偶氮染料高效降解基因工程菌构建与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮染料的生物降解已得到较为深入的研究,分离得到多种具有偶氮染料脱色活性的微生物,并有数种偶氮还原酶基因经大肠杆菌表达获得高纯度、高效率的偶氮还原酶,但是酶制剂的应用受到各种条件的限制,成本较高。因此,考虑提高微生物本身的偶氮染料脱色活性,以便于工程应用。
     本文的目的是构建一株具有较高偶氮染料脱色活性的基因工程菌,并考察其对偶氮染料的脱色特性。该工程菌是以沼泽红假单胞菌/大肠杆菌穿梭质粒为载体,将外源基因(来自球形红细菌Rhodobacter sphaeroides AS1.1737的偶氮还原酶基因)导入受体菌(沼泽红假单胞菌Rhodopseudomonas palustris AS1.2352),使受体菌表达外源偶氮还原酶,从而提高该工程菌的偶氮染料脱色能力。为达到以上目标,首先,在工程菌构建之前,通过考察外源偶氮还原酶基因的供体菌(球形红细菌)和受体菌(沼泽红假单胞菌)的偶氮染料脱色活性,以及受体菌细胞中质粒DNA的种数及其复制等相关情况,验证该构建途径的可行性;进而构建穿梭质粒及工程菌;最后,以原始受体菌为对照,考察工程菌的生长及脱色特性。
     对球形红细菌Rhodobacter sphaeroides AS1.1737的菌体及其胞内粗酶的偶氮染料脱色活性进行考察。菌体在光照缺氧条件可将多种偶氮染料脱色,部分染料24小时脱色率可达90%以上。染料不能作为该菌生长的唯一碳源。35-40℃,中性偏碱环境(pH7-8)具有较高脱色率。超声破碎菌体,获得胞内粗酶,经Red Sepharose CL-6B凝胶纯化,粗酶中偶氮还原酶的含量有一定提高。以甲基橙作为模型染料时,50℃、pH 8.0为其粗酶酶促反应的最佳条件,并且该酶催化的脱色反应符合双底物的乒乓机理。甲基橙、NADH表观米氏常数分别为0.45 mM和1.25 mM。
     前期研究发现,沼泽红假单胞菌Rhodopseudomonas palustris AS1.2352具有偶氮染料脱色能力,其胞内粗酶亦具有偶氮还原酶活性,催化过程符合乒乓机理。而纺织印染助剂中包括多种表面活性剂,对生物具有一定的毒性,因此,考察表面活性剂对该菌脱色能力的影响具有实际意义。实验发现,该菌对两种阴离子表面活性剂(LAS,Sodiumlinear alkylbenzene sulphonate;SDS,Sodium dodecyl sulfate)有较强的耐受能力,并且能够在好氧条件下将其降解;LAS对菌体生长的抑制作用明显大于SDS;0.1% SDS存在时染料脱色受到一定的抑制,较高温度(30℃以上)时,抑制情况随温度提高迅速加重。
     为考察沼泽红假单胞菌Rhodopseudomonas palustris AS1.2352中存在的质粒DNA的情况,根据该菌的特点和常规提取方法应用中遇到的问题,在碱裂解法基础上,对其
Biodegradation of azo dyes has been studied for years, and many microorganism degrading azo dyes were screened. Some azoreductase genes were cloned and expressed in E. coli efficiently, while enzyme application in waste water treatment is limited by its high cost. Then microorganism itself is asked to be more efficient to promote practical treatment.
    The purpose of this dissertation is to construct a genetically engineered bacterium with higher azoreductase activity. In order to get this goal, the azoreductase gene from the donor (Rhodobacter sphaeroides AS 1.1737) is inserted in a Rhodopseudomonas palustris/E. coli shuttle vector, which is transformed into the acceptor (Rhodopseudomonas palustris AS 1.2352). And the feasibility of this process is proved by investigating the azo dye decolorization by donor and acceptor strains, and the knowledge on plasmids in acceptor cells.
    The decolorization of azo dyes by cells and crude enzyme of Rhodobacter sphaeroides AS1.173 7 was investigated, and several kinds of azo dyes can be decolorized over 90% in 24 h. While azo dyes can not be the sole carbon source for growth of this strain. Besides, the optimal conditions of decolorization are 35 - 40℃ and pH 7-8. The crude enzyme extracted from this strain has azoreductase activity, but can not be well purified by Red Sepharose CL-6B. Making methyl orange as model dye, the optimal decolorization conditions are 50℃ and pH 8.0, and the catalysis corresponded to ping-pong mechanism, where the Michaelis-Menten constants for Methyl Red and NADH are 0.45 mM and 1.25 mM, respectively.
    The azoreductase activities of the cells and intracellular crude enzyme of Rhodopseudomonas palustris AS1.2352 were reported, and LAS (Sodium linear alkylbenzene sulphonate) and SDS (Sodium dodecyl sulfate) were added in cultures to simulate practical dyeing wastewater. It is found that this strain can endure surfactant and degrade them aerobically, and inhibitions of LAS on growth and decolorization are higher than SDS. Besides, the optimal temperature of decolorization with SDS (30℃) is much lower than that without SDS, which shows that SDS made the decolorization of this strain sensitive to higher temperatures.
    The plasmid extraction of Rhodopseudomonas palustris was optimized, so that the native plasmids of this strain could be obtained with higher quantity and quality for further operations. And four kinds of plasmids were found in this strain, one of which was identified
引文
[1] 侯毓汾,朱振华,王任之.染料化学.北京:化学工业出版社,1994.
    [2] 赵德丰,尹志刚,费久佳等.非诱变偶氮染料的研究进展Ⅰ—偶氮染料诱变性研究方法及其致癌机理.化工进展,2000(1):36-40.
    [3] 杨新玮.近两年我国染料品种的发展.染料与染色,2004,41(1):51-57.
    [4] 卜荣,马卫兴,李咏梅.一种测定六价铬的新方法.广州化学,2000,26(2):38-41.
    [5] 余倩,陈小康,罗宗铭等.黄酮化合物的偶氮显色反应及其应用研究.光谱学与光谱分析,2004,124(18):991-994.
    [6] 孟令杰,吴洪才,王洪波等.偶氮染料光致异构过程的研究.光电子·激光,2004,15(4):454-458.
    [7] 阮剑利.偶氮染料的光敏性研究.染料与染色,2003,40(2):75-77.
    [8] 杨小兵,丁松涛,杨裕生等.近红外激光防护染料.有机化学,2002,22(1):33-41.
    [9] Vaidya A A, Datye K V. Environmental pollution during chemical processing of synthetic fibres. Color Age, 1982, 14: 3-10.
    [10] Richardson M L. Dyes - the aquatic environment and the mess made by metabolites. Society of Dyers and Colourists, 1983, 99: 198-200.
    [11] 戴乾圆,逯萍,彭少华等.黄曲酶素和N-亚硝基化合物借诱发DNA互补碱对交联而启动癌变.自然科学进展,2003,13(7):693-697.
    [12] Masayuki N, Chizuko Y, Norihisa I et al. Putative ACP phosphodiesterase gene (acpD) encodesan azoreductase. The Journal of Biological Chemistry, 2001, 276 (49): 46394-46399.
    [13] 尹志刚,赵德丰,金良安等.非诱变偶氮染料的研究进展Ⅱ—偶氮染料结构-诱变相关性与非诱变偶氮染料设计方法.化工进展,2000,(2):26-31.
    [14] 苏洁,杨国农,庞秀芬.禁用染料及中间体.应用化工,2002,31(4):5-7.
    [15] 徐宝峰.纺织品出口“绿色壁垒”越垒越高.中国纤检,2004,(12):24-25.
    [16] 郭仁宏.欧盟包装和包装废弃物法令有害重金属限量评析.包装工程,2004,25(1):128-131.[17] Michael R. Indian government may ban production of certain azo dyes. Chemical Week, 1996, 158: 15-18.
    [18] 马子川,蒋兰宏,霍庆等.新生MnO_2对甲基橙废水的脱色特性研究.城市环境与城市生态,2002,15(2):10-12.
    [19] 甘复兴,汤心虎,乔淑玉.催化铁氧腐蚀电池处理活性艳红的电化学机理.武汉大学学报(理学版),2001,47(2):129-132.
    [20] 葛建团,曲久辉,徐敏.电化学方法用于酸性红B模拟废水脱色试验研究.环境污染治理技术与设备,2002,3(5):12-14.
    [21] 范丽,杨卫身,杨风林等.复极填充床电解槽用于偶氮染料废水脱色.中国给水排水,2002,18(4):34-36.
    [22] 武正簧,周丽.TiO_2薄膜光催化降解甲基橙和亚甲基蓝.化学工程师,2002,88(1):1-3.
    [23] 陈达美,钟建军,汪言满.TiO_2悬浮体系光催化降解染料动力学研究.精细化工,2002,19(1):55-58.
    [24] 江立文,周岳溪,李耀中等.偶氮染料4BS光催化降解的特性研究.环境工程,2001,19(1):59-62.
    [25] 安太成,何春,朱锡海等.三维电极电助光催化降解直接湖蓝水溶液的研究.催化学报,2001,22(2):193-197.
    [26] 王晓艳,胡中爱,高锦章.接触辉光放电等离子体处理染料废水.石化技术与应用,2001,19(6):401-404.
    [27] 谢磊,胡勇有,杨润昌等.高浓度甲基橙湿式过氧化氢氧化及机理初探.环境工程,2002,20(2):72-74.
    [28] 戴树桂,宋文华,李彤等.偶氮染料结构与其生物降解性关系研究进展.环境科学进展,1996,4(6):1-9.
    [29] 徐文东,文湘华,付莉燕.偶氮染料派拉丁蓝RRN脱色细菌的选育与研究.环境科学学报,2001,21(suppl):127-132.
    [30] 刘生浩,史玉英,娄无忌等.青霉菌P—93对偶氮染料的降解特性研究.应用与环境生物学报,1995,1(2):168-172.[31] 罗志腾,刘美侠.酵母036对一种偶氮染料废水的降解与脱色.中国给水排水,1996,12(4):12-20.
    [32] Wong P K, Yuen P Y. Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Research., 1996, 30 (7): 1736-1744.
    [33] Suzuki Y, Yoda T, Ruhul A et al. Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. The Journal of Biological Chemistry, 2001, 276 (12): 9059-9065.
    [34] Chang J S, Chou C, Chen S Y. Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochemistry, 2001, (36): 757-763.
    [35] Hu T L. Degradation of azo dye RP2B by Pseudomonas luteola. Water Science and Technology, 1998, 38 (4): 299-306.
    [36] Chang J S, Chou C, Lin Y C et al. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas Luteola. Water Research, 2001, 35 (12): 2841-2850.
    [37] Chen B Y. Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics process. Biochemistry, 2002, 38:437-446.
    [38] Patricia R, Scholze H et al. Improved conditions for the aerobic reductive deeolourisationof azo dyes by Candida zeylanoides. Enzyme and Microbial Technology, 2002, 31: 848-854.
    [39] Ghosh D K, Mandal A, Chaudhuri J. Purification and partial characterization of two azoreductases from Shigella dysenteriae type 1. FEMS Microbiology Letters, 1992, 98: 229-234.
    [40] Rafii F, Cemiglia C E. Comparison of the azoreductase and nitroreductase from Clostridium perfringens. Applied and Environmental Microbiology, 1993, 7: 1731-1734.
    [41] Dykes G A, Timm R G, Von Holy A. Azoreductase activity in bacteria associated with the greening of instant chocolate puddings. Applied and Environmental Microbiology, 1994, (8): 3027-3029.[42] Gesche S H, Bhavna G, Eric R D. Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes. FEMS Microbiology Letters, 1992, 99: 221-226.
    [43] 陈荣圻.我国印染助剂三十年回顾.印染,2005,(9):44-46.
    [44] 曾小梅,陈志刚.表面活性剂的联合毒性研究.云南环境科学,2005,24(1):7-9.
    [45] 陈中元.有良好开发前景的印染助剂及其发展趋势.化学工程师,2005,(12):29-31.
    [46] 李林,喻子牛.不同理化处理对苏云金芽胞杆菌质粒稳定性的影响.华中农业大学学报.2000,1(19):29-32.
    [47] Purkait M K, DasGupta S, De S. Adsorption of eosin dye on activated carbon and its surfactantbased desorption. Journal of Environmental Management, 2005, 76:135-142.
    [48] Oakes J, Gratton P, Gordon-Smith T. Combined kinetic and spectroscopic study of oxidation ofazo dyes in surfactant solutions by hypochlorite. Dyes and Pigments, 2000 (46): 169-180.
    [49] Menek N, Eren E, Tope S. Kinetic investigation of an azo dye oxidation by hydrogen peroxide in aqueous surfactant solution. Dyes and Pigments, 2006 (68): 205-210.
    [50] Kudlieh M, Keck A, Klein Jet al. Localization of the enzyme system involved in the anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Applied Environmental Microbiology 1997, 63: 3691-3694.
    [51] Yah B, Zhou J T, Wang Jet al. Expression and characterization of the gene encoding azoreductase from Rhodobacter sphaeroides AS 1.1737. FEMS Microbiology Letters. 2004, 236: 129-136.
    [52] Chen H, Wang R F, Cerniglia C E. Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expression and Purification. 2004, 34: 302-310.[53] Blumel S, Knackmuss H J, Stolz A. Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Applied Environmetal Microbiology, 2002, 68: 3948-3955.
    [54] Blumel S, Stolz A. Cloning and characterization of the gene coding for the aerobic azoreduetase from Pigmentiphaga kullae K24. Applied Microbiology Biotechnology, 2003, 62: 186-190.
    [55] Sangkil N V. Non-enzymatic reduction of azo dyes by NADH. Chemosphere, 2000, 40: 351-357.
    [56] R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版).北京:科学出版社,1984.
    [57] Palma A M, Thiyagarajan P, Arlene M W et al. Effect of detergent alkyl chain length on crystallization of a detergent-solubilized membrane protein: correlation of protein detergent particle size and particle-particle interaction with crystallization of the photosynthetic reaction center from Rhodobacter phaeroides. Journal of Crystal Growth, 1999, 207: 214-225.
    [58] Alexander H, Susanne E, Gregor J et al. Enzymatic sunthesis of L-tagatose from galactitol with galactitol dehydrogenase from Rhodobacter sphaeroides D. Carbohydrate Research, 1998, 30(5): 337-339.
    [59] Min H, Guo H, Xiong J. Rhythmic gene expression in a purple photosynthetic bacterium Rhodobacter sphaeroides. FEBS Letters, 2005, 579: 808-812.
    [60] Beaning C, Huang Z, Douglas A G. Accumulation of a novel Glycolipid and a Betaine Lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Archives of Biochemistry and Biophysics, 1995, 317(1): 103-111.
    [61] Aagaard A, Namslauer A, Brzezinski P. Inhibition of proton transfer in cytochrome coxidase by zinc ions: delayed proton uptake during oxygen reduction. Biochimica et Biophysica Acta, 2002, 1555: 133-139.
    [62] Seki H, Suzuki A, Mitsueda S. Biosorption of heavy metal ions on and Alcaligenes eutrophus H16. Journal of Colloid and Interface Science, 1998, 197: 185-190.
    [63] Nakajima F, Kamiko N, Yamamoto K. Organic wasterwater treatment without greenhouse gas emission by photosynthetic bacteria. Water Science and Technology, 1997, 35(8): 285-291.
    [64] Michael J B, Hillary Van V, Anthony J T et al. The amino acid sequence of Rhodobacter sphaeroides dimethyl sulfoxide reductase. Archives of Biochemistry and Biophysics, 1995, 320 (2): 266 - 275.
    [65] Veronica V P, Michael J B. Molecular cloning and expression of biotin sulfoxide reductase from Rhodobacter sphaeroides Forma Sp. Denitrificans. Archives of biochemistry and biophyscs, 1995,318 (2): 322 - 332.
    [66] Mitsuru A, Yuki O, Yoshikiyo T et al. Amperometric dimethyl sulfoxide sensor using dimethyl sulfoxide reductase from Rhodobacter sphaeroides . Biosensors and Bioelectronics, 2003, (18): 735 - 739.
    
    [67] William P L, James P S. Site-directed mutagenesis of NnrR: a transcriptional regulator of nitrite and nitric oxide reductase in Rhodobacter sphaeroids. FEMS Microbiology Letters, 2003, (299): 173-178.
    [68] Golstov V A, Veziroglu T N. From hydrogen economy to hydrogen civilization. International Journal of Hydrogen Energy, 2001, 26 : 909 - 915.
    [69] Das D, Veziroglu T N. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 2001,26: 29 - 37.
    [70] Fascetti E, Todini O. Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Applied Microbiology and Biotechnology, 1995,44: 300-305.
    [71] Yetis M, Gunduz U, Eroglu I et al. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001. International Journal of Hydrogen Energy, 2000,25 : 1035 -1041.
    [72] Turkarslan S, Yigit D O, Aslan K et al. Photobiological hydrogen production by Rhodobacter sphaeroides O.U.001 by utilization of waste water from milk industry. Biohydrogen, 1998 (1) ,151 - 156.
    [73] Zhu H, Suzuki T, Tsygankov A et al. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. International Journal of Hydrogen Energy, 1999, 24: 305-310.
    [74] Sasikala K, Ramana C V. Photoproduction of hydrogen from waste water of a lactic acid fermentation plant by a purple non-sulfur photosynthetic bacterium, Rhodobacter sphaeroides O.U.001. Indian Journal of Experimental Biology, 1991, 29: 74-75.
    [75] Sunita M, Mitra CK. Photoproduction of hydrogen by photosynthetic bacteria from sewage and wastewater. Journal of Biosciences, 1993, 18(1): 55-60.
    [76] Fascetti E, Addario D E, Todini O et al. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. International Journal of Hydrogen Energy, 1998, 23(9): 753-760.
    [77] Eroglua E, Gunduzb U, Yucelb M et al. Photobiologieal hydrogen production by using olive mill wastewater as a sole substrate source. International Journal of Hydrogen Energy, 2004, (29): 163-171.
    [78] Nakada E, Asada Y, Arai T et al. Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production. Journal of Fermentation and Bioengineering, 1995, 80: 53-57.
    [79] Toshihiko K, Masayasu A, Tatsuid W et al. Hydrogen production by combining two types of photosynthetic bacteria with different characteristics. International Journal of Hydrogen Energy, 2002, 27: 1303-1308.
    [80] 张明,史家梁.光合细菌光合产氢机理研究进展.应用与环境生物学报,1999,5(suppl):25-29.
    [81] 孙琦,徐向阳,焦扬文.光合细菌产氢条件研究.微生物学报,1995,(35):65-73.
    [82] 梁超,常春.环境治理与保护中的工程菌研究进展:环境技术,2003,(5):31-35.
    [83] 沈向阳.基因工程在海拉尔地区环境污染治理中的应用前景.呼伦贝尔学院学报,2003,11(6):94-96.
    [84] 程树培,严峻,郝春博等.环境生物技术信息学进展.环境污染治理技术与设备,2002,3(11):92-94.[85] 邵凤琴,韩庆祥.酶工程在污染治理中的应用.石油化工高等学校学报,2003,16(2):36-40.
    [86] 王建龙.耐辐射基因工程菌Deinococcus radiodurans及其在环境修复中的应用.辐射研究与辐射工艺学报,2004,22(5):257-260.
    [87] 高芬芳,徐洪兰,罗福堂.利用微生物降解含汞废物的分子机制研究.国外医学卫生学分册,2004,31(6):330-336.
    [88] 伍朝晖,杨幼慧,钟士清.生物可降解塑料的发酵生产研究进展.微生物学通报,2000,27(3):220-223.
    [89] Harper L L, Mc Daniel C S, Miller C E et al. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. ATCC 27551 contain identical opd genes. Applied Environmental Microbiology, 1988, 54(10): 2586-2589.
    [90] Horne I, Qiu X H, Russell R. J et al. The phosphotriesterase gene opd A in Agrobacterium radiobacter P230 is transposable. FEMS Microbiology Letters, 2003, 222(1): 1-8.
    [91] 柏文琴,何凤琴,邱星辉.有机磷农药生物降解研究进展.应用与环境生物学报,2004,10(5):675-680.
    [92] Richins R D, Kaneva I, Mulchandani A. Biodegradation of organophosphorus pesticides by surface C expressed organophosphorus hydrolase. Nature Biotechnology, 1997, 15: 984-987.
    [93] Chen W, Mulchandani A. The use of live biocatalysts for pesticide detoxification. Trends of Biotechnology, 1998, 16: 71-76.
    [94] Mulchandani A, Kneva I, Chen W. Detoxification of orgauophosphatenrve agents by immobilized Escherichia coli with surface Cexpressd organophosphorus hydrolase. Biotechnology and Bioengineering, 1999, 63(2): 216-223.
    [95] Sioudi B, Grimsley JK, Lai K et al. Modification of near active site residues in organophosphorus hydrolase reduce metalstoichiome try and alters substrate specificity. Biochemistry, 1999, 38: 2866-2872.[96] Cho C M, Mulchandani A, Chen W. Bacterial cell surface display of organophosphous hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Applied Environmental Microbiology, 2002, 68(4): 2026-2030.
    [97] 黄志立.基因工程菌发酵过程中的不稳定性研究.深圳职业技术学院学报,2002,3:23-28.
    [98] 史悦,于慧敏,田卓玲等.产腈水合酶重组大肠杆菌的质粒稳定性研究.中国生物工程杂志,2005,25(8):70-75.
    [99] 张晓明,焦新安,唐丽华等.下调bla表达提高pcDNA3.1+在重组菌中的稳定性.微生物学通报,2005,32(5):51-55.
    [100] Yu H M, Shi Y, Sun X D, et al. Effect of poly(β hydroxybutyrate) accumulation on the stability of a recombinant plasmid in Escherichia coli. Journal of Bioscience and Bioengineering, 2003, 96(2): 179-183.
    [101] 刘志伟,郭勇,张晨.培养过程对基因工程菌稳定性的影响.微生物学通报,2001,28(2):86-89.
    [102] 刘芳,李红旗,沈忠耀.产PHB重组大肠杆菌质粒稳定性的研究.清华大学学报(自然科学版),1997,37(6):46-49.
    [103] Baur B, Hanselmann K, Schlimme W, et al. Genetic transformation in fresh water: Escherichia coli is able to develop natural competence. Applied Environmental Microbiology, 1996, 62: 3673-3678.
    [104] Nielsen K M, Wreele T M, Berg T N, et al. Natural tramsformation and availability of transforming DNA to acinetobacter calcoaceticus in soil micro-cosms. Applied Environmental Microbiology, 1997, 63(5): 1945-1952.
    [105] 李文化,谢志雄,郭培懿等.大肠杆菌在低Ca~(2+)条件下对外源DNA的摄取.武汉大学学报(理学版),2001,47(2):247-250.
    [106] Liu G F, Zhou J T, Wang J, et al. Bacterial decolorization of azo dyes by Rhodopseudomonas palustris. World Journal of Microbiology and Biotechnology, 2005 (online published).
    [107] 杜翠红.沼泽红假单胞菌RubisCO基因的克隆与表达及其固定二氧化碳特性的研究:(博士学位论文).大连:大连理工大学,2003.[108] Du C H , Zhou J T, Wang J, et al. Construction of a genetically engineered microorganism for CO_2 fixation using a Rhodopseudomonas/Escherichia coli shuttle vector. FEMS Microbiology Letters, 2003, 225(1): 69-73.
    [109] Sambrook J, Fritsch E F, Maniatis T. Molecular cloning, a laboratory manual. Woodbury: Cold Spring Harbor Laboratory Press, 1989.
    [110] Oh Y K, Seol E H, Kim M S, et al. Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. International Journal of Hydrogen Energy, 2004, 29(11): 1115-1121.
    [111] Kim M K, Choi K M, Yin C R, et al. Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnology Letters, 2004, 26(10): 819-822.
    [112] Carlozzi P, Sacchi A. Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. Journal of Biotechnology, 2001, 88: 239-249.
    [113] Cheng A X, Jia Z X, Guo H Y, et al. Triplet excitation transfer between carotenoids in the LH2 complex from photosynthetic bacterium Rhodopseudomonas palustris. Photosynthesis Research, 2004, 82(1): 83-94.
    [114] McGuirl M A, Lee J C, Lyubovitsky J O, et al. Cloning, heterologous expression, and characterization of recombinant class Ⅱ cytochromes c from Rhodopseudomonas palusrris. Biochimica et Biophysica Acta (BBA)-General Subjects, 2003, 1619(1): 23-28.
    [115] Mukhopadhyay M, Patra A, Paul A. Production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Rhodopseudomonas palustris SP5212. World Journal of Microbiology and Biotechnology, 2005, 21(5): 765-769.
    [116] 潘耀谦,金春彬.聚合酶链反应(PCR)技术体系研究进展,动物医学进展,1999,20(4):11-17.
    [117] 孙克非,郑平,钱新民等.沼泽红假单胞菌染色体的提取.生物技术,2000,10(3):47-48.[118] 沈薇,杨树林,宁长发等.铜绿假单胞菌(Pseudomonas aeruginosa)BS-03的诱变育种及产鼠李糖脂类生物表面活性剂的摇瓶工艺初探.食品与发酵工业,2004,30(12):26-31.
    [119] 周群英,高廷耀.环境工程微生物学.第二版.北京:高等教育出版社,2000
    [120] Pornpimon K, Yoshiteru H, Hisako N, Piao Y Z, Hisayo O, Mitsuo Y, Yoshikatu M. Characterization of pRGO1, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vecter system in propionibacteria. Applied Environmental Microbiology, 2000, 66: 4688-4695

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700