聚合物化学结构以及聚集体形貌控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料被广泛地应用于现代社会的各个领域,包括:航天,军工,民用等方面。而高分子材料的性能与聚合物的结构以及聚集态形貌是密切相关的。研究聚合物的结构以及聚集态形貌与其性能的关系对设计和制备符合人们需求的高分子材料具有重要意义。因此,本论文就聚合物拓扑结构控制以及聚合物聚集体形貌控制两个方面开展工作,并取得了以下研究成果:
     1)通过链转移试剂存在下的原子转移自由基自缩合乙烯基聚合,成功地实现了超支化聚合物的定向、控制增长。相对于其它方法诸如逐步加料法等,这种方法简单易行,具有明显的优势,且从根本上解决了超支化聚合物不能控制增长的问题。通过这个方法,我们成功地合成了超支化—线形—超支化哑铃型聚合物。该方法也为超支化聚合物在表面改性的应用提供了一新的方法。
     2)对引发剂型单体聚合,发现了一种简单可行的控制产物的拓扑结构的方法。将链转移试剂引入到引发剂型单体的原子转移自由基自缩合乙烯基聚合反应体系中,当CuBr/RAFT比例小于1时,将得到线形聚合物,而当CuBr/RAFT试剂比例大于1时,得到超支化聚合物。此方法仅仅需要改变催化剂的含量即可对聚合物的拓扑结构进行控制。
     3)研究了PEG-Br引发4-乙烯基吡啶和交联剂N,N-甲叉双丙烯酰胺在乙醇/水混合溶剂(1:1体积比)中的原子转移自由基分散聚合。发现聚合过程可分为两个阶段:在一小时内,是均相聚合反应,聚合速度为1.21 mol·L-1·h-1;反应一小时后,聚合反应速度将急剧地降低到0.009 mol·L-1·h-1,这是因为随着聚合反应的进行,嵌段共聚物发生相分离,形成以PEO为壳、P4VP为核的胶束。利用PEG-b-(4VP-co-MBA)胶束中的P4VP链段和金属间的强络合作用,制备了聚合物胶束/金纳米离子的复合物,并发现增大金离子的含量会促进胶束间的聚集。
     4)发现了一种简单、可行的制备高分子纳米材料的方法。在RAFT分散聚合反应中,适当调节聚合条件和投料比例,可制备不同的纳米聚合物材料。形成过程存在两个相变过程:相分离形成球形胶束,球形胶束重新组织形成其他纳米结构材料。我们简称这两个相变过程为PISR。嵌段聚合物的溶液自组装的驱动力为溶度参数;而PISR过程的主要驱动力为嵌段聚合物的化学组成变化。该方法得到的高分子纳米材料浓度高达500 mg/mL,对于嵌段聚合物的溶液自组装,这个浓度是不可想象的。这种方法制备的高分子纳米材料非常稳定,在超过10个月以后仍然稳定;干燥后非常容易再分散。为高分子纳米材料的进一步实际应用打下了基础。
     5)发明了一种制备高分子蛋黄/壳纳米粒子的简单易行的方法。调节PISR聚合体系中的AIBN/RAFT试剂比例即可实现蛋黄/壳纳米粒子的制备。研究发现,在制备蛋黄/壳纳米粒子时,AIBN/RAFT试剂比例存在最优值。只有当AIBN/RAFT试剂比例等于1时,所得的蛋黄/壳纳米粒子最均匀。当AIBN/RAFT试剂比例等于1/10时,得到囊泡。当AIBN/RAFT试剂比例等于2/1时,得到多空穴的高分子微球。当AIBN/RAFT试剂比例进一步增加到4/1时,得到实心的高分子微球。
Polymer materials have been applied extensively in many fields, including space technologies, military industry and so on. It is well known that the properties of polymer materials rely mainly on their chemical structures and morphologies of aggregates. So investigation on control of the chemical structures and morphologies of the aggregates is highly desired. And if the relationships of chemical structures, morphologies of the aggregates with properties of the polymer materials can be established, we will design and prepare the polymer materials with expected properties for special application based on their structures and morphologies.
     So this thesis focuses on two main projects, control of the chemical structures of polymers and morphologies of polymeric aggregates. And the main achievements are as follows:
     1) Control of hyperbranched chain growth on both ends of PEO has been achieved in the ATRP of inimer using macro RAFT agent. With this simple and feasible synthetic strategy, the hyperbranched-linear-hyperbranched triblock copolymers have been prepared successively. Principle of this synthetic strategy is interrupting propagation of the hyperbranched chain radicals by transformation active species of their chains onto the functional group of linear PEO, thus propagation of hyperbranched chains is restructed, and the propagation at the end of PEO increases relatively. This provides a convenient method for grafting hyperbranched polymers on the polymer chains or solid material surface.
     2) Control topological structure of polymers has been achieved simply by tuning feed molar ratio of CuBr to macro RAFt agent in SCVP of inimer. When the feed molar ratio of CuBr to RAFT sites is less than 1, with aid of CuBr/PMDETA, a few of inimer acted as initiator in the RAFT polymerization of inimer, and the linear triblock copolymers with one bromine in each inimer units were produced. For this ratio larger than 1, the initiating sites in PEO chains initiated the SCVP of inimer to form dumbbell polymers. Thus, the topologies of the triblock copolymer can be tuned from linear to dumbbell polymers just by variation of feed molar ratio of RAFT sites to CuBr.
     3) The atom transfer radical dispersion polymerization (ATRP) of 4-vinylpyridine (4VP) has been carried out in ethanol/H2O mixture. The system displayed two stages of polymerization; the first stage is the formation of diblock copolymer with the polymerization rate of 1.21 mol·L-1·h-1 before 1h polymerization, and the second is the main polymerization in micelles formed from the aggregation of the resultant block copolymers with the polymerization rate of 0.009 mol·L-1·h-1. The Au/polymer composite nanoparticles were successfully prepared by complexation of P4VP with HAuCl4 and following reduction with NaBH4.
     4) Polymeric nanomaterials with multiple morphologies have been prepared by one-pot RAFT dispersion polymerization. The results of LLS, TEM and FESEM show existence of two phase transitions, the phase separation and re-organization of the formed spherical micelles during the formation of various nanomaterials. The1H NMR and GPC traces evidenced that every transition is related to the growth of the second PS chains, so the phase sparation and the re-organization are induced by polymerization. By appropriately selecting concentration of the monomer and the feed ratio, the uniform nanorods and vesicles have been prepared. The preparation of polymeric nanomaterials can be performed in concentration as high as 0.5 g/mL, this makes the extensive investigations of application possible.
     5) A facile and feasible approach for preparation of polymeric yolk/shell nanomaterials has been developed via one-pot RAFT polymerization induced self-assembly and reorgnization. The different yolk/shell morphologies could be created and tuned just by varying the ratio of AIBN/P4VP. And the ratio of AIBN/P4VP= 1 is the best condition to prepare polymeric yolk/shell nanomaterials. This strategy is more versatile in comparison with the template methods, and showed great potential for preparation of such nanostructural materials at large scale.
引文
1. Ziegler, K.1936 Die Bedeutung der alkalimetallorganischen Verbindungen fur die Synthese[J] Angew. Chem.,49:499-502.
    2. Szwarc, M.; Levy, M.; Milkovich, R.1956. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers[J]. J. Am. Chem. Soc.,78: 2656-2657.
    3. Wang JS, Matyjaszewski K.1995. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes[J]. J. Am. Chem. Soc., 117:5614-5615.
    4. Kato M, Kamigaito M, Sawamoto M et al.1995. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenyl-phosphine)ruthenium(Ⅱ)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system:possibility of living radical polymerization[J]. Macromolecules,28:1721-1723.
    5. Xia JH, Matyjaszewski K.1997. Controlled/"living" radical polymerization. Atom transfer radical polymerization using multidentate amine ligands[J]. Macromolecules,30:7697-7700.
    6. Chiefari J, Chong YK, Ercole F et al.1998. Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process[J]. Macromolecules,31: 5559-5562.
    7. Le TP, Moad G, Rizzardo E et al.1998. Polymerization with living characteristics. PCT Int. Appl. WO:9801478[P].
    8. Chiefari J, Mayadunne RT, Moad G et al.1999. Polymerization with living characteristics and polymer made therefrom. PCT Int. Appl. WO:9931144[P].
    9. De Leon-Saenz E, Morales G, Guerrero-Santos R et al.2000. New insights into the mechanism of 1,2-bis(trimethyl-silyloxy)-tetraphenylethane-induced free radical polymerization:application to the synthesis of block and graft copolymers[J]. Macromol. Chem. Phys.,201:74-83.
    10. Yamada B, Nobukane Y, Miura Y.1998. Radical polymerization of styrene mediated by 1,3,5-triphenylverdazyl[J]. Polym. Bull.,41:539-544.
    11. Steenbock M, Klapper M, Mullen K.1998. Triazolinyl radicals-new additives for controlled
    radical polymerization[J]. Macromol. Chem. Phys.,199:763-769.
    12. Puts RD, Sogah DY.1996. Control of living free-radical polymerization by a new chiral nitroxide and implications for the polymerization mechanism[J]. Macromolecules,29: 3323-3325.
    13. Otsu T, Yoshida M, Kuriyama A.1982. Living radical polymerizations in homogeneous solution by using organic sulfides as photoiniferters[J]. Polym. Bull.,7:45-50.
    14. Otsu T, Yoshida M.1982. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations:Polymer design by organic disulfides as iniferters[J]. Macromol. Rapid Commun.,3:127-132.
    15. Curran DP.1992. Comprehensive organic synthesis[M], Pergamon, New York.
    16. Patten TE, Xia JH, Abernathy T. et al.1996. Polymers with very low polydispersities from atom transfer radical polymerization[J]. Science,272:866-868.
    17. Chiefari J, Chong YK, Ercole F et al.1998. Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process[J]. Macromolecules,31: 5559-5562.
    18. Otsu T, Yoshida M.1982. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations:Polymer design by organic disulfides as iniferters [J]. Macromol. Chem. Rap common,3:127-132.
    19. Otsu T, Yoshida M, Tazaki T.1982. A model for living radical polymerization [J]. Macromol. Chem. Rap common,3:133-140.
    20. Turner S, Blevins RW.1990. Photo initiated block copolymer formation using dithiocarbamate free radical chemistry [J]. Macromolecules,23:1856-1859.
    21. Lambrinos P, Tardi M, Polton A, Sigwalt P.1990. The mechanism of the polymerization of n.butyl acrylate initiated with N, N-diethyl dithiocarbamate derivatives [J]. Eur Polym. J.,26: 1125-1135.
    22. Otsu T, Matsunaga T, kuriyama A. et al.1989. Living radical polymerization through the use of iniferters:Controlled synthesis of polymers [J]. Eur. Polym. J.,25:643-650.
    23. Otsu T, Kuriyama A.1984. Living mono-and biradical polymerizations in homogeneous system synthesis of AB and ABA type block copolymers[J]. Polym. Bull.,11:135-142.
    24. Ostu T, Kuriyama A.1985. Polymer design by iniferter technique in radical polymerization: synthesis of AB and ABA block copolymers containing random and alternating copolymer sequences[J]. Polym. J.,17:97-104.
    25. Sebenik A.1998. Living free-radical block copolymerization using thio-iniferters[J]. Prog. Polym. Sci.,23:875-917.
    26. Georges MK, Veregin RPN, Kazmaier PM. et al.1993. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules,26:2987-2988.
    27. Hawker CJ.1994. Molecular Weight Control by a "Living" Free-Radical Polymerization Process[J]. J. Am. Chem. Soc.,116:11185-11186.
    28. Hawker CJ, Barclay GG, Orellana A. et al.1996. Initiating systems for nitroxide-mediated "living" free radical polymerizations:Synthesis and evaluation[J].Macromolecules,29: 5245-5254.
    29. Benoit D, Chaplinski V, Braslau R. et al.1999. Development of a universal alkoxyamine for "living" free radical polymerizations[J]. J. Am. Chem. Soc.,121:3904-3920.
    30. Benoit D, Grimaldi S, Robin S et al.2000. Kinetics and Mechanism of controlled free-radical polymerization of styrene and n-butyl acrylate in the presence of an acyclic β-phosphonylated nitroxide[J]. J. Am. Chem. Soc.,122:5929-5939.
    31. Farcet C, Lansalot M, Charleux B et al.2000. Mechanistic aspects of nitroxide-mediated controlled radical polymerization of styrene in miniemulsion, using a water-soluble radical initiator[J]. Macromolecules,33:8559-8570.
    32. Benoit D, Harth E, Fox P et al.2000. Accurate structural control and block formation in the living polymerization of 1,3-dienes by nitroxide-mediated procedures[J]. Macromolecules,33: 363-370.
    33. Flory PJ.1952. Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-Bf-1 type units[J]. J. Am. Chem. Soc.,74:2718-2723.
    34. Kim YH,1987. Highly branched polyarylene contg. halogen gps.-useful as viscosity control agent in polymer blends. US Pat:4857630.
    35. Kim YH,1998. Hyperbranchecs polymers 10 years after[J]. J. Polym. Sci., Part A:Polym. Chem.,36:1685-1698.
    36. Gao C, Yan DY.2004. Hyperbranched polymers:from synthesis to applications[J]. Prog. Polym. Sci.29:183-275.
    37. Muzafarov AM, Golly M, Moller M,1995. Degradable hyperbranched poly(bis(undecenyloxy)methylsilane)s[J]. Macromolecules,28:8444-8446.
    38. Kim YH, Webster OW,1992. Hyperbranched polyphenylenes[J]. Macromolecules,25:5561.
    39. Kim YH, Webster OW.1990. Water-soluble hyperbranched polyphenylene:"A unimolecular micelle"?[J] J. Am. Chem. Soc.,112:4592-4593.
    40. Kitajyo Y, Nawa Y, Tamaki M, et al.2007. A unimolecular nanocapsule:Encapsulation property of amphiphilic polymer based on hyperbranched polythreitol[J]. Polymer,48: 4683-4690.
    41. Hoque MA, Cho YH, Kawakami Y.2007. High performance holographic gratings formed with novel photopolymer films containing hyper-branched silsesquioxane[J]. React. Funct. Polym.,67:1192-1199.
    42. Gao Q, Liu PS.2007. Crystalline-amorphous phase transition of hyperbranched polyurethane phase change materials for energy storage[J]. J. Mater. Sci.,42:5661-5665.
    43. Xu RL, Liu HW, Liu SY, et al.2008. Effect of core structure on the fluorescence properties of hyperbranched poly(phenylene sulfide)[J]. J. Appl. Polym. Sci.,107:1857-1864.
    44. Taranekar P, Qiao QQ, Jiang H, et al.2007. Hyperbranched conjugated polyelectrolyte bilayers for solar-cell applications[J]. J. Am. Chem. Soc.,129:8958-8959.
    45. Lee TW, Kwon Y, Park JJ, et al.2007. Novel hyperbranched phthalocyanine as a hole injection nanolayer in organic light-emitting diodes[J]. Macromol. Rapid Commun.,28: 1657-1662.
    46. Thompson CH, Keeley DL, Voit B, et al.2008. Hyperbranched polyesters with internal and exo-presented hydrogen-bond acidic sensor groups for surface acoustic wave sensors[J]. J. Appl. Polym. Sci.,107:1401-1406.
    47. Deng LB, Wang L, Yu HJ, et al.2008. Synthesis and electrochemical properties of phloroglucin-based ferrocenyl compounds and their application in anion recognition[J]. J. Appl. Polym. Sci.,107:1539-1546.
    48. Yang YK, Xie XL, Yang ZF, et al.2007. Controlled synthesis and novel solution rheology of hyperbranched poly(urea-urethane)-functionalized multiwalled carbon nanotubes[J]. Macromolecules,40:5858-5867.
    49. Mao J, Yao JN, Wang LN, et al.2008. Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier[J]. J. Colloid Interface Sci.,319: 353-356.
    50. Sun YY, Liu YQ, Zhao GZ, et al.2008. Effects of hyperbranched poly(amido-amine)s structures on synthesis of Ag particles[J]. J. Appl. Polym. Sci.,107:9-13.
    51. Xue YH, Xu TW, Fu RQ, et al.2007. Catalytic water dissociation using hyperbranched aliphatic polyester (Boltorn series) as the interface of a bipolar membrane[J]. J. Colloid Interface Sci.316:604-611.
    52. Kim YH, Webster OW,1988. Hyperbranched polyphenylenes[J]. Polym. Prepr.,29(2): 310-311.
    53. Walczak M, Lechowicz JB, Galina H.2007. Hyperbranched aromatic polyesters[J]. Macromol. Symp.,256:112-119.
    54. Galina H, Lechowicz JB, Walczak M.2005. Methods of narrowing the molecular size distribution in hyperbranched polymerization involving AB2 and B2 monomers[J]. J. Macromol. Sci. Part B:Phys.,44:925-940.
    55. Emrick T, Chang HT, Frechet JMJ.2000. The preparation of hyperbranched aromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from ABn and A2+B3 monomers[J]. J. Polym. Sci. Part A:Polym. Chem.,38:4850-4869.
    56. Dai L, Winkler B, Dong L, et al.2001. Conjugated polymers for light-emitting applications[J]. Adv. Mater.,13:915-925.
    57. Lin T, He Q, Bai F, et al.2000. Design, synthesis and photophysical properties of a hyperbranched conjugated polymer[J]. Thin Solid Films,363:122-125.
    58. Tanaka S, Takeuchi K, Asai M, et al.2001. Preparation of hyperbranched copolymers constituted of triphenylamine and phenylene units[J]. Synth. Met.,119:139-140.
    59. Fang J, Kita H, Okamoto K.2000. Hyperbranched polyimides for gas separation applications.1. Synthesis and character ization[J]. Macromolecules,33:4639-4646.
    60. Frechet JMJ, Henmi M, Gitsov I, et al.1995. Self-condensing vinyl polymerization:An approach to dendritic materials[J]. Science,269:1080-1083.
    61. Foreman EA, Puskas JE, Kaszas G.2007. Synthesis and characterization of arborescent (hyperbranched) polyisobutylenes from the 4-(1,2-oxirane-isopropyl)styrene inimer[J]. J. Polym. Sci.. Part A:Polym. Chew.,45:5847-5856.
    62. Baskaran D.2001. Synthesis of hyperbranched polymers by anionic self-condensing vinyl polymerization[J]. Macromol. Chem. Phys.,202:1569-1575.
    63. Baskaran D.2003. Hyperbranched polymers from divinylbenzene and 1,3-diisopropenylbenzene through anionic self-condensing vinyl polymerization[J]. Polymer, 44:2213-2220.
    64. Jia ZF, Yan DY.2005. Hyperbranched polymers generated from oxyanionic vinyl polymerization of commercially available methacrylate inimers[J]. J. Polym. Sci., Part A: Polym. Chem.,43:3502-3509.
    65. Simon PFW, Muller AHE, Pakula T.2001. Characterization of highly branched poly(methyl methacrylate) by solution viscosity and viscoelastic spectroscopy[J]. Macromolecule,34: 1677-1684.
    66. Simon PFW, Muller AHE.2001. Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization[J]. Macromolecules,34: 6206-6213.
    67. Simon PFW, Muller AHE.2004. Kinetic Investigation of self-condensing group transfer polymerization[J]. Macromolecules,37:7548-7558.
    68. Hawker CJ, Frechet JMJ, Grubbs RB, et al.1995. Preparation of hyperbranched and star polymers by a "living", self-condensing free radical polymerization[J]. J. Am. Chem. Soc., 117:10763-10764.
    69. Li CM, He JP, Li L, et al.1999. Controlled radical polymerization of styrene in the presence of a polymerizable nitroxide compound[J]. Macromolecules,32:7012-7014.
    70. Tao YF, He JP, Wang ZM, et al.2001. Synthesis of branched polystyrene and poly(styrene-b-4-methoxystyrene) by nitroxyl stable radical controlled polymerization[J]. Macromolecules,34:4742-4748.
    71. Gaynor SG, Edelman S, Matyjaszewski K.1996. Synthesis of branched and hyperbranched polystyrenes[J]. Macromolecules,29:1079-1081.
    72. Weimer MW, Frechet JMJ, Gitsov I.1998. Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization:Highly branched vs. linear poly[4-(chloromethyl) styrene] by metal-catalyzed "living" radical polymerization[J]. J. Polym. Sci., Part A:Polym. Chem.,36: 955-970.
    73. Matyjaszewski K, Gaynor SG, Kulfan A, et al.1997. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization.1. Acrylic AB* monomers in "living" radical polymerizations[J]. Macromolecules,30:5192-5194.
    74. Matyjaszewski K, Gaynor SG, Muller AHE.1997. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization.2. Kinetics and mechanism of chain growth for the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate[J]. Macromolecules,30:7034-7041.
    75. Matyjaszewski K, Gaynor SG.1997. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization.3. Effect of reaction conditions on the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate[J]. Macromolecules,30: 7042-7049.
    76. Jiang BB, Yang Y, Jin X, et al.2001. Preparation of hyperbranched polymers by self-condensing vinyl polymerization[J]. Eur. Polym. J.,37:1975-1983.
    77. Jiang BB, Yang Y, Deng J, et al.2002. Preparation of hyperbranched polymers by atom transfer radical polymerization[J]. J. Appl. Polym. Sci.,83:2114-2123.
    78. Suzuki M, Ii A, Saegusa T.1992. Multibranching polymerization:Palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine[J]. Macromolecules,25:7071-7072.
    79. Suzuki M, Yoshida S, Shiraga K, et al.1998. New ring-opening polymerization via a π-allylpalladium complex.5. Multibranching polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine[J]. Macromolecules,31:1716-1719.
    80. Bergbreiter DE, Kippenberger AM, Lackowski WM.2005. New syntheses of hyperbranched polyamine grafts[J]. Macromolecules,38:47-52.
    81. Tokar R, Kubisa P, Penczek S, et al.1994. Cationic polymerization of glycidol:Coexistence of the activated monomer and active chain end mechanism[J]. Macromolecules,27:320-322.
    82. Sunder A, Hanselmann R, Frey H, et al.1999. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization[J]. Macromolecules,32: 4240-4246.
    83. Kainthan RK, Muliawan EB, Hatzikiriakos SG, et al.2006. Synthesis, characterization, and viscoelastic properties of high molecular weight hyperbranched polyglycerols[J]. Macromolecules,39:7708-7717.
    84. Yan DY, Hou J, Zhu XY, et al.2000. A new approach to control crystallinity of resulting polymers:Self-condensing ring opening polymerization[J]. Macromol. Rapid Commun.,21: 557-561.
    85. Liu MJ, Vladimirov N, Frechet JMJ.1999. A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer:4-(2-hydroxyethyl)-ε-caprolactone[J]. Macromolecules,32:6881-6884.
    86. Trollsas M, Lowenhielm P, Lee VY, et al.1999. New approach to hyperbranched polyesters: Self-condensing cyclic ester polymerization of bis(hydroxymethyl)-substituted ε-caprolactone[J]. Macromolecules,32:9062-9066.
    87. Yu XH, Feng J, Zhuo RX.2005. Preparation of hyperbranched aliphatic polyester derived from functionalized 1,4-dioxan-2-one[J]. Macromolecules,38:6244-6247.
    88. Parzuchowski PG, Grabowska M, Tryznowski M, et al.2006. Synthesis of glycerol based hyperbranched polyesters with primary hydroxyl groups[J]. Macromolecules,39:7181-7186.
    89. Zhang,L.;Eisenberg,A.1995. Multiple Morphologies of'Crew-Cut"Aggregates of Polystyrene-b-poly(acrylic acid)Block Copolymers[J]. Science,268:1728-1731.
    90. Zhang,L.;Eisenberg,A.1996. Multiple Morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-6-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. J.Am.Chem.Soc.,118:3168-3181.
    91. Zhang L.Eisenberg A.1996. Ion-induced morphological changes in"crew-cut"aggregates of amphiphilic block copolymer[J]. Science,272:1777-1779.
    92. Zhang L, Eisenberg A.1996. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions[J]. Macromolecules,29: 8805-8815.
    93. Zhang L, Eisenberg A.1998. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polym.Adv.Technol.,9:677-699.
    94. Yu K, Eisenberg A.1998. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution[J]. Macromolecules,31:3509-3518.
    95. Cameron NS, Eisenberg A, Brown GR.2002. Amphiphilic block copolymers as bile acid sorbents:2.Polystyrene-b-poly(N,N,N-trimethylammoniumethylene acrylamide chloride): Self-assembly and application to serum cholesterol reduction[J]. Biomacromolecules,3: 124-132.
    96. Zhang L, Bartels C, Yu Y, Shen H, Eisenberg A.1997. Mesosized crystal-like structure of hexagonally packed hollow hoops by solution self-assembly of diblock copolymers[J]. Phys.Rev.Lett.,79:5034-5037.
    97. Shen H, Eisenberg A.2000. Control of architecture in block copolymer vesicles[J]. Angew.Chem.Int.Ed.,39:3310-3312.
    98. Luo L, Eisenberg A.2001. Thermodynamic stabilization mechanism of block copolymer vesicles[J]. J.Am.Chem.Soc.123:1012-1013.
    99. Luo L, Eisenberg A.2002. One-step preparation of block copolymer vesicles with preferentially segregated acidic and basic corona chains[J]. Angew.Chem.Int.Ed. 41:1001-1004.
    100. Discher DE,Eisenberg A.2002. Polymer Vesicles[J]. Science,297:967-973.
    101..Riegel IC, Eisenberg A, Petzhold CL, Samios D.2002. Novel bowl-shaped morphology of crew-cut aggregates from amphiphilic block copolymers of styrene and 5-(N,N-diethylamino)isoprene[J]. Langmuir,18:3358-3363.
    102. Villacampa M, Quintana JR, Salazar R, et al.1995. Micellization of polystyrene-b-poly(ethylene/butylene)-b-polystyrene triblock copolymers in 4-methyl-2-pentanone[J]. Macromolecules,28:1025-1031.
    103. Cameron NS, Corbierre MK, Eisenberg A.1999. Asymmetric amphiphilic block copolymers in solution:a morphological wonderland[J]. Can. J. Chem.-Rev. Can. Chem.,77:1311-1326
    104. Burke S, Shen HW, Eisenberg A.2001. Multiple vesicular morphologies from block copolymers in solution[J]. Macromol. Symp.,175:273-283
    105. Yu K, Eisenberg A.1996. Multiple morphologies in aqueous solutions of aggregates of PS-b-PEO[J]. Macromolecules,29:6359-6361.
    106. Yu K, Zhang L, Eisenberg A.1996. Novel Morphologies of crew-cut aggregates of amphiphilic diblock copolymers in dilute solution[J].12:5980-5984.
    107. Tao J, Stewart S, Liu GJ et al.1997. Star and cylindrical micelles of poly styrene-block-poly(2-cinnamoylethyl methacrylate) in cyclopentane[J]. Macromolecules, 30:2738-2745.
    108. Ding JF, Liu GJ, Yang ML.1997. Multiple morphologies of polyisoprene-block-poly(2-cinnamoylethyl methacrylate) and polystyrene-block-poly(2-cinnamoylethyl methacrylate) micelles in organic solvents[J]. Polymer,38:5497-5502.
    109. Li ZC, Liang YZ, Li FM.1999. Multiple morphologies of aggregates from block copolymers containing glycopolymer segments[J]. Chem. Common.,16:1557-1558.
    110. Liang YZ, Li ZC, Li FM.2000. Morphological behavior for micelle from polystyrene-b-poly [2-(beta-D-glucopyranosyloxy)ethyl acrylate] upon changing the copolymer concentration[J]. Chem. Lett.,4:320-321.
    111. Zhang WQ, Shi LQ, An YL, et al.2004. A convenient method of tuning amphiphilic block copolymer micellar morphology[J]. Macromolecules,37:2551-2557.
    112. Yu K, Eisenberg A.1998. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution[J]. Macromolecules,31:3509-3518.
    113.曹同玉,刘庆普,胡金生,1997.聚合物乳液合成原理性能及应用[M]北京:化学工业出版社.
    114. Ober CK, Lok KP.1987. Formation of large monodisperse particles by dispersion polymerization[J]. Macromolecules,20,268-273.
    115. Li YJ, Huang SM, Kan CY.2005. Preparation of micron-sized monodisperse poly(styrene-methacrylic acid) particles in isopropanol/water media[J]. China Synthetic Rubber Industry,28(4):318-322.
    116. Goodwin JW, Hearn J, Ho CC, Ottewill RW.1974. Study on the preparation and characterization of monodisperse polystyrene latices[J]. Colloid Poly Sci,25:464-471.
    117. Lok PK, Ober CK.1985. Particle size control in dispersion polymerization of polystyrene[J]. Canadian Journal of Chemistry,63:209-216.
    118.Okubo M, Ikegami K, Yamymoto Y.1989. The colloids were synthesized by dispersion polymerization[J]. Colloid Polym Sci,267:193-200.
    119. Lu YY, Aasser MS, Vanderhoff JW.1988. Dispersion polymerization, of styrene in ethanol: monomer partitioning behavior and locus of polymerization[J]. J Polym Sci, Part B, Polym Phys,25:1187-1203.
    120. Canelas DA, Desimone JM.1997. Dispersion polymerization of styrene in liquid carbon dioxide stabilized with poly(styrene-b-dimethyl-siloxane)[J]. Macromolecules,30: 5675-5682.
    121. Cao K, Yu J, Li B, et al.2000. Dispersion polymerization of methyl methacrylate[J]. Chem Eng J,78:211-215.
    122. Harris JM, Struck E.1984. Synthesis and characterization of poly(ethylene glycol) derivatives[J]. Journal of Polymer Sci.:Polymer Chemistry Edition,22:241-352.
    123. Gu S, Mogi T, Konno M.1999. Single stage polymerization technique for producing monodisperse micron-Size polymer particles[J]. Colloids Surface A:Physiochem Eng Aspects,153:209-213.
    124. Anthony J.1990. Dispersion polymerization of styrene in polar solvents. Ⅳ. Solvency control of particle size from hydroxypropyl cellulose stabilized polymerization[J]. J Polym Sci, Part A:Polym Chem,28:2485-2500.
    125. Klein SM, Manoharan VN, Pine DJ, Lange FF.2003. Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer[J]. Colloid Polym Sci.,282:7-13.
    126. Tausendfreund I, Banderman F, Siesler HW, Kleinmann M.2002. Anionic dispersion copolymerization of styrene and 1,3-butadiene[J]. Polymer,43:7085-7091.
    127. Liu J, Chen CH, Wang SY, et al.1998. Dispersion polymerization of styrene in aqueous ethanol media using poly(ethylene oxide) macromonomers as a polymerizable stabilizer[J]. Polymer,2:283-289.
    128. Ito K, Tsuchida h.1985. Reactivity of poly(ethylene oxide) macromonomers in radical copolymerization[J].17:827-839.
    129. Ye Q, Zhang XF, Xu CQ.2003. Uniform poly(vinyl acetate) particles by radiation induced dispersion polymerization in polar media[J]. Colloids and Surfaces A:Phsicochem Eng Aspects,226:69-76.
    130. Lee MG.2002. Synthesis of conductive Microspheres by Radiation Polymerization[J]. Polymer,43:4307-4309.
    131. Caputo G, Galia A, et al.2002. Gamma radiation induced polymerization of vinyl monomers in dense CO2[J]. Radiation Phsics and Chemistry,63:45-51.
    132. Chernyshev AV, Soini AE.1998. Free radical dispersion polymerization of styrene in a mixture of 2-propanol and tetrahydrofufan[J]. Journal of Polymer Science,Part A:Polym. Chem.,36:2757-2761.
    133. Jose MS, Jose MA.1995. Dispersion polymerization in polar polvents[J]. Journal of Polymer Science,Part A:Polym. Chem.,33: 1511-1521.
    134. Ho CH, Chen SA, Michael DA.1997. Dispersion polymerization of styrene in alcohol media: Effect of initiator concentration, solvent polarity and temperature on the rate of polymerization. Journal of Polymer Science, Part A:Polym. Chem.,35:2907-2915.
    135. Shen S, Sudol ED, Aasser MS.1993. Control of particle size in dispersion polymerization of methyl methacrylate[J]. J Polym Sci, Part A:Polym. Chem. Ed.,31,1393-1420.
    136. Paine JA.1990. Dispersion copolymerization of styrene in polar sovents[J]. Macromolecules, 23:3109-3117.
    137. Paine JA.1990. Dispersion copolymerization of styrene in polar sovents[J]. Jounal of Colloid and Interface Science,138(1):157-181.
    138. Kazuhiko TS, Miyamori HU, Shiro K.1996. Preparation of micron-size monodisperse Poly(2-hydroxyethyl methacrylate) particles by dispersion polymerization sovents[J]. Journal of Polymer Science, Part A:Polym. Chem.,34:175-182.
    139. Egan LS, Winnik MA, Crouher MD.1986. Synthesis and characterization and kinetic study of poly(vinyl acetate) non-Aqueous dispersion sovents[J]. J Polym Sci.Polym Chem Ed, 24:1895-1913.
    140. Cooper AL, Desimone JM.1996. Polymer synthesis and characterization in liquid supercritical dioxide sovents[J]. Current Opinion in Solid State&Materials Science,1(6): 761-768.
    1. Jikei M, Kakimoto M.2001. Hyperbranched polymers:a promising new class of materials[J]. Prog. Polym. Sci.,26:1233-1285.
    2. Gao C, Yan DY.2004. Hyperbranched polymers:from synthesis to applications[J]. Prog. Polym. Sci.,29:183-275.
    3. Yates CR, Hayes W.2004. Synthesis and applications of hyperbranched polymers[J]. Eur. Polym. J.,40:1257-1281.
    4. Frechet JMJ, Henmi M, Gitsov Ⅱ, Aoshima S, Leduc M, Grubbs RB.1995. Self-condensing vinyl polymerization:an approach to dendritic materials[J]. Science,269:1080-1083.
    5. Jia ZF, Yan DY.2005. Hyperbranched polymers generated from oxyanionic vinyl polymerization of commercially available methacrylate inimers[J]. J. Polym. Sci., Part A:Polym. Chem.,43:3502-3509.
    6. Simon PFW, E Miiller AH.2001. Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization[J]. Macromolecules,34: 6206-6213.
    7. Hawker CJ, Frechet JMJ, Grubbs RB, Dao J.1995. Preparation of hyperbranched and star polymers by aliving, self-condensing free radical polymerization[J]. J. Am. Chem. Soc.,117: 10763-10764.
    8. Matyjaszewski K, Pyun J, Gaynor SG.1998. Preparation of hyperbranched polyacrylates by ATRP:4 The use of zero-valent copper[J]. Macromol. Rapid Commun.,19:665-670.
    9. Xu YY, Gao C, Kong H, Yan DY, Jin YZ, Watts PC P.2004. Poly(N-isopropylacrylamide)-coated carbon nanotubes:temperature-sensitive molecular nanohybrids in water[J]. Macromolecules,37:8846-8853.
    10. Hong CY, You YZ, Pan CY.2005. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization[J]. Chem. Mater., 17:2247-2254.
    11. Hong CY, You YZ, Wu DC, Liu Y, Pan CY.2005. Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP[J]. Macromolecules,38:2606-2611.
    12. Muthukrishnan S, Erhard DP, Mori H, Muller AHE.2006. Synthesis and characterization of surface-grafted hyperbranched glycomethacrylates[J]. Macromolecules,39:2743-2750.
    13. Mori H, Seng DC, Zhang MF, Muller AHE.2002. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces[J]. Langmuir,18:3682-3693.
    14. Sidorenko A, Zhai X, Greco A, Tsukruk VV.2002. Hyperbranched polymer layers as multifunctional interfaces[J]. Langmuir,18:3408-3412.
    15. Khan M, Huck WTS.2003. Hyperbranched polyglycidol on Si/SiO2 surfaces via surface-initiated polymerization[J]. Macromolecules,36:5088-5093.
    16. Liu P, Wang T.2007. Surface-graft hyperbranched polymer via self-condensing atom transfer radical polymerization from zinc oxide nanoparticles[J]. Polym. Eng. Sci.,47:1296-1301.
    17. Bharathi P, Moore JS.1997. Solid-supported hyperbranched polymerization:Evidence for self-limited growth[J]. J. Am. Chem. Soc.,119:3391-3392.
    18. Wurm F, Nieberle J, Frey H.2008. Double-hydrophilic linear-hyperbranched block copolymers based on poly(ethylene oxide) and poly(glycerol)[J]. Macromolecules,41: 1184-1188.
    19. Barriau E, Marcos AG, Kautz H, Frey H.2005. Linear-hyperbranched amphiphilic AB diblock copolymers based on polystyrene and hyperbranched polyglycerol[J]. Macromol. Rapid Commun.,26:862-867.
    20. Marcos AG, Pusel TM, Thomann R, Pakula T, Okrasa L, Geppert S, Gronski W, Frey H. 2006. Linear-hyperbranched block copolymers consisting of polystyrene and dendritic poly (carbosilane) block[J]. Macromolecules,39:971-977.
    21. Sumerlin BS, Neugebauer D, Matyjaszewski K.2005. Initiation efficiency in the synthesis of molecular brushes by grafting from via atom transfer radical polymerization[J]. Macromolecules,38:702-708.
    22. Feldermann A, Coote ML, Stenzel MH, Davis TP, Barner-Kowollik C.2004. Consistent experimental and theoretical evidence for long lived intermediate radicals in living free radical polymerization (RAFT)[J]. J. Am. Chem. Soc.,126:15915-15923.
    23. Gao C, Muthukrishnan S, Li WW, Yuan JY, Xu YY, Muller AHE.2007. Linear and hyperbranched glycopolymer-functionalized carbon nanotubes:synthesis, kinetics, and characterization[J]. Macromolecules,40:1803-1815.
    24. Litvinenko GI, Simon PFW, Muller AHE.1999. Molecular parameters of hyperbranched copolymers obtained by self-condensing vinyl copolymerization.1. Equal rate constants[J]. Macromolecules,32,2410-2419.
    1. Hecht S, Frechet JMJ.2001. Dendritic encapsulation of function:applying Nature's site isolation principle from biomimetics to materials science[J]. Angew. Chem., Int. Ed.,40: 74-91
    2. Gao C, Yan DY.2004. Hyperbranched polymers:from synthesis to applications[J]. Prog. Polym. Sci.,29:183-275.
    3. Zhang YW, Huang W, Zhou YF, Yan DY.2007. A physical gel made from hyperbranched polymer gelator[J]. Chem. Commun.,25:2587-2589.
    4. Twyman LJ, Ge Y,2006. Porphyrin cored hyperbranched polymers as heme protein models[J]. Chem. Commun.,15:1658-1660.
    5. Zhao YL, Shuai XT, Chen CF, Xi F.2004. Synthesis of novel dendrimer-like star block copolymers with definite number of arms by combination of ROP and ATRP[J]. Chem. Commun.,14:1608-1609.
    6. Tsukube H, Suzuki Y, Paul D, Kataoka Y., Shinoda S.2007. Dendrimer container for anion-responsive lanthanide complexation and " on-off" switchable near-infrared luminescence[J]. Chem. Commun.,25:2533-2535.
    7. Jikei M, Kakimoto M.2001. Hyperbranched polymers:a promising new class of materials[J]. Prog. Polym. Sci.,26:1233-1285.
    8. Yates CR, Hayes W.2004. Synthesis and applications of hyperbranched polymers[J]. Eur. Polym. J.,40:1257-1281.
    9. Guan Z, Cotts PM, McCord EF, McLain SJ.1999. Chain walking:A new strategy to control polymer topology[J]. Science,283:2059-2062.
    10. Guan Z,2003. Control of polymer topology through late-transition-metal catalysis[J]. J. Polym. Sci., Part A:Polym. Chem.,41:3680-3692.
    11. Guan Z,2002. Control of polymer topology by chain walking catalysts[J]. Chem.-Eur. J.,8: 3086-3092.
    12. Chen G, Ma X, Guan Z.2003. Synthesis of functional olefin copolymers with controllable topologies by using a chain walking catalyst[J]. J. Am. Chem. Soc.,125:6697-6704.
    13. Guan Z,2002. Control of polymer topology through transition-metal catalysis:Synthesis of hyperbranched polymers by cobalt-mediated free radical polymerization[J]. J. Am. Chem. Soc.,124:5616-5617.
    14. Chen L, Zhu X, Yan DY, Chen Y, Chen Q, Yao Y.2005. Controlling polymer architecture through host-guest interactions[J]. Angew. Chem., Int. Ed.,45:87-90.
    15. Hong CY, You YZ, Wu DC, Liu Y, Pan CY.2007. Thermal control over the topology of cleavable polymers:From linear to hyperbranched structures[J]. J. Am. Chem. Soc.,129: 5354-5356.
    16. Frechet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc MR, Grubbs B.1995. Self-condensing vinyl polymerization:An approach to dendritic materials[J]. Science,269: 1080-1083.
    17. Baskaran D,2003. Hyperbranched polymers from divinylbenzene and 1,3-diisopropenylbenzene through anionic self-condensing vinyl polymerization[J]. Polymer,44:2213-2220.
    18. Jia ZF, Yan DY.2005. Hyperbranched polymers generated from oxyanionic vinyl polymerization of commercially available methacrylate inimers[J]. J. Polym. Sci., Part A: Polym. Chem.,43:3502-3509.
    19. Simon PFW, Muller AHE.2001. Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization[J]. Macromolecules,34: 6206-6213.
    20. Hawker CJ, Frechet JMJ, Grubbs RB, Dao J.1995. Preparation of hyperbranched and star polymers by a "living", self-condensing free radical polymerization[J]. J. Am. Chem. Soc., 117:10763-10764.
    21. Matyjaszewski K, Gaynor SG, Muller AHE.1997. Preparation of hyperbranched polyacrylates by ATRP:2 Kinetics and mechanism of chain growth[J]. Macromolecules, 30:7034-7041.
    22. Feldermann A, Coote ML, Stenzel MH, Davis TP, Barner-Kowollik C,2004. Consistent experimental and theoretical evidence for long lived intermediate radicals in living free radical polymerization (RAFT)[J]. J. Am. Chem. Soc.,126:15915-15923.
    23. Wan WM, Pan CY.2008. Direct growth of hyperbranched polymers on both ends of a linear polymer[J]. Macromolecules,41:5085-5088.
    1. Barrett KEJ.1975. Dispersion Polymerization in Organic Media[M]. Wiley, New York.
    2. Ober CK, Lok KP.1987. Formation of large monodisperse copolymer particles by dispersion polymerization[J].Macromolecules,20:268-273.
    3. Shim S E, Jung H, Lee H, Biswas J, Choe S.2003. Living radical dispersion photopolymerization of styrene by a reversible addition-fragmentation chain transfer (RAFT) agent[J]. Polymer,44(19):5563-5572.
    4. Srinivasan SA, Hedrick JL, McKean DR., Miller RD, Hilbom JG. 1998. Preparation of thermally labile PMMA particles by combined non-aqueous dispersion polymerization and polymer chain transfer[J]. Polymer,39 (6-7):1497-1501.
    5. Song JS, Winnik MA,2006. Monodisperse, micron-sized reactive low molar mass polymer microspheres by two-stage living radical dispersion polymerization of styrene[J]. Macromolecules,39:8318-8325.
    6. Kawaguchi S, Winnik MA, Ito K. H'-NMR study of dispersion copolymerization of N-butyl methacrylate with poly(ethylene oxide) macromonomer in deuterated methanol-water[J]. Macromolecules,29:4465-4472.
    7. Gibanel S, Heroguez V, Forcada J, Gnanou Y.2002. Dispersion polymerization of styrene in ethanol-water mixture using polystyrene-b-poly(ethylene oxide) macromonomers as stabilizers[J]. Macromolecules,35:2467-2473.
    8. Yildiz U.2002. The dispersion polymerization of unsaturated monomers initiated by the macromonomeric initiator[J]. Macromol. Symp.,179:297-304.
    9. Kim J, Jeong SY, Kim KU, Ahn YH, Quirk RP.1996. Anionic dispersion polymerization. I. control of particle size[J]. J. Polym. Sci. Part A:Polym. Chem.,34:3277-3288.
    10. Awan MA, Dimonie VL, ElAasser MS.1996. Anionic Dispersion Polymerization of Styrene: 11. Mechanism of Particle Formation[J]. J. Polym. Sci. Part A:Polym. Chem.,34:2651-2664.
    11. Awan MA, Dimonie VL, ElAasser MS.1996. Anionic dispersion polymerization of styrene. I. Investigation of parameters for preparation of uniform micron-size polystyrene particles with narrow molecular weight distribution[J]. J. Polym. Sci. Part A:Polym. Chem.,34: 2633-2649.
    12. Gadzinowski M, Sosnowski S, Slomkowski S.1996. Kinetics of the dispersion ring-opening polymerization of ε-caprolactone initiated with diethylaluminum ethoxide[J]. Macromolecules,29:6404-6407.
    13. Sosnowski S, Gadzinowski M, Slomkowski S.1996. Poly(L,L-lactide) microspheres by ring-opening polymerization[J]. Macromolecules,29:4556-4564.
    14. Matyjaszewski K.1996. Cationic polymerizations:Mechanisms, synthesis & applications[M]. Marcel Dekker.
    15. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK.1993. Narrow molecular weight resins by a free-radical polymerization process[J].Macromolecules,26:2987-2988.
    16. Wang JS, Matyjaszewski K.1995. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes[J]. J. Am. Chem. Soc., 117:5614-5615.
    17. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH.1998. Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process[J]. Macromolecules,31: 5559-5562.
    18. Keoshkerian B, Georges MK, Boilsboissier D.1995. Living free-radical aqueous polymerization[J]. Macromolecules,28:6381-6382.
    19. Gabaston LI, Jackson RA, Armes SP. Living free-radical dispersion polymerization of styrene[J]. Macromolecules,31:2883-2888.
    20. Ryan J, Aldabbagh F, Zetterlund PB, Okubo M.2005. First nitroxide-mediated free radical dispersion polymerizations of styrene in supercritical carbon dioxide[J]. Polymer,46: 9769-9777.
    21. McHale R, Aldabbagh F, Zetterlund PB, Minami H, Okubo M.2006. Nitroxide-mediated radical dispersion polymerization of styrene in supercritical carbon dioxide using a poly(dimethylsiloxane-b-methyl methacrylate) stabilizer[J]. Macromolecules,39:6853-6860.
    22. McHale R, Aldabbagh F, Zetterlund PB, Okubo M.2006. Nitroxide-mediated radical dispersion polymerization of styrene in supercritical carbon dioxide using a poly(dimethyl siloxane-block-styrene) alkoxyamine as initiator and stabilizer[J]. Macromol. Rapid Commun.,27:1465-1471.
    23. Holderle M, Baumert M, Mulhaupt R.1997. Comparison of controlled radical styrene polymerizations in bulk and nonaqueous dispersion[J]. Macromolecules,30:3420-3422.
    24. Tsarevsky NV, Braunecker WA, Brooks SJ, Matyjaszewski K.2006. Rational selection of initiating/catalytic systems for the copper-mediated atom transfer radical polymerization of basic monomers in protic media:ATRP of 4-vinylpyridine[J]. Macromolecules,39: 6817-6824.
    25. Gibanel S, Heroguez V, Forcada J, Gnanou Y.2002. Dispersion polymerization of styrene in ethanol-water mixture using polystyrene-6-poly(ethylene oxide) macromonomers as stabilizers[J]. Macromolecules,35:2467-2473.
    26. Wang XS, Armes SP.2000. Facile atom transfer radical polymerization of methoxy-capped oligo(ethylene glycol) methacrylate in aqueous media at ambient temperature[J]. Macromolecules,33:6640-6647.
    27. Wang XS, Jackson RA, Armes SP.2000. Facile synthesis of acidic copolymers via atom transfer radical polymerization in aqueous media at ambient temperature[J]. Macromolecules, 33:255-257.
    28. Baek KY, Kamigaito M, Sawamoto M.2001. Star-shaped polymers by metal-catalyzed living radical polymerization.1. Design of Ru(II)-based systems and divinyl linking agents[J]. Macromolecules,34:215-221.
    29. Dou Hj, Jiang M, Peng HS, Chen DY, Hong Y.2003. pH-Dependent micellization and micelle to hollow sphere transition of hydroxyethyl cellulose-graft-poly(acrylic acid) in aqueous solution[J].Angew. Chem. Int. Ed.,42:1516-1519.
    30. Zhou SQ, Wu C.1996. First observation of the molten globule state of a single homopolymer chain[J]. Phys. Rev. Lett.,77:3053-3055.
    31. McGilvray KL, Decan MR, Wang D, Scaiano JC.2006. Facile photochemical synthesis of unprotected aqueous gold nanoparticles[J]. J. Am. Chem. Soc.,128:15980-15981.
    1 Salerno M, Landoni P, Verganti R.2008. Designing foresight studies for Nanoscience and Nanotechnology (NST) future developments[J]. Technol. Forecast. Soc. Change,75: 1202-1223.
    2 Kostoff RN, Koytcheff RG, Lau CGY,2008. Structure of the nanoscience and nanotechnology applications literature[J]. J. Technol. Transfer,33:472-484.
    3 Odom TW, Pileni MP.2008. Nanoscience[J]. Accounts Chem. Res.,41:1565-1851.
    4 Alivisatos AP.2008. Birth of a nanoscience building block[J]. ACS Nano,2:1514-1516.
    5 Zhang XJ, Zhang XH, Zou K, Lee CS, Lee ST.2007. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules[J]. J. Am. Chem. Soc., 129:3527-3532.
    6 Asahi T, Sugiyama T, Masuhara H.2008. Laser fabrication and spectroscopy of organic nanoparticles[J]. Accounts Chem. Res.,41:1790-1798.
    7 Zetterlund PB, Kagawa Y, Okubo M.2008. Controlled/living radical polymerization in dispersed systems[J]. Chem. Rev.,108:3747-3794.
    8 Oh JK,2008. Recent advances in emulsion and in controlled/living radical polymerization dispersion[J]. J. Polym. Sci., Part A:Polym. Chem.,46:6983-7001.
    9 Zhang L, Eisenberg A.1996. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. J. Am. Chem. Soc.,118:3168-3181.
    10 Delaittre G, Dire C, Rieger J, Putaux JL, Charleux B.2009. Formation of polymer vesicles by simultaneous chain growth and self-assembly of amphiphilic block copolymers[J]. Chem. Commun.,2887-2889.
    11 Alexander L, Dhaliwal K, Simpson J, Bradley M.2008. Dunking doughnuts into cells-selective cellular translocation and in vivo analysis of polymeric micro-doughnuts[J]. Chem. Commun.,3507-3509.
    12 Zhang L, Eisenberg A.1995. Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) block copolymers[J]. Science,268:1728-1731.
    13 Jain S, Bates FS.2003. On the origins of morphological complexity in block copolymer surfactants[J]. Science,300:460-464.
    14 Pochan DJ, Chen Z, Cui H, Hales K, Qi K, Wooley KL.2004. Toroidal triblock copolymer assemblies[J]. Science,306:94-97.
    15 Grumelard J, Taubert A, Meier W.2004. Soft nanotubes from amphiphilic ABA triblock macromonomers[J]. Chem. Commun.,1462-1463.
    16 Tian L, Nguyen P, Hammond PT.2006. Vesicular self-assembly of comb-dendritic block copolymersChem. Commun.,3489-3491.
    17 Zhou Y, Yan D.2009. Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions:progress, characteristics and perspectives[J]. Chem. Commun., 1172-1188.
    18 Gao KJ, Li G, Lu X, Wu YG, Xua B, Fuhrhop JH.2008. Giant vesicle formation through self-assembly of chitooligosaccharide-based graft copolymers[J]. Chem. Commun., 1449-1451.
    19 Barrett KEJ.1975. Dispersion Polymerization in Organic Media[M]. Wiley, New York.
    20 Ober CK, Lok KP.1987. Formation of Large Monodisperse Copolymer Particles. Dispersion Polymerization[J]. Macromolecules,20:268-273.
    21 Shim SE, Jung H, Lee H, Biswas J, Choe S.2003. Living radical dispersion photopolymerization of styrene by a reversible addition-fragmentation chain transfer (RAFT) agent[J]. Polymer,44(19):5563-5572.
    22 Zheng GH, Pan CY.2006. Reversible addition-fragmentation transfer polymerization in nanosized micelles formed in situ[J]. Macromolecules,39:95-102.
    23 Ji W, Yan J, Chen E, Li Z, Liang D.2008. In situ and online monitoring polymerization-induced micellization[J]. Macromolecules,41:4914-4919.
    24 Zheng Q, Zheng GH, Pan CY.2006. Preparation of nano-sized poly(ethylene oxide)star microgels via reversible addition-fragmentation transfer polymerization in selective solvents[J]. Polym. Int.,55:1114-1123.
    25 Wan WM, Pan CY.2007. Atom transfer radical dispersion polymerization in an ethanol/water mixture[J]. Macromolecules,40:8897-8905.
    26 Yamauchi K, Hasegawa H, Hashimoto T, Tanaka H, Motokawa R, Koizumi S.2006. Direct observation of polymerization-reaction-induced molecular self-assembling process:In-situ and real-time SANS measurements during living anionic polymerization of polyisoprene-block-polystyrene[J]. Macromolecules,39:4531-4539.
    27 Zhang L, Eisenberg A.1998. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polym. Adv. Technol.,9:677-699.
    28 Lai JT, Filla D, Shea R,2002. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents[J]. Macromolecules,35:6754-6756.
    29 Wan WM, Pan CY.2008. Direct growth of hyperbranched polymers on both ends of a linear polymer[J]. Macromolecules,41:5085-5088.
    30 Wan WM, Pan CY.2008. A facile strategy to control polymer topology by variation of controlled radical polymerization mechanisms[J].Chem. Commun.,40:5639-5641.
    31 Brandrup J, Immergut EH, Grulke EA,1999. Polymer handbook[M].4th ed., vol.3. New York:Wiley-Interscience; p. Ⅶ699-VII701, VII711.
    32 Song SY, Zhang Y, Feng J, Ge X, Liu DP, Fan WQ, Lei YQ, Xing Y, Zhang HJ.2009. CuIn(WO4)2 nanospindles and nanorods:controlled synthesis and host for lanthanide near-infrared luminescence properties[J]. Cryst. Eng. Comm,11:1987-1993.
    33 Burchard W, Richtering W.1989. Prog. Colloid & Polym.Sci[M].,80:151-163.
    34 Dou HJ, Jiang M, Peng HS, Chen DY, Hong Y.2003. pH-Dependent micellization and micelle to hollow sphere transition of hydroxyethyl cellulose-graft-poly(acrylic acid) in aqueous solution[J]. Angew. Chem. Int. Ed.,42:1516-1519.
    35 Wan WM, Sun XL, Pan CY.2010. Formation of vesicular morphologies via polymerization induced self-assembly and re-organization [J]. Macromol. Rapid Commun.,31:399-404
    36 Wan WM, Sun XL, Pan CY.2009. Morphology transition in RAFT polymerization for formation of vesicular morphologies in one pot[J]. Macromolecules,42:4950-4952.
    37 Wan WM, Hong CY, Pan CY.2009. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition[J]. Chem. Commun.,39: 5883-5885.
    38 Odian G.1991. Principles of Polymerization[M]. John Wiley & Sons, Inc. Third Ed. P341.
    39 Dean JM, Verghese NE, Pham HQ, Bates FS.2003. Nanostructure toughened epoxy resins[J]. Macromolecules,36:9267-9270.
    40 Kim Y, Dalhaimer P, Christian DA, Discher DE.2005. Polymeric worm micelles as nano-carriers for drug delivery[J]. Nanotechnology,16:S484-S491.
    41 Yow HN, Routh AF.2006 Formation of liquid core-polymer shell microcapsu!es[J]. Soft Matter.,2:940-949.
    42 Chen ZM, Geng ZR, Shi ML, Liu ZH, Wang ZL,2009. Construction of EuF3 hollow sub-microspheres and single-crystal hexagonal microdiscs via Ostwald ripening and oriented attachment[J]. CrystEngComm,11:1591-596.
    1. Caruso F, Caruso RA, Mohwald H.1998. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science,282:1111-1114.
    2. Marinakos SM, Novak JP, Brousseau LC III, House AB, Edeki EM, Feldhaus JC, Feldheim DL.1999. Gold particles as templates for the synthesis of hollow polymer capsules, control of capsule dimensions and guest encapsulation[J]. J. Am. Chem. Soc.,121:8518-8522.
    3. Lou XW, Yuan C, Rhoades E, Zhang Q, Archer LA.2006. Encapsulation and ostwald ripening of Au and Au-Cl complex nanostructures in silica shells[J]. Adv.Funct. Mater.,16: 1679-1684.
    4. Jiang P, Bertone JF, Colvin VL.2001. A lost-wax approach to monodisperse colloids and their crystals [J]. Science,291:453-457.
    5. Kamata K, Lu Y, Xia Y.2003. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores[J]. J. Am. Chem. Soc.,125:2384-2385.
    6. Lee KT, Jung YS, Oh SM.2003. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries[J]. J. Am. Chem. Soc.,125:5652-5653.
    7. Zhang K, Zhang X, Chen H, Chen X, Zheng L, Zhang J, Yang B.2004. Hollow titania spheres with movable silica spheres inside[J]. Langmuir,20:11312-11314.
    8. Xing SX, Tan LH, Chen T, Yang YH, Chen HY.2009. Facile fabrication of triple-layer (Au@Ag)@polypyrrole core-shell and (Au@H20)@polypyrrole yolk-shell nanostructures[J]. Chem. Commun.,1653-1654.
    9. Wu XJ, Xu DS.2009. Formation of yolk/SiO2 shell structures using surfactant mixtures as template[J]. J. Am. Chem. Soc.,131:2774-2775.
    10. Lin YS, Wu SH, Tseng CT, Hung Y, Chang C, Mo CY,2009. Synthesis of hollow silica nanospheres with a microemulsion as the template[J]. Chem. Commun.,3542-3544.
    11. Zhang L, Eisenberg A.1998. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polym. Adv. Technol.,9:677-699.
    12. Zhang L, Eisenberg A.1996. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. J. Am. Chem. Soc.,118:3168-3181.
    13. Zheng GH, Pan CY.2006. Reversible addition-fragmentation transfer polymerization in nanosized micelles formed in situ[J]. Macromolecules,39:95-102.
    14. Wan WM, Pan CY.2007. Atom transfer radical dispersion polymerization in an ethanol/water mixture[J]. Macromolecules,40:8897-8905.
    15. Zheng Q, Zheng GH, Pan CY.2006. Preparation of nano-sized poly(ethylene oxide)star microgels via reversible addition-fragmentation transfer polymerization in selective solvents[J]. Polym. Int.,55:1114-1123
    16. Wan WM, Sun XL, Pan CY. Morphology transition in RAFT polymerization for formation of vesicular morphologies in one pot[J]. Macromolecules,42:4950-4952.
    17. Wan WM, Hong CY, Pan CY.2009. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition[J]. Chem. Commun.,39: 5883-5885.
    18. Moad G, Rizzardo E, Thang SH.2008. Radical addition-fragmentation chemistry in polymer synthesis[J]. Polymer,49:1079-1131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700