表面活性素与生物大分子之间相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性素由脂肪酸链和肽链组成,是脂肽中的一类同系物,具有良好的表面活性和生物活性。与化学合成表面活性剂相比,表面活性素具有环境友好、生物可适应性等优点。脂肪酸链碳数为15的表面活性素(surfactin-C15)是表面活性素同系物中的主要组分。本文研究了surfactin-C 15在溶液中的性质及其与生物大分子之间相互作用,主要包括以下内容。
     第一部分:Surfactin-C15在pH 7.4磷酸盐缓冲液(PBS)中的性质研究。采用表面张力、小角中子散射、冷冻蚀刻透射电镜、Langmuir-Blodgett (LB)膜以及圆二色谱等方法深入地研究了surfactin-C 15的聚集行为。Surfactin-C 15的CMC为1.54×10-5M,CMC处的表面张力为27.7 mN/N,在气/液界面处单分子面积为107.8 A2。Surfactin-C 15分子在溶液中为β-折叠构象,使得surfactin-C 15在较低的浓度时具有很好的表面活性。小角中子散射和冷冻蚀刻透射电镜结果说明surfactin-C 15在较低浓度时具有很强的自聚能力,形成球状胶束和一些较大的聚集体,其球形胶束的聚集数(<20)要远小于相似烷基链长度的传统的表面活性剂的聚集数。
     第二部分:Surfactin-C 15与蛋白质的相互作用。采用表面张力法、圆二色谱、小角中子散射、荧光法、冷冻蚀刻透射电镜等方法研究了表面活性素与几种典型蛋白质(牛血清蛋白、牛血红蛋白、溶菌酶)的相互作用。研究发现surfactin-C 15与不同种类的蛋白质之间的相互作用主要通过静电作用、疏水作用、分子之间的氢键来实现,并受蛋白质的结构、所带电荷及溶液pH的影响。随着surfactin-C 15浓度的增加,不仅能够使得蛋白质紧密的结构展开最终发生变性形成珍珠链结构;而且能够改变蛋白质的二级结构,使得蛋白质分子结构中的α螺旋结构含量减少。与传统的表面活性剂相比,在相似的浓度区间surfactin-C 15对蛋白质具有温和的破坏作用。
     第三部分:以卵磷脂形成的脂质体作为生物膜模型,通过利用动态光散射法、冷冻蚀刻透射电镜等方法对脂质体与surfactin-C 15之间的相互作用进行了细致研究,随着surfactin-C 15浓度的增加,采用动态光散射法得到脂质体的水力学直径从~120 nm下降到~10 nm,冷冻蚀刻透射电镜观察到从脂质体到卵磷脂/surfactin-C 15混合胶束的结构变化。这个结果也通过体系的透射率和微极性的下降来证实。从脂质体到卵磷脂/surfactin-C 15混合胶束的动态变化也被动态光散射法记录下来,表明脂质体在surfactin-C 15溶液中的泄漏和破坏过程能够在很短的时间内完成。
     第四部分:Surfactin-C 15与药物分子的相互作用。研究了甲苯胺蓝在surfactin-C 15溶液中的聚集特性和分配行为。通过紫外可见光谱和荧光探针,可以发现甲苯胺蓝分子定位在surfactin-C 15胶束中的栅栏层,这将有利于甲苯胺蓝聚集体的形成。Surfactin-C 15胶束中甲苯胺蓝的定位是由于甲苯胺蓝分子中二甲基氨基和表面活性素氨基酸残基的静电作用。甲苯胺蓝和surfactin-C 15胶束的结合常数和甲苯胺蓝在胶束相和水相中的分配系数通过Benesi-Hildebrand和相分离模型计算得到,结果显示,甲苯胺蓝在surfactin-C 15胶束中的定位时,静电吸引起了重要的作用。
Surfactin is a kind of lipopeptide containing seven amino acid residues and aβ-hydroxy fatty acid residues, which has excellent surface properties and biological activities. Compared with the chemical surfactants, surfactin has some unique advantages such as environment friendly, higher biodegradability. Surfactin isoform (surfactin-C15) with aβ-hydroxy fatty acid chain of 15 carbon atoms is the primary ingredient in surfactin variants. In this paper the aggregation activity of surfactin-C15 and the interaction between surfactin-C15 and biomacromolecule were investigated. The results include as follows.
     In the first section, surface tension, small-angle neutron scattering (SANS), freeze-fracture transmission electron microscopy (FF-TEM) and circular dichroism(CD) measurements have been used to study the self-aggregation properties of surfactin-C 15 in 0.01 M (pH 7.4) phosphorate buffer solution (PBS). It has been found that critical micelle concentration (CMC) is 1.5×10-5 M, the surface tension is 27.7 mN/m and the area per molecule at air-water interface is 107.8 A2 for surfactin-C 15. surfactin-C15 molecules adopt aβ-sheet conformation making it Surface-active at such low concentrations. From SANS and FF-TEM results it is shown that surfactin-C 15 exhibits strong self-assembly ability to form spherical micelles and some larger aggregates even at the rare low concentration. The aggregation number of spherical micelles (<20) is much smaller than that of conventional surfactants with similar alkyl chain length.
     In the second section, we studied the interaction of surfactin-C 15 with several representative proteins in PBS solutions by UV-vis spectra, fluorescence spectra, SANS, AFM, FF-TEM and DLS measurements. It is found that the interactions between surfactin-C 15 and different protein species are mainly due to the electrostatic attraction, hydrophobic interaction and hydrogen bonds, which effected by the different structure and charge of protein and the solution environment (pH). With the increase of surfactin-C 15 concentration, the interactions between surfactin-C 15 and different protein lead to the unfolding of protein and take on a'necklace model'microstructure. Additionally, surfactin-C 15 can change the secondary combined with the decrease in a-helix content. Compared to the traditional surfactant, surfactin-C 15 has the gentle disruption effect on the structure of protein and presents different physicochemical behaviors.
     In the third section:surfactin-C 15 effect on Phosphatidylcholine (PC) liposome (model membrane) was studied by fluorescence, atomic force microscopy (AFM), FF-TEM and dynamic light scattering measurement (DLS). DLS results showed that the hydrodynamic diameter of PC liposome decreased with the surfactin-C 15 addition, which was verified by the decrease of transmittance and micropolarity of this system. These results were because of the microstructure change of PC liposome to PC/surfactin-C 15 mixed micelles. And it is interesting that the dynamic change of PC liposome to PC/surfactin-C15 mixed micelle was recorded by DLS and was further conformed by FF-TEM images. In sum, the process of PC liposome to PC/surfactin-C 15 micelle is the solubilization of PC liposome and the reorganization of PC/surfactin-C 15 aggregates.
     In the forth section:Aggregation properties and distribution behavior of toluidine blue (TB) in surfactin-C 15 solution have been investigated. It was detected by UV-vis spectra and fluorescence probe that TB can be located in the palisade of surfactin-C 15 micelle, which facilitates the formation of TB aggregates. This is because the dimethylamino group in TB molecule is prone to interact with the two negatively charged amino acid of surfactin-C 15 molecule. The binding constants of TB with surfactin-C 15 micelles and the distribution coefficients between the micelles phase and the aqueous phase have been calculated by Benesi-Hildebrand method and phase separation model, respectively. The values of thermodynamics functions show that electrostatic attractive interaction plays a dominating role at the location of TB in surfactin-C 15 micelles.
引文
[1]张天胜.生物表面活性剂及其应用.北京:化学工业出版社,2005
    [2]Desai J D, Desai A J. Production of biosurfactants. New York:Marcel Dekker,1993
    [3]Rosenberg E, Ron E Z. High and low molecular mass microbial surfactants. Appl Microbiol Biotechnol,1999,52:154-162
    [4]Robert O D, John F S, Sherril D C. Simultaneous removal of dissolved organics and divalent metal cations from water using micellar-enhanced ultrafiltration. Colloids Surf, 1989,35:49-56
    [5]Mulligan C N, Yong R N, Gibbs B F, et al. Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environ Sci Technol,1999,33:3812-3820
    [6]Mulligan C N, Yong R N, Gibbs B F. Removal of heavy metals from contaminated soil and sediments using the biosurfactant surfactin. J Soil Contam,1999,8:231-254
    [7]Mulligan C N, Yong R N, Gibbs B F. Heavy metal removal from sediments by biosurfactants. J Hazardous materials,2001,85:111-125
    [8]Zouboulis A I, Matis K A, Lazaridis N K, et al. The use of biosurfactants in flotation: application for the removal of metal ions. Minerals Engineering,2003,16:1231-1236
    [9]Schaller K D, Fox S L, Bruhn D F, et al. Characterization of surfactin from Bacillus subtilis for application as an agent for enhanced oil recovery. Appl Biochem Biotechnol, 2004,113:827-836
    [10]Makkar R S, Cameotra S S. Structural characterization of a biosurfactant produced by Bacillus subtilis at 45℃. J Surfactants Deterg,1999,2:367-372
    [11]Morikawa M, Hirata Y, Imanaka T. A study on the structure-function relationship of lipopeptide. Biochim Biophys Acta,2000,1488:211-218
    [12]刘向阳,杨世忠,牟伯中.微生物脂肽的结构.生物技术通报,2005,4:18-26
    [13]Sanchez M, Aranda F J, Espuny M J, et al. Thermodynamic and structural changes associated with the interaction of a dirhamnolipid biosurfactant with bovine serum albumin. Langmuir,2008,24:6487-6495
    [14]Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis:isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun,1968,31:488-494
    [15]Heerklotz H, Wieprecht T, Seelig J. Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. J Phys Chem B,2004,108:4909-4915
    [16]Lang S. Biological amphiphiles (microbial biosurfatants). Curr Opin Colloid Interface Sci,2002,7:12-20
    [17]Eeman M, Berquand A, Dufrene Y F, et al. Penetration of surfactin into phospholipids monolayers:nanoscale interfacial organization. Langmuir,2006,22:11337-11345
    [18]Kosaric N. Biosurfactants in industry. J Am Oil Chem Soc,1992,64:1731-1737
    [19]Cameotra S, Makkar P. Potential applications of microbial surfactants in biomedical sciences. Appl Microbiol Biotechnol,1998,50:520-529
    [20]Kitamoto D, Isoda H, Nakahara T. Functions and potential applications of glycolipid biosurfactants-from energy-saving materials to gene delivery carriers. J Biosci Bioeng, 2002,94:187-201
    [21]Ishigami Y, Osman M, Nakahara H, et al. Significace of β-sheet formation for micellization and surface adsorption of surfactin. Colloids Surf B,1995,4:341-348
    [22]Knoblich A, Matsumoto M, Ishiguro R, et al. Electron cryo-microscopic studies on micellar shape and size of surfactin, an anionic lipopeptide. Colloids Surf B,1995,5: 43-48
    [23]Han Y C, Huang X, Cao M W, et al. Micellization of surfactin and its effect on the aggregate conformation of Amyloid β(1-40). J Phys Chem B,2008,112:15195-15201
    [24]Bonmatin J M, Genest M, Labbe H, et al. Solution three-dimensional structure of surface:a cyclic lipopeptide studied by 2H-NMR, distance geometry and molecular dynamics. Biopolymers,1994,34:975-986
    [25]Ferre G, Besson F, Buchet R. Conformational studies of the cyclic L,D-lipopeptide surfactin by Fourier Transform Infrared Spectroscopy. Spectrochim Acta Part A,1997, 53:623-635
    [26]Vass E, Besson F, Majer Z, et al. Ca2+-induced changes of surfactin conformation:a FTIR and circular dichroism study. Biochem Biophys Res Commun,2001,282: 361-367
    [27]Grau A, Fernandez J C G, Peypoux F, et al. A study on the interactions of surfactin with phopholipid vesicles. Biochim Biophys Acta,1999,1418:307-319
    [28]Thimon L, Peypoux F, Wallach J, et al. Ionophorous and sequestering properties of surfactin, a biosurfactant from Bacillus subtilis. Colloids SurfB,1993,1:57-62
    [29]Grangemard I, Wallach J, Maget-Dana R, et al. Lichenysin-a more efficient cation chelator than surfactin. Appl Biochem Biotechnol,2001,90:199-210
    [30]Li Y, Zou A H, Ye R Q, et al. Counterion-induced changes to the micellization of surfactin-C16 aqueous solution. J Phys Chem B,2009,113:15272-15277
    [31]Li Y, Re E Q, Mu B Z. Influence of sodium ions on micelles of surfactin-C-16 in solution. J Surf Derterg,2009,12:31-36
    [32]Nicolas J P. Molecular dynamics simulation of surfactin molecules at the water-hexane interface. Biophys J,2003,85:1377-1391
    [33]Razafindralambo H, Thonart P, Paquot M. Dynamic and equilibrium surface tensions of surfactin aqueous solutions. J Surfactants Deterg,2004,7:41-46
    [34]Song C S, Ye R Q, Mu B Z. Effect of compression speed on aggregation behavior of surfactin in Langmuir monolayer. Acta Chim Sin,2009,67:2038-2042
    [35]Song C S, Ye R Q, Mu B Z. Aggregation behavior and surface morphology studies of surfactin in Langmuir-Blodgett films. Colloid Surf A,2008,330:49-54
    [36]刘向阳.Bacillus subtilis HSO 121产生的脂肽-结构和生物活性的研究.华东理工大学博士论文,2008
    [37]Williams S M, Brodbelt J S. MSn characterization of protonated cyclic peptides and metal complexes. J Am Soc Mass Spectrom,2004,15:1039-1054
    [38]Kracht M, Rokos H, Ozel M, et al. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot (Tokyo),1999,52:613-619
    [39]Noudeh D, Housaindokht M R. Comparative study of the hemolytic and surface activities of the biosurfactant produced by Bacillus subtilis ATCC6633 with some synthetic surfactants. IJBMS,2003,6:1-8
    [40]Kim S Y, Kim J Y, Kim S H, et al. Surfactin from Basillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett,2007,581:865-871
    [41]John K, David E. The origin of protein interactions and allostery in colocalization Nature, 2007,450:983-990
    [42]Pan X Y, Yu S Y, Yao P, et al. Self-assembly of β-casein and lysozyme. J Colloid Interface Sci,2007,316:405-412
    [43]Ruso J M, Gonzaez-Perez A, Prieto G, et al. Study of the interaction between lysozyme and sodium octanoate in aqueous solutions. Colloids Surf A,2004,249:45-50
    [44]Ghosh S, Banerjee A. A multitechnique approach in protein/surfactant interaction study: physicochemical aspects of sodium dodecyl sulfate in the presence of tyrosine in aqueous medium. Biomacromolecules,2002,3:9-16
    [45]Deleu M, Bouffioux O, Razafindralambo H, et al. Interaction of Surfactin with Membranes:A Computational Approach. Langmuir,2003,19:337-385
    [46]Ross P D, Subramanian S. Thermodynamics of protein association reactions:forces contributing to stability. Biochemistry,1981,20:3096-3102
    [47]Goddard E D, Ananthapadmanabhan K P. Interaction of surfactants with polymers and protein. New York:CRC Press,1993
    [48]Jones M N. A theoretical approach to the binding of amphipathic molecules to globular proteins. Biochem J,1975,151:109-114
    [49]Vasilescu M, Angelescu D. Interactions of globular proteins with surfactants studied with fluorescence probe methods. Langmuir,1999,15:2635-2643
    [50]Pirzadeh P, Moosavi-Movahedi A A, Hemmateenejad B, et al Chemometric studies of lysozyme upon interaction with sodium dodecyl sulfate and β-cyclodextrin. Colloids SurfB,2006,52:31-38
    [51]Narayanan J, Rasheed ASA, Bellare J R. A small-angle X-ray scattering study of the structure of lysozyme-sodium dodecyl sulfate complexes. J Colloid Interface Sci,2008, 328:67-72
    [52]Moosavi-Movahedi A A, Pirzadeh P, Hashenmnia S, et al. Fibril formation of lysozyme upon interaction with sodium dodecyl sulfate at pH 9.2. Colloids Surf B,2007,60: 55-61
    [53]Chodankar S, Aswal V K, Hassan P A, et al. Structure of protein-surfactant complexes as studied by small-angle neutron scattering and dynamic light scattering. Physcia B, 2007,398:112-117
    [54]Pi Y Y, Shang Y Z, Peng C J, et al. Interactions between bovine serum albumin and gemini surfactant alkanediyl-a,w-bis(dimethyldodecyl-ammonium Bromide). Biopolymers,2006,83:243-249
    [55]Liu W J, Guo X, Guo R. The interaction between hemoglobin and two surfactants with different charges. Int J Biol Macromol,2007,41:548-557
    [56]Ding Y H, Shu Y, Ge L L, et al. The effect of sodium dodecyl sulfate on the conformation of bovine serum albumin. Colloid Surf A,2007,298:163-169
    [57]Wu D, Feng Y J, Xu G Y, et al. Dilational rheological properties of gemini surfactant 1,2-ethane bis(dimethyl dodecyl ammonium bromide) at air/water interface. Colloids Surf A,2007,299:117-123
    [58]吴丹,徐桂英.光谱法研究蛋白质与表面活性剂的相互作用.物理化学学报,2006,22: 254-260
    [59]Wu D, Xu G Y, Feng Y J, et al. Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface. Int J Biol Macromol,2007,40:345-350
    [60]Liu J, Xu G Y, Wu D, et al. Spectroscopic study on the interaction between bovine serum albumin and Tween-20. J Dispersion Sci Technol,2006,27:835-838
    [61]Singer S J, Nicolson G. The fluid mosaic model of the structure of cell membranes. Science,1972,175:720-723
    [62]Yan Y, Hoffmann H, Drechsler M, et al. Influence of hydrocarbon surfactant on the aggregation behavior of silicone surfactant:observation of intermediate structures in the viscle-micelle transition. J Phys Chem B 2006,110:5621-5626
    [63]Maget-Dana R. The monolayer technique:a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim Biophys Acta,1999,1462:109-140
    [64]Can S Z, Chang C F, Walker R A. Spontaneous formation of DPPC monolayers at aqueous/vapor interfaces and impact of charged surfactants. Biochem Biophys Acta, 2008,1778:2368-2377
    [65]Wu G H, Lee K Y C. Effects of plolxamer 188 on phospholipids monolayer morphology: an tomic force microscopy study. Langmuir,2009,25:2133-2139
    [66]Deleu M, Nott K, Brasseur R, et al. Imaging mixed lipid monolayers by dynamic atomic force microscopy. Biochim Biophys Acta,2001,1513:55-62
    [67]Deleu M, Paquot M, Jacques P, et al. Nanometer scale organization of mixed surfactin/ phosphatidylcholine monolayers. Biophys J,1999,77:2304-2310
    [68]Bouffioux O, Berquand A, Eeman M, et al. Molecular organization of surfactin-phospholipid monolayers:effect of phospholipids chan length and polar head. Biochim Biophys Acta,2007,1768:1758-1768
    [69]Brasseur R, Deleu M, Mingeot-Leclercq M P, et al. Probing peptide-membrane interactions using AFM. Surf Interface Anal,2008,40:151-156
    [70]Brasseur R, Braun N, Kirat K E, et al. The biological important surfactin lipopeptide induces nanpripples in supported lipid bilayers. Langmuir,2007,23:9769-9772
    [71]苏盛,辛梅华,李明春.自组装囊泡的结构与单分子膜的性质.材料研究学报,2008,22:63-68
    [72]Szoka F, Olsom F. Preparation of liposome of intermed size by a combination of reverse phase evaporation an extrusion through polycarnonate membranes. Biochem Biophys Acta 1980,601:559-571
    [73]Ono A, Takeuchi K, Sukenari A, et al. Reconsideration of drug release from temperature-sensitive liposomes. Bol Pharm Bull,2002,25:97-101
    [74]Marcelino J, Lima J L F C, Reis S, et al. Assessing the effects of surfactants on the physical proterties of liposome membranes. Chem Physics Lipids,2007,146:94-103
    [75]Lichtenberg D, Robson R J, Dennis E A. Solubilization of phospholipids by detergents: structural and kinetic aspects. Biochim Biophys Acta,1983,737:285-304
    [76]Maza A, Parra J L. Intermediate aggregates resulting in the interaction of sodium dodecyl sulphate with phosphatidylcholine liposomes. Colloid Surf A,1996,112:63-71
    [77]Deo N, Somasundaran P. Mechanism of mixed liposome solubilization in the presence of sodium dodecyl sulfates. Colloid Surf A,2001,186:33-41
    [78]Deo N, Somasundaran P, Itagaki Y. Mechanisms of solubilization of mixed liposomes: preferential dissolution of liposome components. Ind Eng Chem Res,2005, 44:1181-1186
    [79]Deo N, Somasundaran P. Disintegration of liposomes by surfactants:Mechanism of protein and cholesterol effects. Langmuir,2003,19:2007-2012
    [80]Deo N, Somasundaran P. Effects of Sodium dedecyl sulfate on mixed liposome solubilization. Langmuir,2003,19:7271-7275
    [81]Pata V, Ahmed F, Discher D E, et al. Membrane solubilization by detergent:resistance coferred by thickness. Langmuir,2004,20:3888-3893
    [82]Fan Y, Li Y J, Cao M W, et al. Micellization of dissymmetric cationic gemini surfactants and their interaction with dimyristoylphosphatidylcholine vesicles. Langmuir,2007,23:11458-11464
    [83]Kell H, Holzwarth J F, Boettcher C, et al. Physicochemical studies of the interaction of the lipoheptapeptide surfactin with lipid bilayers of L-a-dimyristoyl phosphatidylcholine. Biophys Chem,2007,128:114-124
    [84]Heerklotz H, Seelig J. Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophys J,2001,81:1547-1554
    [85]Heerklotz H, Seelig J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J,2007,36:305-314
    [86]Buchoux S, Lai-Kee-Him J, Gamier M, et al. Surfactin-triggered small vesicle formation of negative charged membranes:a novel membrane-lys mechanism. Biophys J,2008, 95:3840-3849
    [87]Carrillo C, Teruel J A, Aranda F J, et al. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta,2003,1611: 91-97
    [88]Wang R, Wei Z W. Validity and reliability of Benesi-Hildebrand method. Acta Phys Chim Sin,2007,23:1353-1359
    [89]Khossravi D. Drug-surfactant interactions:effect on transport properties. Int J Pharm, 1997,155:179-190
    [90]Sarkar M, Poddar S. Spectral studies of methyl violet in aqueous solutions of different surfactants in supermicellar concentration region. Spectrochim Acta Part A,1999,55: 1737-1742
    [91]Liu W Y, Guo R. Interaction between flavonoid, quercetin and surfactant aggregates with different charges. J Colloid Interface Sci,2006,302:625-632
    [92]Liu W Y, Guo R. Interaction between morin and sodium dodecyl sulfate micelles. J Agric Food Chem,2005,53:2890-2896
    [93]Shen H H, Thomas R K, Chen C Y, et al. Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution:an unusual type of surfactant? Langmuir,2009,25:4211-4218
    [94]Liu X Y, Yang S Z, Mu B Z. Isolation and characterization of a C12-lipopeptide produced by Bacillus subtilis HSO 121. J Pept Sci,2008,14:864-875
    [95]Namir H, Liu X Y, Yang S Z, et al. Surfactin isoforms from Bacillus subtilus HSO121: separation and characterization. Prot Pept Lett,2008,15:265-269
    [96]Liu X Y, Haddad N, Yang S Z, et al. Structural characterization of eight cyclic lipopeptides produced by Bacillus subtilis HSO121. Prot Pept Lett,2007,14:766-773
    [97]Janczuk B, Zdziennicka A, Wojcik W. The properties of mixtures of two anionic surfactants in water at the water/air interface. Colloids Surf A,2003,220:61-68
    [98]Zana R. Aqueous surfactant-alcohol systems:a review. Adv Colloid Interface Sci,1995, 57:1-64
    [99]Glatter O. A new method for the evaluation of small-angle scattering data. J Appl Crystallogr,1997,10:415-421
    [100]Feigin L A, Svergun D. Structure analysis by small-angle, X-ray, and neutron scattering. Plenum Press, New York,1987
    [101]Chevalier Y, Zemb T. The structure of micelles and microemulsions. Rep Prog Phys, 1990,53:279-371
    [102]Zhao J, Meerwinck W, Niinikoski T, et al. The polaried target station at GKSS. Nucl Instrum Methods Phys Res A,1995,356:133-137
    [103]Cotton J. Neutron, X-ray, and light scattering. Introduction to an investigative tool for colloidal and polymeric systems. Initial data treatment. North-Holland, Amsterdam, 1991
    [104]Wignall G, Bates F. Absolute calibration of small-angle neutron scattering data. J Appl Crystallogr,1987,20:28-40
    [105]皮瑛瑛.正离子偶联表面活性剂和带相反电荷大分子之间相互作用的研究.华东理工大学博士论文,2006
    [106]Maget-Dana R, Ptak M. Interfacial properties of surfactin. J Colloid Interface Sci,1992, 153:285-291
    [107]Israelachvili J N. Intermolecular and Surface Forces,2nd ed. Academic Press:London, 1992
    [108]Tanford C. The hydrophobic effect:formation of micelle and biological membranes. Wiley and Sons:New York,1980
    [109]Garamus V M. Formation of mixed micelles in salt-free aqueous solutions of sodium dodecyl sulfate and C12E6. Langmuir,2003,19:7214-7218
    [110]Song C S, Ye R Q, Mu B Z. Molecular behavior of a microbial lipopeptide monolayer at the air-water interface. Colloids Surf A,2007,302:82-87
    [111]Gallet X, Deleu M, Razafindrambo H, et al. Computer simulation of surfactin conformation at a hydrophobic/hydrophilic interface. Langmuir,1999,15:2409-2413
    [112]Pedersen J S. Analysis of small-angle scattering data from colloids and polymer solutions:modeling and least-squares fitting. Adv Colloid Interface Sci,1997,70: 171-210
    [113]Schmidt P W. Small-angle scattering studies of disordered, porous and fractal systems. J Appl Crystallogr,1991,24:414-435
    [114]Yang J T, Wu CSC, Martinez H M. Calculation of protein conformation from circular dichroism. Methods Enzymol,1986,130:208-269
    [115]Bonmatin J M, Genest M, Petit M C, et al. Progress in multidimension NMR investigations of peptide and protein 3-D structures in solution. From structure to functional aspects. Biochimie,1992,74:825-836
    [116]Itokawa H, Miyashita T, Moritah, et al. Structural and confomational studies of [Ile(7)]
    and [Leu(7)] surfactins from Bacillus subtilis natto. Chem Pharm Bull,1994,42: 604-607
    [117]Wu CSC, Yang J T. Sequence-dependent conformations of short polypeptides in a hydrophobic environment. Mol Cell Biochem,1981,40:109-22
    [118]Osman M, H(?)iland H, Holmsen H, Ishigami Y. Tuning micelles of a bioactive heptapeptide biosurfactant via extrinsically induced conformational transition of surfactin assembly. J Pept Sci,1998,4:449-458
    [119]Maget-Dana R, Ptak M. Interactions of surfactin with membrane models. Biophys J, 1995,68:1937-1943
    [120]Gelamo E L, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta Part A,2000, 56:2255-2271
    [121]Gelamo E L, Silva C H T P, Imasato H, et al. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants:spectroscopy and modeling. Biochim Biophys Acta,2002,1594:84-99
    [122]Madaeni S S, Rostami E. Spectroscopic investigation of the interaction of BSA with cationic surfactants. Chem Eng Technol,2008,31:1265-1271
    [123]Patino J M R, Nino M R R, Sanchez C C. Physico-chemical properties of surfactant and protein films. Curr Opin Colloid Interface Sci,2007,12:187-195
    [124]Carter D C, Chang B, Ho J X, et al. Preliminary crystallographic studies of four crystal forms of serum albumin. Eur J Biochem,1994,226:1049-1052
    [125]Gull N, Sen P, Khan R H, et al. Interaction of bovine (BSA), rabbit (RSA), and porcine (PSA) serum albumins with cationic single-chain/gemini surfactant:a comparative study. Langmuir,2009,25:11686-11691
    [126]Schweitzer B, Felippe A C, Bo A D, et al. Sodium dodecyl sulfate promoting a cooperative association process of sodium cholate with bovine serum albumin, J Colloid Interface Sci,2006,298:457-466
    [127]Lissi E, Abuin E, Lanio M E, et al. A new and simple procedure for the evaluation of the association of surfactants to proteins. J Biochem Biophys Methods,2002,50: 261-268
    [128]Durchschlag H, Tiefenbach K J, Gebauer S, et al. Spectroscopic investigations of detergents and protein-detergent complexes. J Mol Struct,2001,449:563-564
    [129]Arakawa T, Kita Y. Protection of bovine serum albumin from aggregation by Tween 80. J Pharm Sci,2000,89:646-658
    [130]Bordbar A K, Hojjati E. Thermodynamic analysis for cationic surfactants binding to bovine serum albumin. Phys Chem Liq,2007,45:435-441
    [131]Gratzel M, Thomas J K. Dynamics of pyrene fluorescence quenching in aqueous ionic micellar systems. Factors affecting the permeability of micelles. J Am Chem Soc,1973,
    95:6885-6889
    [132]赵小芳.DNA与阳离子偶联表面活性剂的相互作用.华东理工大学博士学位论文,2008
    [133]Gull N, Chodankar S, Aswal V K, et al. Spectroscopic studies on the interaction of cationic surfactants with bovine serum albumin. Colloids Surf B,2009,69:122-8
    [134]Wu D, Xu G Y, Sun Y H, et al. Interaction between proteins and cationic gemini surfactant. Biomacromolecules,2007,8:708-712
    [135]Mehta S K, Bhawna, Bhasin K K, et al. An insight into the micellization of dodecyldimethylethylammonium bromide (DDAB) in the presence of bovine serum albumin (BSA). J Colloid Interface Sci,2008,323:426-434
    [136]Zhou M, Jiang X H, Li Y T, et al. Synthesis and properties of a novel class of gemini pyridinium surfactants. Langmuir,2007,23:11404-11408
    [137]Gayen A, Chatterjee C, Mukhopadhyay C. GM1-induced structural changes of bovine serum albumin after chemical and thermal disruption of the secondary structure:a spectroscopic comparison. Biomacromolecules,2008,9:974-983
    [138]Zhao Y Y, Li F Y, Carvajal M T, et al. Interactions between bovine serum albumin and alginate:an evaluation of alginate as protein carrier. J Colloid Interface Sci,2009,332: 345-353
    [139]Ding Y H, Shu Y, Ge L L, et al. The effect of sodium dodecyl sulfate on the conformation of bovine serum albumin. Colloid Surf A,2007,298:163-169
    [140]Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Poly(acrylic acid) microgels (carbopol 934)/surfactant interactions in aqueous media:Part I:nonionic surfactants. Int J Pharm,2003,258:165-177
    [141]Jean B, Lee L T, Cabane B. Effects of sodium dodecyl sulfate on the adsorption of poly(N-isopropylacrylamide) at the air-water interface Langmuir,1999,15:7585-7590
    [142]Sau A K, Currell D, Mazemadar S, et al. Interaction of sodium dodecyl sulfate with human native and cross-linked hemoglobins:a transient kinetic study. Biophys Chem, 2002,98:267-273
    [143]陈耀强,王婧, 万家义等.血红蛋白的分子结构及与其载氧功能相关的药物研究进展.绵阳师范学院学报,2004,23:1-4
    [144]Chakraborty A, Seth D, Setua P, et al. Photoinduced electron transfer in a protein-surfactant complex:probing the interaction of SDS with BSA. J Phys Chem B, 2006,110:16607-16617
    [145]Orioni B, Roversi M, Mesa L C, et al. Polymorphic behavior in protein/surfactant mixtures:the water/bovine serum albumin/sodium taurodeoxycholate system. J Phys Chem B,2006,110:12129-12140
    [146]Alpert B, Jameson D M, Weber G. Tryptophan emission from human hemoglobin and its isolated subunits. Photochem Photobiol A,1980,31:1-4
    [147]Riccio A, Vitagliano L, Prisco D G, et al. The crystal structure of tetrameric hemoglobin in a partial hemichrome state. PNAS,2002,99:9801-9806
    [148]Venkatesh B, Venkatesh S, Jayadevan S, et al. Studies on heme release from normal and metal ion reconstituted hemoglobin mediated through ionic surfactant. Pept Sci, 2005,80:18-25
    [149]Aj loo D, Moosavi-Movahedim A A, Hakimelahi G H, et al. The effect of dodecyl trimethylammonium bromide on the formation of methemoglobins and hemichrome. Colloids Surf B,2002,26:185-196
    [150]Bordbar A K, Moosavi-Movahedi A A, Amini M K. A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin. Thermochim Acta,2003,400:95-100
    [151]Hirsch R E, Zukin R S, Nagel R L. Intrinsic fluorescence emission of intact oxy hemoglobins. Biochem Biophys Res Commun,1980,93:423-427.
    [152]Hirsch R E. Front-face fluorescence spectroscopy of hemoglobins. Methods Enzymol Methods Enzymol,1994,232:231-246
    [153]Hansson P. A fluorescence study of divalent and monovalent cationic surfactants interacting with anionic polyelectrolytes. Langmuir,2001,17:4161-4166
    [154]Itoh M, Mizukoshi H, Fuke K, et al. Tryptophan fluorescence of human hemoglobin.1. Significant change of fluorescence intensity and lifetimes in the R-T transition. Biochem Biophys Res Commun,1981,100:1259-1265
    [155]Moreira L M, Poli A L, Costa-Filho A J, et al. Pentacoordinate and hexacoordinate ferric hemes in acid medium:EPR, UV-Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus. Biophys Chem,2006,124:62-72
    [156]Kaca W, Roth R I, Vandefriff K D, et al. Effects of bacterial endotoxin on human cross-linked and native hemoglobins. Biochemistry,1995,34:11176-11185
    [157]Santiago P S, Moreira L M, Almeida E V, et al. Giant extracellular Glossoscoles paulistus hemoglobin (HbGp) upon interaction with cethyltrimethylammonium chloride (CTAC) and sodium dodecyl sulphate (SDS) surfactants:dissociation of oligomeric structure and autoxidation. Biochim Biophys Acta,2007,1770:506-517
    [158]Moller M, Denicola. Study of protein-ligand binding by fluorescence. Biochem Mol BiolEdu,2002,30:309-312
    [159]De S, Girigoswami A, Das S. Fluorescence probing of albumin-surfactant interaction. J Colloid Interface Sci,2005,285:562-573
    [160]Li J X, Zhou L H, Han X, et al. Direct electrochemistry of hemoglobin based on gemini surfactant protected gold nanoparticles modified glassy carbon electrod. Sensors Actuators B,2009,166:283-288
    [161]Li S J, Nakagawa A, Tsukihara T. Ni2+binds to active site of hen egg-white lysozyme
    and quenches fluorescence of Trp62 and Trp108. Biochem Biophys Res Commun,2004, 324:529-533
    [162]Lu R C, Xiao J X, Cao A N, et al. Surfactant-induced refolding of lysozyme. Biochim Biophys Acta,2005,1722:271-281
    [163]Behbehani G R, Saboury A A, Taleshi E. A direct calorimetric determination of denaturation enthalpy for lysozyme in sodium dodecyl sulfate. Colloids Surf B,2008, 61:224-228
    [164]Nishimoto E, Yamashita S, Szabo A G, et al. Internal motion of lysozyme studied by time-resolved fluorescence depolarization of tryptophan residues. Biochemistry,1998, 37:5599-5607
    [165]Kowall M, Vater J, Kluge B, et al. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci,1998,204:1-8
    [166]Alahverdjieva V S, Fainerman V B, Aksenenko E V, et al. Adsorption of hen egg-white lysozyme at the air-water interface in presence of sodium dodecyl sulphate. Colloids Surf A,2008,317:610-617
    [167]林翠花,肖素荣,孟庆国.溶菌酶结构特点及其应用.潍坊学院学报,2005,5:108-110
    [168]Zhu J F, Li D J, Jin J, et al. Binding analysis of farrerol to lysozyme by spectroscopic methods. Spectrochim Acta Part A,2007,68:354-359
    [169]Homchaudhuri L, Kumar S, Swaminathan R. Slow aggregation of lysozyme in alkaline pH monitored in real time remploying the fluorescence anisotropy of covalently labelled dansyl probe. FEBS lett,2006,580:2097-2101
    [170]Jiang L X, Wang K, Deng M L, et al. Bile salt-induced vesicle-to-micelle transition in catanionic surfactant systems:steric and electrostatic interaction. Langmuir,2008,24: 4600-4606
    [171]Chern C S, Chiu H C, Yang Y S. Interactions between nonionic Triton X surfactants and cholesterol-containing phosphatidylcholine liposomes. J Colloid Interface Sci,2006, 302:335-340
    [172]Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta,1999,1462:1-10
    [173]Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta, 1999,1462:157-183
    [174]Xi Q J, Guo R. Interaction between puerarin and PC liposome. Chin. Sci. Bull.2007,17: 1997-2002
    [175]Zou A H, Gu Q, He Q G, et al. Interaction of malachite green with lecithin liposomes. Colloids Surf A,2003,224:75-82
    [176]Alfonso M, Luisa C, Olga L, et al. Vesicle to micelle structural transitions involved in the interaction of dodecylbetaine with liposomes:transmission electron microscopy and light scattering studies. Micron,1998,29:175-182
    [177]Majhi P R, Blume A. Temperature-induced micelle-vesicle transitions in DMPC-SDS and DMPC-DTAB mixtures studied by calorimetry and dynamic light scattering. J Phys Chem B,2002,106:10753-10763
    [178]Partearroyo M A, Alonso A, Goni F M, et al. Solubilization of phospholipid bilayers by surfactants belonging to the Triton X-100 series:effect of polar group size. J Colloid Interface Sci,1996,178:156-159
    [179]Silvander M, Karlsson G, Edwards K. Vesicle solubilization by alkyl sulfate surfactants: a cryo-TEM study of the vesicle to micelle transition. J Colloid Interface Sci,1996,179: 104-113
    [180]Leonenko Z V, Carnini A, Cramb D T. Supported planar bilayer formation by vesicle fusion:the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy. Biochim Biophys Acta, 2000,1509:131-147
    [181]Francius G, Dufour S, Deleu M, et al. Nanoscale membrane activity of surfactin: influence of geometry, charge and hydrophobicity. Biochim Biophys Acta,2008,1778: 2058-2068
    [182]Fei D, Wang X M, Li H B, et al. Spectroscopy studies of interaction between methylene blue and herring sperm DNA. Acta Chim Sinica,2008,66:443-449
    [183]Paduszek B, Kalinowski M K. Redox behaviour of phenothiazine and phenazine in organic solvents. Electrochim Acta,1983,28:639-642
    [184]Kojlo A, Calatayud J M. FIA-spectrophotometric determination of N-substituted phenothiazine derivatives by oxidation with a solid-phase reactor of manganese dioxide incorporated in polyester resin beads. Talanta,1995,42:909-914
    [185]Tuite E, Norden B. Sequence-specific interactions of methylene blue with polynucleotides and DNA:a spectroscopic study. J Am Chem Soc,1994,116: 7548-7558
    [186]Zakaria S, Hoskin T L, Degnim A C. Safety and technical success of methylene blue dye for lymphatic mapping in breast cancer. Am J Surg,2008,196:228-233
    [187]Lucio D, Martinelli A. Toluidine blue:aggregation properties and structural aspects. Modelling Simul Mater Sci Eng,2006,14:581-592
    [188]Ghanadzadeh A, Zeini A, Kashef A. Concentration effect on the absorption spectra of oxazinel and methylene blue in aqueous and alcoholic solutions. J Mol Liq,2008, 138:100-106
    [189]Arikan B, Tuncay M. The effect of SDS micelles on reduction of toluidine blue by ascorbic acid in acid medium. Colloids Surf A,2006,273:202-209
    [190]Garcia M E D, Sanz-Medel A. Dye-surfactant interactions:a review. Talanta,1986,33: 255-264
    [191]Benesi H A, Hildebrand J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc,1949,71:2703-2707
    [192]Wang T, Xiang B R, Wang Y, et al. Spectroscopic investigation on the binding of bioactive pyridazinone derivative to human serum albumin and molecular modeling. Colloids Surf B,2008,65:113-119
    [193]Iolanda M C, Elsie H S, Paulo M M, et al. Effect of hexadecyltrimethylammonium bromide on the thiolysis of p-nitrophenyl acetate. J Org Chem,1978,43:2248-2252
    [194]Raj M M, Dharmaraja A, Kavitha S J, et al. Mercury (Ⅱ)-methylene bule interactions: complexation and metallate formation. Inorg Chim Acta,2007,360:1799-1808
    [195]吴性良,朱万森,马林.分析化学原理.北京:化学工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700