]HUANG X M, UDA S, TANABE H, et al. In suit observations of crystal growth of spherical Si single crystals [J]. Journal of Crystal Growth, 2007, 307: 341-347.
    [19]MINEMOTO T, TAKAKURA H. Fabrication of spherical silicon crystals by dropping method and their application to solar cells [J]. Japanese Journal of Applied Physics, 2007, 46(7A):4016-4020.
    [20]高胜东,姚英学,崔成松.金属均匀液滴束流技术的应用[J].材料导报,2006,20(1):95-97.
    [21]李欢.法兰螺栓均匀预紧过程的监视仪开发[D].甘肃:兰州理大学机械学院,2011.
    [22]高深,黄孙祥,陈雷,等.液滴喷射技术的应用进展[J].无机材料学报,2004,19(4):714-722.
    [23]徐林峰.均匀液滴喷射微制造技术基础研究[D].西安:西北工业大学机电学院,2005.
    [24]BACKMARK U, BACKSTROM N, AMBERG L Production of metal powder by ultrasonic gas atomization [J]. Powder Metallurgy International, 1986, 18 (5):338-342.
    [25]BACKMARK U, BACKSTROM N, AMBERG L. Production of metal powder by ultrasonic gas atomization [J], Powder Metallurgy International, 1986, 18 (6): 422-429.
    [26]杨福宝,徐骏,石力开.球形微细金属粉末超声雾化技术的最新研究进展[J].稀有金属,2005,29(5):785-790.
    [27]黄华,齐乐华,杨方,等.均匀液滴产生技术及其应用[J].制造技术与机床,2008,6:59-63.
    [28]李述.均匀合金颗粒的制备及雾化液滴的凝固行为模拟[D].天津:天津大学理学院应用物理系,2007.
    [29]黄勇,张立明,杨金龙,等.先进陶瓷胶态成型新工艺的研究进展[J].硅酸盐学报,2007,35(2):129-136.
    [30]杨金龙,黄勇,蔡锴.制备陶瓷小球的方法和装置[P].中国专利:CN02125221.1,2004 01-21.
    [31]CHENG S, CHANDRA S. A pneumatic droplet-on-demand generator [J]. Experiments in Fluids, 2003, 34:755-762.
    [32]CHENG S X, LI T G, CHANDRA S. Producing molten metal droplets with a pneumatic droplet-on-demand generator [J]. Journal of Materials Processing Technology, 2005,159: 295-302.
    [33]LEE T M, KANG T G, YANG J S, et al. Droplet-on-demand solder droplet jetting system for fabricating microstructure[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31(3):202-209.
    [34]DONG X T, TUFFILE Charles D, ANDO T. Continuous Cooling Transformation Curves for Heterogeneous Nucleat ion on the Surface of Sn - 5 mass% Pb Droplets [J]. Advance Engineering Materials, 2000, 2 (5):284-289.
    [35]LI S, WU P, ZHOU W, et al. Kinetics of heterogeneous nucleation of gas atomized Sn-5mass%Pn droplets[J], Materials Science and Engineering A, 2008, 473:206-212.
    [36]LI S, WU P, FUKUDA H, et al. Simulation of the sol idi fication of gas-atomized Sn-5mass%Pb droplets [J]. Materials Science and Engineering A,2009,499:396-403.
    [37]王晓峰,赵九洲,何杰,等.Cu-13.5%Sn合金雾化液滴凝固过程模拟[J].金属学报,2005,41(9):923-928.
    [38]LIU D M, ZHAO J Z, YE H Q. Modeling of the solidification of gas-atomized al loy droplets during spray forming [J]. Materials Science and Engineering A,2004,372:229-234.
    [39]RAYLEIGH J W S. On the stability of jets [J]. Proc. London Mathematical Society, 1878,10:4-13.
    [40]WEBER C. The decomposition of a liquid jet[J]. Journal of Applied Mathematics and Mechanics,1931,11:136-154.
    [41]李莉.均匀液滴喷射过程的理论建模与数值模拟[D].陕西:西北工业大学机电学院,2006.
    [42]BIALIAUSKAYA V, ANDO T. Nucleation kinetics of continuously cooling Fe-17 at.% B droplets produced by controlled capillary jet breakup [J]. Journal of Materials Processing Technology,2010,210:487-496.
    [43]TSENG A A, LEE M H, ZHAO B. Design and operation of a droplet deposition system for freeform fabrication of metal parts [J]. Journal of Engineering Materials and Technology, Transactions of the ASME.2001,123(1):74-84.
    [44]ORME M, LIU Q, SMITH R. Molten aluminum micro-droplet formation and deposition for advanced manufacturing appl ications [J]. Aluminum Transactions Journal,2000,3(1):95-103.
    [45]JONES H. A perspective on the development of rapid solidification and non-equilibrium processing and its future[J]. Materials Science and Engineering A,2001,304-306:11-19.
    [46]田雅丽.均匀颗粒成型法中Sn-Pb合金的快速凝固及其冷却行为预测[D].天津:天津大学理学院,2005.
    [47]吴萍,田雅丽,姜恩永,等.Sn-Ph合金颗粒异质成核及其冷却凝固行为预测[J].化学物理学报,2004,17(4):471-475.
    [48]PASSOW C H. A study of spray forming using uniform droplet sprays [D]. M.S. thesis MIT;Cambridge,MA,1992.
    [49]LIU Q, HUANG C, ORME M. Mutual electrostatic interactions between closely spaced charged solder droplets [J]. Atomization and Sprays:Journal of the International Institutions for Liquid Atomization and Spray Systems,2000,10(6):565-585.
    50]ANDO T, CHUN J H, BLUE C. Uniform droplets benefit advanced particulates [J]. Metal Powder Report,1999,54(3):30-34.
    [51]冯超,颜永年,张人佶.低温冰型快速成形技术中喷射技术的研究[J].中国机械工程,2002,13(13):1128-1130.
    [52]ABEL G K. Characterization of droplet flight path and mass flux in droplet-based manufacturing [D]. M.S. thesis, MIT; Cambridge, MA,1994.
    [53]CHEN C A. Droplet solidification and its effects on deposit microstrueture in the uniform droplet spray process[D].Ph.D. thesis, MIT; Cambridge, MA,1996.
    [54]YIM P. The Role of Surface Oxidation in the break-up of laminar liquid metal jets[D]. Ph. D. thesis, MIT;Cambridge, MA, 1996.
    [55]KIM H Y. Spreading behavior of molten metal microdroplets[D]. Ph. D. thesis MIT;Cambridge, MA, 1999.
    [56]CHERNG J J. The effects of deposit thermal history on microstructure produced by uniform droplet spray forming [D]. Ph. D. thesis, MIT; Cambridge, MA, 2002.
    [57]HSIAO W. Effects of surface properties on solder bump formation by direct droplet deposistion [D]. Ph. D. thesis, MlT;Cambridge, MA, 2003.
    [58]TUFFILE C D. Thermal study of in flight solidiffcation of uniform spray droplets by using non-adiabatic calorimetry [D]. M. S. thesis, Tuffs University,1997.
    [59]DIVENUTI A G, ANDO T. A dendrite growth model accommodating curved phase boundaries and high peclet number conditions [J]. Metal1. Trans. A. 1998, 29(12):3047-3056.
    [60]AQUAVIVA P J. Modeling of deposit solidification in droplet based manufacturing [D]. M.S. thesis, MIT; Cambridge, MA, 1995.
    [61]KURZ W, FISHER D J(著).李建国,胡侨丹(译).凝固原理(第4版)[M].北京:高等教育出版社,2010.
    [62]MIZOGUCHI T, PEREPEZKO J H. Nucleation behavior during solidification of cast iron at high undercooling[D]. Material Science and Engineering A, 1997, 226-228:813-817.
    [63]PEREPEZKO J H. Nucleation in undercooled liquids[J]. Material Science and Engineering, 1984,65(1):125-135.
    [64]AFONSO C R M, BOLFARINI C, BOTTA FILHO W J, et al. Spray forming of glass former Fe63Nb10Al(?)Si3B20 alloy [J]. Mater. Sci. Eng. A, 2007, 449-451:884-889.
    [65]INOUE A, SHEN B L, CHANG C T. Super-high strength of over 4000MPa for Pe based hulk glassy alloys in [(Fe(?)Co(?))0.75B0.2Si0.05]96Nb(?) system. Ada Mater, 2004,52:4093 4099.
    [66]INOUE A, SHEN B L. Soft magnetic bulk glassy Fe-B-SiNb alloys with high saturation magnetizaat ion above 1.5T[J]. Mater Trans. 2002,43(4): 766-769.
    [67]INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater. 2000, 48:279-306.
    [68]PAN J, CHEN Q, LI N, et al. Formation of centimeter Fe based bulk metallic glasses in low vacuum environment [J]. J. Alloy. Compd, 2008,615:246-249.
    [69]HERLACH D M. Non-equilibrium solidification of undercooled metallic melts[J]. Key Engineering Materials. 1993,81-83:83-94.
    [70]VENKATARAMAN S, SCUDINO S, ECKERT J, et al. Nanocrystal1ization of gas atomized Cu17Ti33Zr11Ni8Si(?) metallic glass[J]. J. Mater. Res. 2006, 21 (3): 597-607.
    [71]RAY C S, REIS S T, BROW R K, et al. A new DTA method for measuring critical cooling rate for glass formation [J]. Journal of Non-Crystalline Solids.2005,351:1350-1358.
    [72]UHLMANN D R, YINNON H. Glass science and technology (Chapter 1), in:UHLMANN D R, KREIDL N J(Eds.), Glass Forming Systems, vol.1, Academic, New York, NY,1983.
    [73]UHLMANN D R. A kinetic treatment of glass formation [J]. Journal of Non-Crystalline Solids. 1972,7 (4):337-348.
    [74]RANZ W E, MARSHALL W R. Evaporation from drops [J]. Chem Eng Prog.1952,48:141-144.
    [75]Netsubusseigakkai. Thermophysical Properties Handbook[M]. Youkendou, Tokyo,2000.
    [76]The Japan Institute of Metal, Kinzoku Data Book[M], vol.3, Maruzen Co. Ltd., Tokyo, 1993.
    [77]PARADIS P F, ISHIKAWAT, YODA S. Non-contact measurement of thermo-physical properties of niobium at high temperatures[J]. J Mater Sci.2001,36:5125-5130.
    [78]TANIGUCHI S, YAGI J. Transport Phenomena in Materials Engineering[M]. Tohoku University Press, Japan,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700