稀土介孔材料的制备及荧光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料以其有序的孔道结构、多样的拓扑方式、可调的孔径尺寸、可控的形貌特征、较高的比表面积和较大的孔容等优势,在催化、生物医药、能源、传感、材料合成等领域得到了广泛的应用。近几年介孔材料与光、电、磁等功能相结合,使其在吸-脱附、贮存、传输、示踪、靶向等方面发挥了更大的作用。稀土元素具有特殊的电子和光学性质,是发光材料的重要组分。本文将稀土材料自身的发光属性与介孔、有序排列的结构性质相结合,开展介孔发光材料的合成研究,以拓展稀土和介孔材料合成的新方法和应用的领域。
     1、研究了有序介孔结构的稀土磷酸盐的合成和掺杂不同稀土离子的发光性能。在硬模板法制备介孔材料方法的基础上,提出了多组分不溶性固体化合物前驱体溶液制备的新方法,从而使不溶性固体化合物溶解后得到均一稳定的前驱体溶液,通过毛细管作用使前驱体进入硬模板孔道中积累、沉淀,经过焙烧并去除硅模板后得到反相复制的有序介孔磷酸钇,通过掺杂铕、铽、铈不同发光离子,得到发红光、绿光、蓝光三种介孔稀土YPO4: Ln3+(Ln: Eu,Tb和Ce),通过改变Ln离子的掺杂浓度,并可对稀土磷酸盐发光性能进行调控。
     2、利用改进的硬模板纳米晶化法合成了具有二维六方(p6mm)和三维立方(Ia3d)结构的介孔稀土钒酸盐,研究了不同介孔拓扑结构对介孔钒酸钇(铕)发光性能的影响。研究表明,两种介孔钒酸钇(铕)在达到最强发光时掺Eu3+的浓度是不同的;在三维立方介孔钒酸钇(铕)中,Eu3+最适宜浓度为8%(mol);在二维六方介孔钒酸钇(铕)中,Eu3+最适宜浓度为5%(mol)。分析了不同介孔结构造成的缺陷、接受光照有效面积等对荧光中心离子(Eu3+)产生的影响。
     3、研究了有序层状有机-无机杂化稀土磷酸铈(铽)的合成和发光性质。研究表明,在合成过程中用极性较大的水作溶剂时,制备的样品具备良好的结晶性和有序的层状结构,其发光强度远高于用沉淀法制备的固体粉末和用极性较小的乙醇作溶剂制备的样品。说明有序的层状结构和良好的结晶有利于无机部分稀土磷酸铈(铽)的发光。同时,这种长烷基的杂化发光材料还具有亲油性,当分散于有机溶剂时能发出较强的绿光。
     4、稀土氧化物负载于球形、多面体、棒状多种形貌的介孔二氧化硅的复合物制备。通过改变温度、负载量等因素考察载体二氧化硅的形貌、孔道结构对负载物发光性能的影响,结果发现焙烧温度对几种不同形貌复合物的影响大致相同,温度过高会造成孔道塌陷,经1000℃焙烧后,介孔被破坏和稀土氧化物与模板发生相变。球形载体对稀土氧化物负载能力最小,棒状载体负载能力最大,多面体载体的负载能力介于前两者当中。稀土氧化物在不同的载体上的发光情况具有不同的规律。
     介孔材料的拓扑结构多种多样,为了适应未来应用中更精细、更专一的需求,不同的结构带来的差异和影响需要进一步研究。本文对具有多种拓扑结构的介孔稀土复合发光材料进行了研究和性能的比较,希望为稀土材料的多功能化制备做些有益的工作。
Mesoporous materials with the ordered mesopores, various topologies, tailored pore size, controllable morphologies, high surface and large pore volume, can be wide used in the catalysis, bio-medicine, energy, sensors, material synthesis, and so on. In recent years, mesoporous materials combined with the optical, electrical and magnetic properties play an important role in the absorption/desorption, storage, carrier, tracing, and targeted. Rare earth elements with special electronic and optical properties are the important component of photoluminescent materials. Therefore, in this thesis the synthesis methods for the rare earth mesoporous materials combined with the luminescent property were studied, in order to get a new approach to prepare the rare earth mesoporous materials for more potential application.
     1. Studies on the synthesis of mesoporous rare earth phosphates and their luminescence properties. Based on the nanocasting route by hard-template, an improved method for preparing mesoporous materials has been brought forward by solving the indiscerptible solid precursor to get a uniform and stable precursor solution with soluble multi-component. During the infiltration process to progressively concentrate the precursor ions, capillarity drives the formation of precipitation inside the channels of silica hard template; after calcination and removing the hard template, mesoporous ordered YPO4 replica by reverse has been prepared. After YPO4 was doped with the appropriate lanthanide ion (such as Eu3+, Tb3+, and Ce3+), mesoporous YPO4:Ln3+ materials with the tunable intense optical properties (such as red, green and blue emission) were obtained.
     2. Synthesis of hexagonal (p6mm) and cubic (Ia3d) rare earth vanadate by means of improved nanocasting route by hard-template and study on the photoluminescence change between different topology mesostructures of YVO4:Eu3+. The results show that, there are different quenching concentrations for two cubic and hexagonal mesoporous YVO4:Eu3+ samples, for instance, the highest PL intensity of the cubic mesoporous YVO4:Eu3+(8 mol%) can be observed and the hexagonal one is 5 mol% Eu3+, which suggest that the different mesoporous channels of the cubic and hexagonal mesoporous YVO4:Eu3+ lead to different produced defaults and available surfaces for absorption of the UV light by the mutual interaction Eu3+ ions.
     3. Study on the synthesis of layered ordered organic-inorganic hybrid rare earth materials and their luminescence properties. The results show that, the sample obtained under polar aqueous solution by template assembly has higher ordered layered structure, better crystallinity and stronger luminescent intensity than the samples obtained in ethanol solvent and the sample prepared by a precipitation method. It suggests that higher ordered layered structure and better crystallinity take benefit of the luminescence of the hybrid rare earth materials. And this long alkyl hybrid luminescent material with lipophilicity shows good green luminescent intensity in oil medium.
     4. Synthesis of Ln2O3@SiO2 compounds that the rare earth oxide supporting in spherical, polyhedral, and rod-like shape silica. The effect of silica supports with different morphology and channel on Ln2O3 luminescent properties was investigated by changing the temperature and Ln loading concentration. The results show that the effect of calcination temperature is almost same for the different complexes, that is, high temperature results in collapse of mesoporous structure and the phase transition of rare earth oxides and silica support after calcination at 1000℃. The loading amount of rare earth oxides is the minimum on the spherical silica support, the maximum on the rod silica support, and between the former two on the polyhedron silica support. It means that there are different luminescence properties corresponding to the rare earth oxides loaded on the different morphological silica supports.
     Mesoporous materials will satisfy more ingenious and specific requirement in future applications, and the diversified materials with different topological mesostructures should be further studied. In this thesis, the rare earth materials with multiple topological mesostructures have been studied and compared in the luminescent properties, which is very meaningful for the preparation and utilization of multi-functional rare earth materials.
引文
[1]Beck J. S., Vartuli J. C., Roth W. J., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society.1992, 114(27):10834-10843
    [2]Kresge C. T., Leonowicz M. E., Roth W. J., et al., Ordered mesoporous sieves synthesized by a liquid-crystal template mechanism. Nature.1992,359 710-711
    [3]Kruk M., Jaroniec M., Ko C. H., et al., Characterization of the porous structure of SBA-15. Chemistry of Materials.2000,12(7):1961-1968
    [4]Zhao D. Y., Sun J. Y., Li Q. Z., et al., Morphological control of highly ordered mesoporous silica SBA-15. Chemistry of Materials.2000,12(2):275-279
    [5]Stevens W. J. J., Mertens M., Mullens S., et al., Formation mechanism of SBA-16 spheres and control of their dimensions. Microporous and Mesoporous Materials.2006, 93(1-3):119-124
    [6]Kim T. W., Kleitz F., Paul B., et al., MCM-48-like large mesoporous silicas with tailored pore structure:Facile synthesis domain in a ternary triblock copolymer-butanol-water system. Journal of the American Chemical Society.2005,127(20):7601-7610
    [7]Tuysuz H., Lehmann C. W., Bongard H., et al., Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. Journal of the American Chemical Society.2008,130(34):11510-11517
    [8]Joo S. H., Jun S., Ryoo R., Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Microporous and Mesoporous Materials.2001,44153-158
    [9]Vinu A., Streb C., Murugesan V., et al., Adsorption of cytochrome c on new mesoporous carbon molecular sieves. Journal of Physical Chemistry B.2003,107(33):8297-8299
    [10]Cao J. M., Cao Y. L., Chang X., et al., Synthesis of silver nanoparticles within ordered CMK-3 mesoporous carbon. Nanoporous Materials Iv.2005,156423-426
    [11]A. Monnier, F. Schuth, Q. S. Hun, Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science.1993,261(5126):1299
    [12]Jiao F., Jumas J. C., Womes M., et al., Synthesis of ordered mesoporous Fe3O4 and gamma-Fe2O3 with crystalline walls using post-template reduction/oxidation. Journal of the American Chemical Society.2006,128(39):12905-12909
    [13]Yang H. F., Shi Q. H., Tian B. Z., et al., One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. Journal of the American Chemical Society.2003,125(16):4724-4725
    [14]Wang Y. Q., Yang C. M., Schmidt W., et al., Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica. Advanced Materials.2005,17(1):53-56
    [15]N. Ulagapan, R. B. Neeraj, Preparation of lamellar and hexagonal forms of mesoporous silica and zirconia by the neutral amine route:lamellar-hexagonal transformation in the solid state. Chemical Communications.1996,2243
    [16]Shi Y. F., Wan Y., Zhang R. Y., et al., Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides. Advanced Functional Materials.2008,18(16):2436-2443
    [17]Zhang F., Wan Y., Shi Y. F., et al., Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence. Chemistry of Materials.2008,20(11):3778-3784
    [18]Luo Q. L., Shen S. D., Lu G. Z., et al., Synthesis of cubic ordered mesoporous YPO4:Ln(3+) and their photoluminescence properties. Journal of Materials Chemistry.2009, 19(43):8079-8085
    [19]Kimura T., Sugahara Y., Kuroda K., Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents. Chemistry of Materials.1999,11(2):508-518
    [20]Everett D. H., IUPAC manual of symbols and terminology. Journal of Macromolecular Science Pure and Applied Chemistry 1972,31(08):578-638
    [21]Cronstedt A. F., Observation and description of an unknown kind of rock to be named zeolites. Kongl Vetenskaps Academiens Handlingar Stockholm.1756,17120-123
    [22]Shi Y., Wan Y., Tu B., et al., Nanocasting synthesis of ordered mesoporous silicon nitrides with a high nitrogen content. Journal of Physical Chemistry C.2008,112(1):112-116
    [23]Krawiec P., Kockrick E., Borchardt L., et al., Ordered Mesoporous Carbide Derived Carbons:Novel Materials for Catalysis and Adsorption. Journal of Physical Chemistry C. 2009,113(18):7755-7761
    [24]Gao F., Lu Q. Y., Zhao D. Y., Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Advanced Materials. 2003,15(9):739-742
    [25]Yanagisawa T., Shimizu T., Kuroda K., et al., The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan 1990,63(4):988-992
    [26]Adil K., Leblanc M., Maisonneuve V., et al., Structural chemistry of organically-templated metal fluorides. Dalton Transactions.2010,39(26):5983-5993
    [27]Tan Y. W., Steinmiller E. M. P., Choi K. S., Electrochemical tailoring of lamellar-structured ZnO films by interfacial surfactant templating. Langmuir.2005,21(21): 9618-9624
    [28]Zhang F. Q., Meng Y., Gu D., et al., A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia(3)over-bard bicontinuous cubic structure. Journal of the American Chemical Society.2005,127(39):13508-13509
    [29]Meng Y., Gu D., Zhang F. Q., et al., Ordered mesoporous polymers and homologous carbon frameworks:Amphiphilic surfactant templating and direct transformation. Angewandte Chemie-International Edition.2005,44(43):7053-7059
    [30]Wang X. S., Ma S. Q., Sun D. F., et al., A mesoporous metal-organic framework with permanent porosity. Journal of the American Chemical Society.2006,128(51):16474-16475
    [31]Tolbert S. H., Schaffer T. E., Feng, et al., A New Phase of Oriented Mesoporous Silicate Thin Films. Chemistry of Materials.1997,9(9):1962-1967
    [32]Zhao D., Yang P., Melosh N., et al., Continuous Mesoporous Silica Films with Highly Ordered Large Pore Structures. Advanced Materials.1998,10(16):1380-1385
    [33]Shi K. Y., Peng L. M., Chen Q., et al., Porous crystalline iron oxide thin films templated by mesoporous silica. Microporous and Mesoporous Materials.2005,83(1-3):219-224
    [34]Kavan L., Rathousky J., Gratzel M., et al., Mesoporous thin film TiO2 electrodes. Microporous and Mesoporous Materials.2001,44653-659
    [35]Crepaldi E. L., Soler-Illia G. J. D. A., Grosso D., et al., Design and post-functionalisation of ordered mesoporous zirconia thin films. Chemical Communications.2001, (17):1582-1583
    [36]Tian B. Z., Liu X. Y., Tu B., et al., Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Materials.2003,2(3):159-163
    [37]Huo Q., Zhao D., Feng J., et al., Room Temperature Growth of Mesoporous Silica Fibers: A New High-Surface-Area Optical Waveguide. Advanced Materials.1997,9(12):974-978
    [38]Yang P., Zhao D., Chmelka B. F., et al., Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers. Chemistry of Materials.1998,10(8):2033-2036
    [39]Zhang Z. J., Ramanath G., Ajayan P. M., et al., Creation of radial patterns of carbonated silica fibers on planar silica substrates. Advanced Materials.2001,13(3):197-200
    [40]Kosuge K., Sato T., Kikukawa N., et al., Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chemistry of Materials. 2004,16(5):899-905
    [41]Wang J. F., Zhang J. P., Asoo B. Y., et al., Structure-selective synthesis of mesostructured/mesoporous silica nanofibers. Journal of the American Chemical Society. 2003,125(46):13966-13967
    [42]Wang J. F., Tsung C. K., Hong W. B., et al., Synthesis of mesoporous silica nanofibers with controlled pore architectures. Chemistry of Materials.2004,16(24):5169-5181
    [43]Iijima S., Helical microtubules of graphitic carbon. Nature.1991,354(6348):56-58
    [44]Ishigami M., Cumings J., Zettl A., et al., A simple method for the continuous production of carbon nanotubes. Chemical Physics Letters.2000,319(5-6):457-459
    [45]Kusunoki M., Suzuki T., Honjo C, et al., Selective synthesis of zigzag-type aligned carbon nanotubes on SiC (000-1) wafers. Chemical Physics Letters.2002,366(5-6):458-462
    [46]Yudasaka M., Kikuchi R., Ohki Y., et al., Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition. Carbon.1997,35(2):195-201
    [47]Van Bommel K. J. C., Friggeri A., Shinkai S., Organic Templates for the Generation of Inorganic Materials. Angewandte Chemie International Edition.2003,42(9):980-999
    [48]He M., Lu X. H., Feng X., et al., A simple approach to mesoporous fibrous titania from potassium dititanate. Chemical Communications.2004, (19):2202-2203
    [49]Suzuki N., Kimura T., Yamauchi Y., General synthesis of fibrous mesoporous metal oxides in polycarbonate membrane. Journal of Materials Chemistry.20(25):5294-5300
    [50]Huh S., Wiench J. W., Trewyn B. G., et al., Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups. Chemical communications (Cambridge, England).2003, (18):2364-2365
    [51]Yu C., Fan J., Tian B., et al., High-Yield Synthesis of Periodic Mesoporous Silica Rods and Their Replication to Mesoporous Carbon Rods. Advanced Materials.2002,14(23): 1742-1745
    [52]Sayari A., Han B.-H., Yang Y., Simple Synthesis Route to Monodispersed SBA-15 Silica Rods. Journal of the American Chemical Society.2004,126(44):14348-14349
    [53]Wang Y., Zhang F., Wang Y., et al., Synthesis of length controllable mesoporous SBA-15 rods. Materials Chemistry and Physics.2009,115(2-3):649-655
    [54]Fuertes A. B., Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials. Microporous and Mesoporous Materials.2004,67(2-3): 273-281
    [55]Lai X. Y., Li X. T., Geng W. C., et al., Ordered mesoporous copper oxide with crystalline walls. Angewandte Chemie-International Edition.2007,46(5):738-741
    [56]Dickinson C., Zhou W., Hodgkins R. P., et al., Formation Mechanism of Porous Single-Crystal Cr2O3 and Co3O4 Templated by Mesoporous Silica. Chemistry of Materials. 2006,18(13):3088-3095
    [57]Schacht S., Huo Q., Voigt-Martin I. G., et al., Oil-Water Interface Templating of Mesoporous Macroscale Structures.1996; 273,768-771.
    [58]Liu J., Li C., Yang Q., et al., Morphological and Structural Evolution of Mesoporous Silicas in a Mild Buffer Solution and Lysozyme Adsorption. Langmuir.2007,23(13): 7255-7262
    [59]Djojoputro H., Zhou X. F., Qiao S. Z., et al., Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness. Journal of the American Chemical Society.2006, 128(19):6320-6321
    [60]Zhao D., Sun J., Li Q., et al., Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chemistry of Materials.2000,12(2):275-279
    [61]Wang J. G., Xiao Q., Zhou H. J., et al., Anionic surfactant-templated mesoporous silica (AMS) nano-spheres with radially oriented mesopores. Journal of Colloid and Interface Science.2008,323(2):332-337
    [62]Dong A., Ren N., Tang Y., et al., General Synthesis of Mesoporous Spheres of Metal Oxides and Phosphates. Journal of the American Chemical Society.2003,125(17): 4976-4977
    [63]Kong L. D., Liu S., Yan X. W., et al., Synthesis of MCM-48 single crystals with cube morphology. Chemistry Letters.2005,34(4):568-569
    [64]Yu C., Tian B., Fan J., et al., Nonionic Block Copolymer Synthesis of Large-Pore Cubic Mesoporous Single Crystals by Use of Inorganic Salts. Journal of the American Chemical Society.2002,124(17):4556-4557
    [65]Jin H., Wu Q., Chen C., et al., Facile synthesis of crystal like shape mesoporous silica SBA-16. Microporous and Mesoporous Materials.2006,97(1-3):141-144
    [66]Che S., Sakamoto Y., Terasaki O., et al., Control of Crystal Morphology of SBA-1 Mesoporous Silica. Chemistry of Materials.2001,13(7):2237-2239
    [67]Chao M. C., Wang D. S., Lin H. P., et al., Control of single crystal morphology of SBA-1 mesoporous silica. Journal of Materials Chemistry.2003,13(12):2853-2854
    [68]Miyasaka K., Han L., Che S., et al., A Lesson from the Unusual Morphology of Silica Mesoporous Crystals:Growth and Close Packing of Spherical Micelles with Multiple Twinning. Angewandte Chemie International Edition.2006,45(39):6516-6519
    [69]Ryoo R., Joo S. H., Jun S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B.1999, 103(37):7743-7746
    [70]Wu P., Zhu J., Xu Z., Template-Assisted Synthesis of Mesoporous Magnetic Nanocomposite Particles. Advanced Functional Materials.2004,14(4):345-351
    [71]Kim J., Lee J. E., Lee J., et al., Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. Journal of the American Chemical Society.2005,128(3):688-689
    [72]Kozhevnikov I. V., Sinnema A., Jansen R. J. J., et al., New acid catalyst comprising heteropoly acid on a mesoporous molecular sieve MCM-41. Catalysis Letters.1994,30(1): 241-252
    [73]Zhou R., Cao Y., Yan S., et al., Rare earth (Y, La, Ce)-promoted V-HMS mesoporous catalysts for oxidative dehydrogenation of propane. Applied Catalysis a-General.2002, 236(1-2):103-111
    [74]Corma A., Fornes V., Navarro M. T., et al., Acidity and Stability of MCM-41 Crystalline Aluminosilicates. Journal of Catalysis.1994,148(2):569-574
    [75]Kloetstra K. R., van Bekkum H., Base and acid catalysis by the alkali-containing MCM-41 mesoporous molecular sieve. Journal of the Chemical Society, Chemical Communications.1995,(10):1005-1006
    [76]Reddy E. P., Sun B., Smirniotis P. G., Transition metal modified TiO2-loaded MCM-41 catalysts for visible- and UV-light driven photodegradation of aqueous organic pollutants. Journal of Physical Chemistry B.2004,108(44):17198-17205
    [77]Wu P., Tatsumi T., Komatsu T., et al., Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. Chemistry of Materials.2002,14(4):1657-1664
    [78]Corma A., Navarro M. T., Pariente J. P., Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. Journal of the Chemical Society, Chemical Communications.1994, (2): 147-148
    [79]Wang L. P., Kong A. G., Chen B., et al., Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2. Journal of Molecular Catalysis a-Chemical.2005,230(1-2):143-150
    [80]Yuan S., Chen Y., Shi L. Y., et al., Synthesis and characterization of Ce-doped mesoporous anatase with long-range ordered mesostructure. Materials Letters.2007,61(21): 4283-4286
    [81]Wakayama H., Setoyama N., Fukushima Y., Size-controlled synthesis and catalytic performance of Pt nanoparticles in micro- and mesoporous silica prepared using supercritical solvents. Advanced Materials.2003,15(9):742-745
    [82]Beck A., Horvath A., Stefler G., et al., Formation and structure of Au/TiO2 and Au/CeO2 nanostructures in mesoporous SBA-15. Catalysis Today.2008,139(3):180-187
    [83]Liu J. H., Chi Y. S., Lin H. P., et al., Design of a high-performance catalyst for CO oxidation:Au nanoparticles confined in mesoporous aluminosilicate. Catalysis Today.2004, 93-5 141-147
    [84]Han Y. J., Watson J. T., Stucky G. D., et al., Catalytic activity of mesoporous silicate-immobilized chloroperoxidase. Journal of Molecular Catalysis B:Enzymatic.2002, 17(1):1-8
    [85]Park M., Park S. S., Selvaraj M., et al., Hydrophobic mesoporous materials for immobilization of enzymes. Microporous and Mesoporous Materials.2009,124(1-3):76-83
    [86]Lu Y. J., Li P. J., Guo Y. L., et al., Immobilization of enzymes on mesoporous materials. Progress in Chemistry.2008,20(7-8):1172-1179
    [87]Tuysuz H., Comotti M., Schuth F., Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation. Chemical Communications.2008, (34):4022-4024
    [88]Li G. S., Zhang D. Q., Yu J. C., Ordered mesoporous BiVO4 through nanocasting: A superior visible light-driven photocatalyst. Chemistry of Materials.2008,20(12):3983-3992
    [89]Wang Y. G., Ren J. W., Wang Y. Q., et al., Nanocasted synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion. Journal of Physical Chemistry C.2008,112(39):15293-15298
    [90]Yu A. M., Wang Y. J., Barlow E., et al., Mesoporous silica particles as templates for preparing enzyme-loaded biocompatible microcapsules. Advanced Materials.2005,17(14): 1737-1741
    [91]Kisler J. M., Dahler A., Stevens G. W., et al., Separation of biological molecules using mesoporous molecular sieves. Microporous and Mesoporous Materials.2001,44169-774
    [92]Angelos S., Johansson E., Stoddart J. F., et al., Meslostructured silica supports for functional materials and molecular machines. Advanced Functional Materials.2007,17(14): 2261-2271
    [93]Deere J., Magner E., Wall J. G., et al., Adsorption and activity of proteins onto mesoporous silica. Catalysis Letters.2003,85(1-2):19-23
    [94]Galarneau A., Mureseanu M., Atger S., et al., Immobilization of lipase on silicas. Relevance of textural and interfacial properties on activity and selectivity. New Journal of Chemistry.2006,30(4):562-571
    [95]Fan J., Lei J., Wang L. M., et al., Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Chemical Communications.2003, (17):2140-2141
    [96]Han Y. J., Stucky G. D., Butler A., Mesoporous silicate sequestration and release of proteins. Journal of the American Chemical Society.1999,121(42):9897-9898
    [97]Han Y. J., Margolese D., Stucky G. D., et al., Protein extraction by mesoporous materials. Abstracts of Papers of the American Chemical Society.1999,217 U1010-U1010
    [98]Zhao J. W., Gao F., Fu Y. L., et al., Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. Chemical Communications.2002, (7):752-753
    [99]Yang P. P., Huang S. S., Kong D. Y., et al., Luminescence functionalization of SBA-15 by YVO4 : Eu3+ as a novel drug delivery system. Inorganic Chemistry.2007,46(8): 3203-3211
    [100]Yang P. P., Quan Z. W., Lu L. L., et al., Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems. Biomaterials.2008,29(6):692-702
    [101]Zhao W. R., Gu J. L., Zhang L. X., et al., Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. Journal of the American Chemical Society.2005,127(25):8916-8917
    [102]Zhao W. R., Chen H. R., Li Y. S., et al., Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property. Advanced Functional Materials.2008,18(18):2780-2788
    [103]Zhang L. X., Zhang W. H., Shi J. L., et al., A new thioether functionalized organic-inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbent. Chemical Communications.2003, (2):210-211
    [104]Brown J., Mercier L., Pinnavaia T. J., Selective adsorption of Hg2+ by thiol-functionalized nanoporous silica. Chemical Communications.1999, (1):69-70
    [105]Hu C. Q., Zhu Q. S., Jiang Z., et al., Preparation and formation mechanism of mesoporous CuO-CeO2 mixed oxides with excellent catalytic performance for removal of VOCs. Microporous and Mesoporous Materials.2008,113(1-3):427-434
    [106]Chu Y. H., Kim H. J., Song K. Y., et al., Preparation of mesoporous silica fiber matrix for VOC removal. Catalysis Today.2002,74(3-4):249-256
    [107]De Witte K., Meynen V., Mertens M., et al., Multi-step loading of titania on mesoporous silica: Influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOCs. Applied Catalysis B-Environmental.2008,84(1-2):125-132
    [108]Mamak M., Coombs N., Ozin G. A., Mesoporous nickel-yttria-zirconia fuel cell materials. Chemistry of Materials.2001,13(10):3564-3570
    [109]Mamak M., Coombs N., Ozin G., Mesoporousyttria-zirconia and metal-yttria-zirconia solid solutions for fuel cells. Advanced Materials.2000,12(3):198-202
    [110]Chen G. B., Wang L., Zou Y., et al., CdSe Quantum Dots Sensitized Mesoporous TiO2 Solar Cells with CuSCN as Solid-State Electrolyte. Journal of Nanomaterials.2011,id-269591
    [111]Peng T. Y., Fan K., Zhao D., et al., Enhanced Energy Conversion Efficiency of Me2+-Modified Mesoporous TiO2 Nanoparticles Electrodes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C.114(50):22346-22351
    [112]Gao F., Lu Q. Y., Zhao D. Y., In situ adsorption method for synthesis of binary semiconductor US nanocrystals inside mesoporous SBA-15. Chemical Physics Letters.2002, 360(5-6):585-591
    [113]Shi Y. F., Wan Y., Liu R. L., et al., Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. Journal of the American Chemical Society.2007,129(30):9522-9531
    [114]Wu C. G., Bein T., Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science.1994,264(5166):1757-1759
    [115]Kageyama K., Tamazawa J.-i., Aida T., Extrusion Polymerization: Catalyzed Synthesis of Crystalline Linear Polyethylene Nanofibers Within a Mesoporous Silica. Science. 1999,285(5436):2113-2115
    [116]Chen J., Chen S., Zhao X., et al., Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery. Journal of the American Chemical Society.2008,130(49):16778-16785
    [117]Brun N., Julian-Lopez B., Hesemann P., et al., Eu3+@Organo-Si(HIPE) Macro-Mesocellular Hybrid Foams Generation:Syntheses, Characterizations, and Photonic Properties. Chemistry of Materials.2008,20(22):7117-7129
    [118]Zhang F., Wan Y., Shi Y., et al., Ordered Mesostructured Rare-Earth Fluoride Nanowire Arrays with Upconversion Fluorescence. Chemistry of Materials.2008,20(11): 3778-3784
    [119]Ye B., Trudeau M., Antonelli D., Synthesis and electronic properties of potassium fulleride nanowires in a mesoporous niobium oxide host. Advanced Materials.2001,13(1): 29-33
    [120]He X., Antonelli D., Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves. Angewandte Chemie-International Edition. 2001,41(2):214-229
    [121]Wang Y. Q., Yang C. M., Schmidt W., et al., Weakly ferromagnetic ordered mesoporous CO3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica. Advanced Materials.2005,17(1):53-56
    [122]Jiao F., Shaju K. M., Bruce P. G., Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angewandte Chemie-International Edition.2005,44(40):6550-6553
    [123]Jiao F., Jumas J. C., Womes M., et al., Synthesis of Ordered Mesoporous Fe3O4 and y-Fe2O3 with Crystalline Walls Using Post-Template Reduction/Oxidation. Journal of the American Chemical Society.2006,128(39):12905-12909
    [124]Yada M., Kitamura H., Ichinose A., et al., Mesoporous Magnetic Materials Based on Rare Earth Oxides. Angewandte Chemie International Edition.1999,38(23):3506-3510
    [125]Vartuli J. C., Kresge C. T., Leonowicz M. E., et al., Synthesis of Mesoporous Materials: Liquid-Crystal Templating versus Intercalation of Layered Silicates. Chemistry of Materials.1994,6(11):2070-2077
    [126]Antonelli D. M., Ying J. Y., Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism. Angewandte Chemie International Edition in English.1996,35(4):426-430
    [127]Antonelli D. M., Synthesis of phosphorus-free mesoporous titania via templating with amine surfactants. Microporous and Mesoporous Materials.1999,30(2-3):315-319
    [128]Yang P., Zhao D., Margolese D. I., et al., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature.1998,396(6707):152-155
    [129]Tian B., Liu X., Tu B., et al., Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat Mater.2003,2(3):159-163
    [130]Yao Y. F., Zhang M. S., Yang Y. S., Synthesis of Nano-sized MCM-41 Mesoporous Molecular Sieve by Microwave Radiation Method. Acta Physico-Chimica Sinica.2001, 17(12):1117-1121
    [131]Run M., Wu S., Wu G., Ultrasonic synthesis of mesoporous molecular sieve. Microporous and Mesoporous Materials.2004,74(1-3):37-47
    [132]Wan Y., Zhao, On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chemical Reviews.2007,107(7):2821-2860
    [133]Kruk M., Jaroniec M., Ryoo R., et al., Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. Journal of Physical Chemistry B. 2000,104(33):7960-7968
    [134]Kruk M., Jaroniec M., Kim T. W., et al., Synthesis and characterization of hexagonally ordered carbon nanopipes. Chemistry of Materials.2003,15(14):2815-2823
    [135]Tian B., Liu X., Yang H., et al., General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-Digested Mesoporous Silica. Advanced Materials.2003,15(16):1370-1374
    [136]Yang H., Zhao D., Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry.2005,15(12):1217-1231
    [137]Kaneda M., Tsubakiyama T., Carlsson A., et al., Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. Journal of Physical Chemistry B.2002,106(6):1256-1266
    [138]Wan der Meer J., Bardez I., Bart F., et al., Dispersion of Co3O4 nanoparticles within SBA-15 using alkane solvents. Microporous and Mesoporous Materials.2009,118(1-3): 183-188
    [139]Lopes I., El Hassan N., Guerba H., et al., Size-Induced Structural Modifications Affecting CO3O4 Nanoparticles Patterned in SBA-15 Silicas. Chemistry of Materials.2006, 18(25):5826-5828
    [140]Zhu K., Yue B., Zhou W., et al., Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chemical Communications.2003, (1):98-99
    [141]Krawicc P., Weidenthaler C., Kaskel S., SiC/MCM-48 and SiC/SBA-15 nanocomposite materials. Chemistry of Materials.2004,16(15):2869-2880
    [142]Ersen O., Parmentier J., Solovyov L. A., et al., Direct Observation of Stacking Faults and Pore Connections in Ordered Cage-Type Mesoporous Silica FDU-12 by Electron Tomography. Journal of the American Chemical Society.2008,130(49):16800-16806
    [143]Vix-Guterl C., Saadallah S., Vidal L., et al., Template synthesis of a new type of ordered carbon structure from pitch. Journal of Materials Chemistry.2003,13(10):2535-2539
    [144]Li Z., Yan W., Dai S., Surface Functionalization of Ordered Mesoporous CarbonsA Comparative Study. Langmuir.2005,21(25):11999-12006
    [145]Corma A., Atienzar P., Garcia H., et al., Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nature Materials.2004,3(6):394-397
    [146]Fan H. Y., Chen Z., Brinker C. J., et al., Synthesis of organo-silane functionalized nanocrystal micelles and their self-assembly. Journal of the American Chemical Society.2005, 127(40):13746-13747
    [147]Nishiyama N., Tanaka S., Egashira Y., et al., Vapor-phase synthesis of mesoporous silica thin films. Chemistry of Materials.2003,15(4):1006-1011
    [148]Sharma P. K., Jilavi M. H., Nass R., et al., Tailoring the particle size from mu m-> nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria. Journal of Luminescence.1999,82(3):187-193
    [149]Pires A. M., Heer S., Gudel H. U., et al., Er, Yb doped yttrium based nanosized phosphors:Particle size, "host lattice" and doping ion concentration effects on upconversion efficiency. Journal of Fluorescence.2006,16(3):461-468
    [150]Wei Z. G., Sun L. D., Liao C. S., et al., Size-dependent chromaticity in YBO3 : Eu nanocrystals:Correlation with microstructure and site symmetry. Journal of Physical Chemistry B.2002,106(41):10610-10617
    [151]Jia G., You H., Song Y., et al., Facile Synthesis and Luminescence of Uniform Y2O3 Hollow Spheres by a Sacrificial Template Route. Inorganic Chemistry.49(17):7721-7725
    [152]Yu X. F., Chen L. D., Li M., et al., Highly Efficient Fluorescence of NdF3/SiO2 Core/Shell Nanoparticles and the Applications for in vivo NIR Detection. Advanced Materials. 2008,20(21):4118-4123
    [153]Yang P. P., Quan Z. W., Hou Z. Y., et al., A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. Biomaterials.2009,30(27): 4786-4795
    [154]Julian B., Corberan R., Cordoncillo E., et al., Synthesis and optical properties of Eu3+-doped inorganic-organic hybrid materials based on siloxane networks. Journal of Materials Chemistry.2004,14(22):3337-3343
    [155]Marriott G., Heidecker M., Diamandis E. P., et al., Time-resolved delayed luminescence image microscopy using an europium ion chelate complex. Biophysical Journal. 1994,67(3):957-965
    [156]Xue Y., Wu P., Liu Y., et al., Highly Efficient Near-IR Photoluminescence of Er3+ Immobilized in Mesoporous SBA-15. Nanoscale Research Letters.5(12):1952-1961
    [157]Shi D. L., Lian J., Wang W., et al., Luminescent Carbon Nanotubes by Surface Functionalization. Advanced Materials.2006,18(2):189-193
    [158]Zhao D., Seo S. J., Bae B. S., Full-Color Mesophase Silicate Thin Film Phosphors Incorporated with Rare Earth Ions and Photosensitizers. Advanced Materials.2007,19(21): 3473-3479
    [159]Hu L., Ma R., Ozawa T. C., et al., Synthesis of a Solid Solution Series of Layered EuxGd1-x(OH)2.5Cl0.50.9H20 and Its Transformation into (EuxGd1-x)2O3 with Enhanced Photoluminescence Properties. Inorganic Chemistry.49(6):2960-2968
    [160]Yi G., Lu H., Zhao S., et al., Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors. Nano Letters.2004,4(11):2191-2196
    [161]Wang X., Zhuang J., Peng Q., et al., A general strategy for nanocrystal synthesis. Nature.2005,437(7055):121-124
    [162]Li C., Yang J., Quan Z., et al., Different Microstructures of P-NaYF4 Fabricated by Hydrothermal Process:Effects of pH Values and Fluoride Sources. Chemistry of Materials. 2007,19(20):4933-4942
    [163]Xu Z., Li C., Yang P., et al., Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides:Hydrothermal Synthesis and Luminescence Properties. Crystal Growth & Design.2009,9(11):4752-4758
    [164]Wang L., Li P., Li Y., Down- and Up-Conversion Luminescent Nanorods. Advanced Materials.2007,19(20):3304-3307
    [165]Zhu H. L., Zhu E., Yang H., et al., High-brightness LaPO4: Ce3+,Tb3+ nanophosphors: Reductive hydrothermal synthesis and photoluminescent properties. Journal of the American Ceramic Society.2008,91(5):1682-1685
    [166]Ghosh P., Oliva J., Rosa E. D.1., et al., Enhancement of Upconversion Emission of LaPO4:Er@Yb Core-Shell Nanoparticles/Nanorods. The Journal of Physical Chemistry C. 2008,112(26):9650-9658
    [167]Buissette V., Moreau M., Gacoin T., et al., Luminescent Core/Shell Nanoparticles with a Rhabdophane LnPO4-xH2O Structure:Stabilization of Ce3+-Doped Compositions. Advanced Functional Materials.2006,16(3):351-355
    [168]DiMaio J. R., Kokuoz B., James T., et al., Structural Determination of Light-Emitting Inorganic Nanoparticles with Complex Core/Shell Architectures. Advanced Materials.2007,19(20):3266-3270
    [169]Park S. S., Ha C.-S., Organic-inorganic hybrid mesoporous silicas:functionalization, pore size, and morphology control. The Chemical Record.2006,6(1):32-42
    [170]Escribano P., Julian-Lopez B., Planelles-Arago J., et al., Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials. Journal of Materials Chemistry.2008,18(1):23-40
    [171]Lu G., Ou Z., Jiang J., et al., Nanoscale Hollow Spheres of an Amphiphilic Mixed (Phthalocyaninato)(porphyrinato)europium Double-Decker Complex. European Journal of Inorganic Chemistry.2010(5):753-757
    [172]Li G., Peng C., Zhang C., et al., Eu3+/Tb3+-Doped La2O2CO3/La2O3 Nano/Microcrystals with Multiform Morphologies:Facile Synthesis, Growth Mechanism, and Luminescence Properties. Inorganic Chemistry.49(22):10522-10535
    [173]Qian L., Zhu J., Chen Z., et al., Self-Assembled Heavy Lanthanide Orthovanadate Architecture with Controlled Dimensionality and Morphology. Chemistry-A European Journal.2009,15(5):1233-1240
    [174]Zhang F., Wan Y., Yu T., et al., Uniform Nanostructured Arrays of Sodium Rare-Earth Fluorides for Highly Efficient Multicolor Upconversion Luminescence. Angewandte Chemie International Edition.2007,46(42):7976-7979
    [175]Gao L. Z., Zhuang J., Nie L., et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology.2007,2(9):577-583
    [176]Park J. H., Gu L., von Maltzahn G., et al., Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials.2009,8(4):331-336
    [177]Xie H. Y., Xie M., Zhang Z. L., et al., Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition. Bioconjugate Chemistry.2007,18(6):1749-1755
    [178]Javey A., Nam S., Friedman R. S., et al., Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Letters.2007,7(3):773-777
    [179]Bartl M. H., Boettcher S. W., Frindell K. L., et al.,3-D molecular assembly of function in titania-based composite material systems. Accounts of Chemical Research.2005, 38(4):263-271
    [180]Rosenholm J. M., Meinander A., Peuhu E., et al., Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells. Acs Nano.2009,3(1):197-206
    [181]Goto Y., Mizoshita N., Ohtani O., et al., Synthesis of mesoporous aromatic silica thin films and their optical properties. Chemistry of Materials.2008,20(13):4495-4498
    [182]Park J. W., Park S. S., Kim Y., et al., Mesoporous silica nanolayers infiltrated with hole-transporting molecules for hybrid organic light-emitting devices. Acs Nano.2008,2(6): 1137-1142
    [183]Marlow F., McGehee M. D., Zhao D. Y., et al., Doped mesoporous silica fibers:A new laser material. Advanced Materials.1999,11(8):632-636
    [184]Scott B. J., Wirnsberger G., Stucky G. D., Mesoporous and mesostructured materials for optical applications. Chemistry of Materials.2001,13(10):3140-3150
    [185]Tani T., Mizoshita N., Inagaki S., Luminescent periodic mesoporous organosilicas. Journal of Materials Chemistry.2009,19(26):4451-4456
    [186]Klier K., Miller A. C., Zhang L. L., et al., Luminescence of intraporous cerium(Ⅲ) complexes in alkyl sulfonic mesoporous silica. Chemistry of Materials.2008,20(4): 1359-1366
    [187]Lebret V., Raehm L., Durand J. O., et al., Synthesis and characterization of fluorescently doped mesoporous nanoparticles for two-photon excitation. Chemistry of Materials.2008,20(6):2174-2183
    [188]Insin N., Tracy J. B., Lee H., et al., Incorporation of iron oxide nanoplarticles and quantum dots into silica microspheres. Acs Nano.2008,2(2):197-202
    [189]Fang Y. P., Xu A. W., Song R. Q., et al., Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires. Journal of the American Chemical Society.2003,125(51):16025-16034
    [190]Justel T., Krupa J. C., Wiechert D. U., VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps. Journal of Luminescence.2001,93(3): 179-189
    [191]Riwotzki K., Meyssamy H., Kornowski A., et al., Liquid-phase synthesis of doped nanoparticles:Colloids of luminescing LaPO4:Eu and CePO4: Tb particles with a narrow particle size distribution. Journal of Physical Chemistry B.2000,104(13):2824-2828
    [192]Tiemann M., Repeated templating. Chemistry of Materials.2008,20(3):961-971
    [193]Schuth F., Non-siliceous mesostructured and mesoporous materials. Chemistry of Materials.2001,13(10):3184-3195
    [194]Stein A., Li F., Denny N. R., Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chemistry of Materials.2008, 20(3):649-666
    [195]Ho L. N., Nishiguchi H., Nagaoka K., et al., Preparation of mesoporous nanocrystalline cerium phosphate with controllable pore size by using chelating agent. Materials Chemistry and Physics.2006,97(2-3):494-500
    [196]Wan Y., Yang H. F., Zhao D. Y., "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Accounts of Chemical Research.2006,39(7):423-432
    [197]Shi Y. F., Wan Y., Zhai Y. P., et al., Ordered mesoporous SiOC and SiCN ceramics from atmosphere-assisted in situ transformation. Chemistry of Materials.2007,19(7): 1761-1771
    [198]Nedelec J. M., Avignant D., Mahiou R., Soft chemistry routes to YPO4-based phosphors:Dependence of textural and optical properties on synthesis pathways. Chemistry of Materials.2002,14(2):651-655
    [199]Di W. H., Wang X. J., Chen B. J., et al., Preparation, characterization and VUV luminescence property of YPO4:Tb phosphor for a PDP. Optical Materials.2005,27(8): 1386-1390
    [200]Araki Y., Kagaya S., Sakai K., et al., Determination of Al, Cr, Fe, Zn, Cd, Pb and Bi in Crude Drugs by Inductively Coupled Plasma Atomic Emission Spectrometry after Coprecipitation with Yttrium Phosphate. Journal of Health Science.2008,54(6):682-685
    [201]Kim T. W., Chung P. W., Slowing I. I., et al., Structurally Ordered Mesoporous Carbon Nanoparticles as Transmembrane Delivery Vehicle in Human Cancer Cells. Nano Letters.2008,8(11):3724-3727
    [202]Liu J. W., Stace-Naughton A., Jiang X. M., et al., Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles. Journal of the American Chemical Society. 2009,131(4):1354-1355
    [203]Kleitz F., Choi S. H., Ryoo R., Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications.2003, (17):2136-2137
    [204]Tian B. Z., Liu X. Y., Solovyov L. A., et al., Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. Journal of the American Chemical Society.2004,126(3):865-875
    [205]Liu B., Baker R. T., Factors affecting the preparation of ordered mesoporous ZrO2 using the replica method. Journal of Materials Chemistry.2008,18(43):5200-5207
    [206]Sauer J., Marlow F., Spliethoff B., et al., Rare earth oxide coating of the walls of SBA-15. Chemistry of Materials.2002,14(1):217-224
    [207]Grosso D., Boissiere C., Smarsly B., et al., Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Materials. 2004,3(11):787-792
    [208]Di W. H., Zhao X. X., Lu S. Z., et al., Thermal and photoluminescence properties of hydrated YPO4:Eu3+ nanowires. Journal of Solid State Chemistry.2007,180(9):2478-2484
    [209]Yang X. F., Dong X. T., Wang J. X., et al., Glycine-assisted hydrothermal synthesis of YPO4:Eu3+ nanobundles. Materials Letters.2009,63(6-7):629-631
    [210]van Pieterson L., Reid M. F., Wegh R. T., et al.,4f(n)-> 4f(n)-(1)5d transitions of the light lanthanides:Experiment and theory. Physical Review B.2002,65(4):id-045113
    [211]Justel T., Huppertz P., Mayr W., et al., Temperature-dependent spectra of YPO4:Me (Me= Ce, Pr, Nd, Bi). Journal of Luminescence.2004,106(3-4):225-233
    [212]Das G. K., Tan T. T. Y., Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes. Journal of Physical Chemistry C.2008,112(30):11211-11217
    [213]Rambabu U., Munirathnam N. R., Prakash T. L., et al., Emission spectra of LnPO(4): RE3+(Ln= La, Gd; RE= Eu, Tb and Ce) powder phosphors. Materials Chemistry and Physics.2003,78(1):160-169
    [214]Riwotzki K., Haase M., Colloidal YVO4:Eu and YP0.95V0.05O4:Eu nanoparticles: Luminescence and energy transfer processes. Journal of Physical Chemistry B.2001,105(51): 12709-12713
    [215]Sun Y. J., Liu H. J., Wang X., et al., Optical spectroscopy and visible upconversion studies of YVO4:Er3+ nanocrystals synthesized by a hydrothermal process. Chemistry of Materials.2006,18(11):2726-2732
    [216]Huignard A., Gacoin T., Boilot J. P., Synthesis and luminescence properties of colloidal YVO4:Eu phosphors. Chemistry of Materials.2000,12(4):1090-1094
    [217]He Y. M., Wu Y., Guo H., et al., Visible light photodegradation of organics over VYO composite catalyst. Journal of Hazardous Materials.2009,169(1-3):855-860
    [218]Oshikiri M., Boero M., Matsushita A., et al., Water molecule adsorption properties on surfaces of MVO4 (M=In, Y, Bi) photo-catalysts. Journal of Electroceramics.2009, 22(1-3):114-119
    [219]Fang Z. M., Hong Q., Zhou Z. H., et al., Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catalysis Letters.1999,61(1-2):39-44
    [220]Zhang W. D., Au C. T., Wan H. L., The active phase and support effect on V2O5/Y2O3 catalysts for propane oxidative dehydrogenation. Applied Catalysis a-General. 1999,181(1):63-69
    [221]Maunders E. A., Deshazer L. G., Journal of the Optical Society of America.1971,61 684
    [222]Fields R. A., Birnbaum M., Fincher C. L., Applied Physics Letters.1987,51 1885
    [223]Yue W. B., Xu X. X., Irvine J. T. S., et al., Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties. Chemistry of Materials.2009,21(12):2540-2546
    [224]Kim T. W., Ryoo R., Gierszal K. P., et al., Characterization of mesoporous carbons synthesized with SBA-16 silica template. Journal of Materials Chemistry.2005,15(15): 1560-1571
    [225]Lu A. H., Kiefer A., Schmidt W., et al., Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chemistry of Materials.2004,16(1): 100-103
    [226]Jia G. A., Song Y. H., Yang M, et al., Uniform YVO4:Ln(3+) (Ln=Eu, Dy, and Sm) nanocrystals:Solvothermal synthesis and luminescence properties. Optical Materials.2009, 31(6):1032-1037
    [227]Zhou Y. H., Lin J., Morphology control and luminescence properties of YVO4:Eu phosphors prepared by spray pyrolysis. Optical Materials.2005,27(8):1426-1432
    [228]Hsu C., Powell R. C., Energy transfer in europium doped yttrium vanadate crystals. Journal of Luminescence.1975,10(5):273-293
    [229]Yu M., Lin J., Fang J., Silica spheres coated with YVO4:Eu3+ layers via sol-gel process:A simple method to obtain spherical core-shell phosphors. Chemistry of Materials. 2005,17(7):1783-1791
    [230]Byrappa K., Ohachi T., Crystal Growth Technology. Springer,2003
    [231]Huignard A., Buissette V., Franville A. C., et al., Emission processes in YVO4:Eu nanoparticles. Journal of Physical Chemistry B.2003,107(28):6754-6759
    [232]Gratzel M., Photoelectrochemical cells. Nature.2001,414(6861):338-344
    [233]Hickner M. A., Ghassemi H., Kim Y. S., et al., Alternative polymer systems for proton exchange membranes (PEMs). Chemical Reviews.2004,104(10):4587-4611
    [234]Gomez-Romero P., Hybrid organic-inorganic materials-In search of synergic activity. Advanced Materials.2001,13(3):163-174
    [235]Rao K. N., Dingwall L. D., Gai P. L., et al., Synthesis and characterization of nanoporous phospho-tungstate organic-inorganic hybrid materials. Journal of Materials Chemistry.2008,18(8):868-874
    [236]Forster P. M., Cheetham A. K., Hybrid inorganic-organic solids: an emerging class of nanoporous catalysts. Topics in Catalysis.2003,24(1-4):79-86
    [237]Natarajan S., Mandal S., Open-framework structures of transition-metal compounds. Angewandte Chemie-International Edition.2008,47(26):4798-4828
    [238]Khan M. I., Nome R. C., Deb S., et al., Inorganic-Organic Hybrid Materials with Novel Framework Structures:Synthesis, Structure, and Magnetic Properties of [Ni(py)4]2V10O29 and [Ni2(py)5(H2O3)]V4O12. Crystal Growth & Design.2009,9(6): 2848-2852
    [239]Cheetham A. K., Rao C. N. R., Feller R. K., Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chemical Communications.2006, (46): 4780-4795
    [240]Franville A. C., Zambon D., Mahiou R., et al., Luminescence behavior of sol-gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chemistry of Materials.2000,12(2):428-435
    [241]Dong D. W., Jiang S. C., Men Y. F., et al., Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach. Advanced Materials.2000, 12(9):646-649
    [242]Binnemans K., Lenaerts P., Driesen K., et al., A luminescent tris(2-thenoyltrifluoroacetonato) europium(Ⅲ) complex covalently linked to a 1,10-phenanthroline-functionalised sol-gel glass. Journal of Materials Chemistry.2004,14(2): 191-195
    [243]Minoofar P. N., Dunn B. S., Zink J. I., Multiply doped nanostructured silicate sol-gel thin films:Spatial segregation of dopants, energy transfer, and distance measurements. Journal of the American Chemical Society.2005,127(8):2656-2665
    [244]Martin M. A., Olives A. I., del Castillo B., et al., Trends in the design and application of optical chemosensors in pharmaceutical and biomedical analysis. Current Pharmaceutical Analysis.2008,4(3):106-117
    [245]Escribano P., Julian-Lopez B., Planelles-Arago J., et al., Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials. Journal of Materials Chemistry.2008,18(1):23-40
    [246]Carlos L. D., Ferreira R. A. S., Bermudez V. D., et al., Lanthanide-Containing Light-Emitting Organic-Inorganic Hybrids:A Bet on the Future. Advanced Materials.2009, 21(5):509-534
    [247]Binnemans K., Lanthanide-Based Luminescent Hybrid Materials. Chemical Reviews. 2009,109(9):4283-4374
    [248]Weibel N., Charbonniere L. J., Guardigli M., et al., Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging. Journal of the American Chemical Society.2004,126(15):4888-4896
    [249]Bunzli J. C. G., Lanthanide Luminescence for Biomedical Analyses and Imaging. Chemical Reviews.2010,110(5):2729-2755
    [250]Liu G. Z., Conn C. E., Drummond C. J., Lanthanide Oleates:Chelation, Self-assembly, and Exemplification of Ordered Nanostructured Colloidal Contrast Agents for Medical Imaging. Journal of Physical Chemistry B.2009,113(49):15949-15959
    [251]Ghosh P., Kar A., Patra A., Energy transfer study between Ce3+ and Tb3+ ions in doped and core-shell sodium yttrium fluoride nanocrystals. Nanoscale.2010,2(7):1196-1202
    [252]Ntwaeaborwa O. M., Swart H. C., Kroon R. E., et al., Enhanced luminescence and degradation of SiO2:Ce,Tb powder phosphors prepared by a sol-gel process. Journal of Physics and Chemistry of Solids.2006,67(8):1749-1753
    [253]Hou Z. Y., Wang L. L., Lian H. Z., et al., Preparation and luminescence properties of Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning. Journal of Solid State Chemistry.2009,182(4):698-708
    [254]Gulnar A. K., Sudarsan V., Vatsa R. K., et al., CePO4:Ln (Ln=Tb3+ and Dy3+) Nanoleaves Incorporated in Silica Sols. Crystal Growth & Design.2009,9(5):2451-2456
    [255]Song W. S., Choi H. N., Kim Y. S., et al., Formation of green-emitting LaPO4:Ce,Tb nanophosphor layer and its application to highly transparent plasma displays. Journal of Materials Chemistry.20(33):6929-6934
    [256]Duault F., Junker M., Grosseau P., et al., Effect of different fluxes on the morphology of the LaPO4:Ce, Tb phosphor. Powder Technology.2005,154(2-3):132-137
    [257]Lai H., Bao A., Yang Y. M., et al., UV luminescence property of YPO4:RE (RE= Ce3+, Tb3+). Journal of Physical Chemistry C.2008,112(1):282-286
    [258]Froba M., Tiemann M., A New Role of the Surfactant in the Synthesis of Mesostructured Phases: Dodecyl Phosphate as Template and Reactant for Aluminophosphates. Chemistry of Materials.1988,10 3475-3483
    [259]Schmidt S. M., McDonald J., Pineda E. T., et al., Surfactant based assembly of mesoporous patterned calcium phosphate micron-sized rods. Microporous and Mesoporous Materials.2006,94(1-3):330-338
    [260]Wu Y. J., Bose S., Nanocrystalline hydroxyapatite:Micelle templated synthesis and characterization. Langmuir.2005,21(8):3232-3234
    [261]Lin S. Z., Yuan Y. L., Wang H. T., et al., Controllable synthesis and luminescence property of CePO4:Tb nanorods. Journal of Materials Science-Materials in Electronics.2009, 20(9):899-904
    [262]Yang M., You H. P., Zheng Y. H., et al., Hydrothermal Synthesis and Luminescent Properties of Novel Ordered Sphere CePO4 Hierarchical Architectures. Inorganic Chemistry. 2009,48(24):11559-11565
    [263]Lei B. F., Li B., Zhang H. R., et al., Synthesis, Characterization, and Oxygen Sensing Properties of Functionalized Mesoporous SBA-15 and MCM-41 with a Covalently Linked Ruthenium(II) Complex. The Journal of Physical Chemistry C.2007,111(30):11291-11301
    [264]Bao J. R., Yu R. B., Zhang J. Y., et al., Low-temperature hydrothermal synthesis and structure control of nano-sized CePO4. Crystal Engineering Communications.2009,11(8): 1630-1634
    [265]Fang Y. P., Xu A. W., Song R. Q., et al., Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. Journal of the American Chemical Society.2003,125(51):16025-16034
    [266]Chen G. Z., Sun S. X., Zhao W., et al., Template Synthesis and Luminescence Properties of CePO4:Tb Nanotubes. Journal of Physical Chemistry C.2008,112(51): 20217-20221
    [267]Huynh W. U., Dittmer J. J., Alivisatos A. P., Hybrid Nanorod-Polymer Solar Cells. Science.2002,295(5564):2425-2427
    [268]Wang J., Gudiksen M. S., Duan X., et al., Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires. Science.2001,293(5534): 1455-1457
    [269]Choi H., Kim J. H., Yi S. S., et al., Photoluminescence properties of Tb2O3 embedded in the TiO2 nanocrystals. Journal of Alloys and Compounds.2006,408 816-819
    [270]Chakradhar R. P. S., Basu B. J., Lakshmi R. V., Effect of particle size and dopant concentration on photophysical properties of Eu3+-doped rare earth oxysulphide phosphor coatings. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.78(2): 783-787
    [271]Zheng Q. X., Li B., Xue M., et al., Synthesis of YVO4 and rare earth-doped YVO4 ultra-fine particles in supercritical water. The Journal of Supercritical Fluids.2008,46(2): 123-128
    [272]Mohamed A., Ballem J. M., Cordoba M. O., Influence of synthesis temperature on morphology of SBA-16 mesoporous materials with a three-dimensional pore system. Microporous and Mesoporous Materials.2010,129 106-111
    [273]Kim T. W., Ryoo R., Gierszal K. P., et al., Characterization of mesoporous carbons synthesized with SBA-16 silica template. Journal of Materials Chemistry.2005,15(15): 1560-1571

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700