五轴车铣复合加工功能关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多轴车铣复合加工技术作为一种适应现代化制造业多品种、小批量、个性化发展需求的新技术,是一种在传统机械设计和精密制造技术基础上,集成了现代先进控制技术、精密测量技术和CAD/CAM应用技术的先进机械加工技术。在“高档数控机床与基础制造装备”国家科技重大专项中,也将其列为数控系统重点任务中的重要研究内容。针对多轴车铣复合加工控制功能需求,开展高档数控系统车铣复合加工动态转换功能、五轴机床运动学库、五轴运动学校验和优化等关键技术的研究。围绕上述问题,本报告开展的研究工作如下:
     1.车铣复合端面加工坐标转换方法的研究。针对车铣复合端面加工复杂运动学转换的问题,在研究车铣复合端面加工工艺特点及相应机床运动学关系基础上,提出一种基于模块化机床数据的车铣复合端面加工动态转换方法,实现了笛卡尔坐标系刀具运动轨迹与机床坐标系间的极坐标运动动态转换,并在现有的运动轨迹规划方法基础上,在实时插补中完成动态转换,实现了数控系统车铣复合极坐标加工功能。针对极坐标插补极值区域的C轴运动过载问题,提供一种结合C轴约束系数α和过渡系数β的数控系统用极坐标插补极值区域平滑处理方法,实现极坐标插补区域内路径平滑插补。保证编程方式与铣削加工编程方式一致,给用户编程带来方便,提高加工效率,同时丰富车削中心的功能。
     2.车铣复合柱面加工坐标转换方法的研究。针对车铣复合柱面加工复杂运动学转换的问题,在研究车铣复合柱面加工工艺特点及相应机床运动学关系基础上,提出一种基于模块化机床数据的车铣复合柱面加工动态转换方法,实现了笛卡尔坐标系刀具运动轨迹与机床圆柱坐标系间的圆柱坐标运动动态转换,并在现有的运动轨迹规划方法基础上,在实时插补中完成动态转换,实现了数控系统车铣复合圆柱加工功能。针对使用XZCY结构将圆柱展开面作为编程平面进行圆柱插补开槽编程时,槽的界面与展开面恰好垂直。但当用小于槽直径的铣刀进行平底开槽刀具半径补偿加工时,则截面内的刀具半径补偿量会发生变化。通过将半径补偿转化为一个长度补偿和一个展开面内的横向半径补偿,并引入辅助的线性Y轴的补偿运动,对圆周方向发生的补偿矢量变化进行线性位移补偿,保证槽壁垂直于槽底面,而与使用的刀具半径无关。
     3.基于进给率约束的五轴刀心点插补控制方法的研究。多轴加工刀具中心点控制使用户可以直接根据工件外形和期望的刀具角度来编程刀具中心轨迹,CNC系统将会自动对控制点进行实时补偿,从而可以确保刀具中心点位于编程轨迹上而与加工时所用刀具和机床类型无关。但是因旋转的原因,刀具中心点的运动与实际机床轴的运动存在非线性关系,在运动控制器中无法同时对刀心点和机床轴进行运动控制。针对此问题,在现有五轴运动控制基础上,基于编程进给率分别在运动命令队列和运动插补队列内完成实时运动学转换,来实现插补前和插补后的实时运动学补偿运动,来实现适用于高速模式和高质量模式的五轴刀心点插补控制。
     4.基于轴分组的多轴复合机床校验方法的研究。首先为了高效快捷的完成五轴机床RTCP参数的校验和优化,在五轴运动学库基础上,以ISO230国际标准为误差测量标准,通过对在线测量出的刀具中心点位置进行回归分析,自动计算出各旋转轴方向矢量和旋转中心位置矢量,从而完成五轴RTCP功能参数的校对,高效的完成五轴机床摆头误差补偿,降低了五轴机床的调试难度,提高RTCP的加工精度。然后在五轴校验基础上,针对多轴车铣复合机床HTM63150iy的插补轴组成特点,将多轴车铣复合机床划分为并将多轴复合机床划分为XYZBC1、XYZBC2、XYZAB(C1&C2)等五轴机床的运动组合。针对划分的各运动组合,分别进行相应的多轴机床结构误差的简化测量。最后通过数控系统相关功能参数对结构误差进行补偿,从而有效的降低成本并使加工精度得到保证。
Multi-axis turn-mill complex machining technology is a kind of advancedprocessing technology integrates modern advanced control technology, precisionmeasurement technology and CAD/CAM application technology based on traditionalmechanical design and precision manufacturing technology, as a new technology foradapting to modern manufacturing industry needs, more varieties, small quantity andindividuation development. It’s also included as one of the key tasks in CNC importantresearch in the national science and technology major projects of "High-End CNCMachine Tools and basic manufacturing equipment". For multi-axis turn-mill complexmachining control function requirementsto carry out research of high-end CNCmilling machining dynamic conversion function, five-axis machine tool kinematicslibrary, five-axis kinematics calibration and optimization of key technologies. The maincontributions of this dissertation are summarized as follows:
     1. Research on peripheral surface transformation for turn-mill complex end surface.For the problem of turn-mill complex machining complex kinematics transformation,proposed an approach based on modular machine tool data parameters dynamicconversion method on the basis of researching the face end machining processingcharacteristics and corresponding kinematic relationship to achieve polar coordinatemotion dynamic transformation between the Cartesian coordinate system and themachine tool polar coordinate system. Based on the existing motion trajectory planningmethod, dynamic conversion is completed in real-time interpolation to achieve turn-millcomplex polar coordinates machining functions. For C-axis motion overload problem inpolar coordinate interpolation extreme regional, provide polar coordinate interpolation smoothing process method in extreme regional based on the CNC system of C-axisconstraint coefficient α and transition coefficient β to achieve the smoothing pathinterpolation within the polar coordinate interpolation region. Resolved simplifyprogramming, improve processing efficiency.
     2. Research on cylinder surface transformation for the machining of cylinder jacketcurves. For the problem of turn-mill complex machining complex cylinders kinematicstransformation problems, proposed an approach based on modular machine tool dataparameters dynamic transformation method on the basis of researching the cylindermachining processing characteristics and corresponding kinematic relationship toachieve cylindrical coordinate motion dynamic transformation between the Cartesiancoordinate system and the machine tool cylindrical coordinate system. Based on theexisting motion trajectory planning method, dynamic transformation is completed inreal-time interpolation to achieve turn-mill complex cylindrical machining functions.Using structure XZCY expanded the cylindrical surface as the programming plane toslot cylindrical interpolation programming, interface and expanded surface of the slotvertical exactly. But with the cutter less than the diameter of slot processing flat slottingtool radius compensation, then the tool radius compensation amount in cross sectionwill be changed. By converting radius compensation into length compensation andlateral radius compensational in expanded plane and the introduction of auxiliary Y-axismotion compensation, linear displacement compensate compensation vector change inthe circumferential direction, ensure the wall perpendicular to the bottom surface of theslot, and nothing to do with the using the tool radius.
     3. Research on five-axis tool center point interpolation control method based on feed rate constraint. According to the tool shape and the desired tool angle, Multi-axismachining tool center point control allows user to directly program tool center path.CNC system will compensate for control point automatically in real time. Which canensure that the tool center is located in programming track, which is independent ofthe used tools or machine type. However, because of the rotary motion, between themovement of the tool center point and the actual machine axis exists non-linearrelationship, it is very difficult to control the movement of tool center point andmachine axis simultaneously in the motion controller. To solve this problem, completedthe real-time kinematic conversion within queues motion command and motioninterpolation queues based on the programmed feed rate according to the existingfive-axis motion control, to achieve real-time kinematic compensation before or afterinterpolation, and interpolation control method for high-speed mode and high qualitymode.
     4. Research on multi-axis machine tool calibration method based on complexgrouping of axes. First, in order completed verification and optimization of five-axismachine RTCP parameters fast and efficiently, automatically calculated for eachrotation axis direction vector and the position vector of the center of rotation byanalysing the tool center point position from online measured with regression analysis,based on the five-axis kinematics library and ISO230international standard to proofreadfive-axis RTCP function parameters and compensate errors of machine structure,reduce the difficulty of five-axis machine debugging and improve the RTCP machiningprecision. Second, according to composition characteristics of multi-axis turn-millcomplex machine HTM63150iy interpolation axis, combination of five-axis machine tools such as XYZ BC1, XYZ BC2, XYZAB(C1&C2)are divided. For eachcombination of the divided, the corresponding errors of multi-axis machine structure aremeasured simply. Finally, by structure error compensation for CNC system relatedfunction parameters to reduce cost and ensure precision effectively.
引文
[1] Nakaminami M, Tokuma T, Moriwaki M, Nakamoto K. Optimal StructureDesign Methodology for Compound Multiaxis Machine Tools. I. Analysisof Requirements and Specifications[J]. International Journal ofAutomation Technology1(2):78–86,2007.
    [2] Woodbury RS. Studies in the History of Machine Tools[M]. MIT Press,1972.
    [3] Ito Y, Shinno H. Structural Description of Machine Tools[J]. Transactionsof JSME Series C46(405):562–571,1980.
    [4] Riegg A, Gygax PE. A Generalized Kinematics Model for Three to FiveAxis Milling Machines and their Implementation in a CNC[J]. Annals ofthe CIRP41(1):547–550,1992.
    [5] Spicer P, Koren Y, Shpitalni M, Yip-Hoi D. Design Principles forMachining System Configurations[J]. Annals of theCIRP51(1):275–280,2002.
    [6] Masahiko Mori, Makoto Fujishima, Oda Yohei,5Axis Mill Turn andHybrid Machining for Advanced application[J]. Procedia CIRP, Volume1:22-27,2012.
    [7] M. Kannan, J. Saha. A feature-based generic setup planning forconfiguration synthesis of reconfigurable machine tools[J]. TheInternational Journal of Advanced Manufacturing Technology,43(9-10):994-1009,2009.
    [8] Reinhart G, Reinhardt S, Foeckerer T, Zaeh MF. Comparison of theresource efficiency of alternative process chains for surface hardening[J].Proceedings of the18th CIRP international conference on life cycleengineering, Braunschweig, Germany, pp311–316,2011.
    [9] Kolkwitz B, Foeckerer T, Heinzel C, Zaeh MF. Experimental andnumerical analysis of the surface integrity resulting from outer-diametergrind-hardening[J]. Procedia Eng19:222–227,2011.
    [10] Shinno H, Hashizume H. Structured Method for Identifying SuccessFactors in New Product Development of Machine Tools[J]. Annals of theCIRP51(1):281–284,2002.
    [11] Shinno H, Hoshioka H, Marpaung S. A Structured Method for AnalyzingProduct Specification in Product Planning for Machine Tools[J]. Journalof Engineering Design17(4):347–356,2006.
    [12] Reshetov DN, Protman V, Accuracy of Machine Tools[M]. ASMEPress,1981.
    [13] Sato M. Design and Performance of5-axis Machines in Japan[J].Proceedings of the12th International Conference on Machine ToolEngineer’s,167–189,2006.
    [14] Karagüzel, Umut, et al. High Performance Turning of High TemperatureAlloys on Multi-Tasking Machine Tools[J]. New Production Technologiesin Aerospace Industry. Springer International Publishing,2014.1-9.
    [15] Nakaminami M, Tokuma T, Matsumoto K, Sakashita S, Moriwaki T,Nakamoto K. Optimal Structure Design Methodology for CompoundMultiaxis Machine Tools. II. Investigation of Basic Structure[J].International Journal of Automation Technology,1(2):87–93,2007.
    [16] Nagae A. Development Trend of Multi-tasking Machines[J]. Proceedingsof the11th International Conference on Machine Tool Engineers,312–323,2004.
    [17] Mayr, J., Jedrzejewski, J., Uhlmann, E., et al. Thermal issues in machinetools[J]. CIRP Ann.Manufact. Technol.61(2),771–791,2012.
    [18] Abele, E., Altintas, Y., Brecher, C. Machine tool spindle units[J]. CIRPAnn. Manufact.Technol.59(2),781–802,2010.
    [19] Altan T, Lilly B, Yen YC. Manufacturing of Dies and Molds[J]. Annals ofthe CIRP50(2):405–423,2001.
    [20] Jedrzejewski, J., Kowal, Z., Kwasny, W., Modrzycki, W.: Hybrid modelof high speed machining centre headstock. CIRP Ann. Manufact.Technol.53(1),285–288,2004.
    [21] Jedrzejewski, J. Thermal problems in machine tools design andoperation[J].Introduction to precision machine design and errorassessment, pp.75–127. CRC Press,2009.
    [22]池丽婷.数控技术的发展现状与趋势[J].山西科技.2009(4):81-82.
    [23]李琳,陈宋鑫.数控技术研究现状及发展趋势[J].科技创业月刊.2010(9):85-86.
    [24]苏昊.五轴联动双通道车铣复合数控译码系统的研发[D].上海.上海交通大学.2009.2.
    [25]徐巍.高档数控系统的功能规划和关键技术研究[D].上海.上海交通大学.2009.5.
    [26]陆启建,褚辉生.高速切削与五轴联动加工技术[M].北京.机械工业出版社.2010.11.
    [27]陈国文.车铣复合加工技术在航空业的应用于展望[J].航空精密制造技术.2010(02):26-27.
    [28]梁伟.轴向车铣典型工件的动力学研究[D].沈阳.沈阳理工大学.2009.3.
    [29]陈晓华,刘志兵,王西彬.典型零件车铣复合加工的运动学特征分析[J].计算机集成制造系统.2013(7):1569-1576.
    [30]吴宝海,严亚南,罗明,张定华.车铣复合加工的关键技术与应用前景[J].航空制造技术.2010(19):42-45.
    [31]杨琳.数控车铣复合加工程序仿真系统的研究[D].重庆.重庆大学.2010.5.
    [32]朱立达.车铣加工中心动态特性及其加工机理的仿真与实验研究[D].沈阳.东北大学.2009.5.
    [33] S K Chouldhury, J B Bajpai. Investigation in orthogonal turn-millingtowards better surface finish [J]. Materisls Processing Technology.2005.170(45):487-493.
    [34] Kwasny, W., Turek, P., Jedrzejewski, J.: Survey of machine tool errormeasuring methods[J]. J. Mach. Eng.11(4),7–38,2011.
    [35]刘妍,金明刚,李宏宇,肖凯.首台应用国产五轴数控系统的车铣复合加工中心[J].设备管理与维修.2009(01):53-54.
    [36] T.Moriwaki.Multi-function machine tool [J]. Annals ManufacturingTechnology.2008:736-749.
    [37]杨大卫.切向车铣运动建模及理论表面粗糙度的研究[D].沈阳.沈阳理工大学.2010.3.
    [38]李德珍,李宪凯.五轴车铣复合加工技术的现状与发展趋势.航空制造技术,2009(12):47-50.
    [39]高丽萍.五轴车铣复合加工中心工作空间研究.机床与液压,2013,7(41):9-11.
    [40]温良,肖键.车铣复合技术在航空系统件上的应用.航空制造技术,2009(12):51-53.
    [41]王礼健.基于EdgeCAM的整体叶轮的车铣复合加工[J].机床与液压,2010,9(38):101-103.
    [42] M. John.. CNC Software Cuts Mill-Turn Programming. Ups ProductionModern Applications News,2006,12(8):1-3
    [43]卢金鼎,邵名健. CNC车削中心的结构特点及发展趋势探讨.西北轻工业学院学报,1998,16(01):78-82.
    [44]韩军,史文浩.卧式车铣复合机床开放式数控系统的研究.装备制造技术,2009,(05).
    [45]吳錫章.非正交型車銑複合虛擬工具機運動模擬系統之發展[D].台湾.國立成功大學.1996.
    [46]展迪优. UG NX7.0数控加工教程[M].北京.机械工业出版社.2012.3.
    [47]郑贞平,黄云林,黎盛容.VERICUT7.0中文版数控仿真技术与应用实例详解[M].北京.机械出版社.2011.4.
    [48] ISO. ISO6983-1-1982Numerical Control of machines-Program Formatand Definition of Address Words-Part1: Data Format for Positioning,Line Motion and Contouring Control Systems[S].1982.
    [49] ISO. ISO6983-1-2009Automation systems and integration, Numericalcontrol of machines, Program format and definitions of address words.Part1: Data format for positioning, line motion and contouring controlsystems[S].2009.
    [50]高翔,胡建德,游红武.车削中心极坐标与柱面编程的应用浅析[J].机械工程师,2010,(09):75-77
    [51]张广良.极坐标插补法在车削中心上加工端面轮廓零件的方法[J].新技术新工艺,2009,(12):79-82.
    [52]刘兴良,张玉更. FANUC0i-TC数控车削中心加工柱面轮廓零件的研究[J].现代制造工程,2009,(09):38-40.
    [53]祝捷.数控机床复合加工的新发展[J].天津职业院校联合学报,2006,8(5):22-24
    [54]周军.机床发展的重要方向[J].机电新产品导报,2005,10(1):28-29.
    [55]贾春德,姜增辉.车铣原理.北京:国防工业出版社,2003:1-7
    [56]廖万荣.车铣复合机床应用初探[J].航空制造技术,2008,(5):47-49
    [57]贾春德.车铣复合加工技术的应用与展望[J].新技术新工艺,2007,(3):14-15
    [58] T Moriwaki. Multi-functional machine tool[J]. CIRP Annals-Manufacturing Technology,2009,57(2):736-749.
    [59]姜海,桂贵生.典型回转体零件工艺知识库系统的研究[J].机械工艺师,2001(5):19-21
    [60] Li H. Z, Zhang W. B, Li X. P. Modeling of cutting forces in helical endmilling using a predictive machining theory[J]. International Journal ofMechanical Sciences,2001,43(8):1711-1730.
    [61]曹宇男,陈友东,土田苗等,数控系统复合工序车削固定循环的译码分析[J].机床与液压,2006.(1):31-35
    [62]谢东,数控车床复合循环指令的分析和设计[J].机械设计与制造,2002.(1):68-69
    [63]吴立国,袁名伟,王燕玲,王世伟.圆柱插补功能在数控车铣复合加工中心的应用[J].新技术新工艺,2007,(11):35-37.
    [64]袁名伟,袁国强.基于车铣加工中心圆柱插补功能的研究[J].机械工程师,2004,(02):32-34.
    [65]曾峰,陶辉.浅谈圆柱插补指令(G07.1)在四轴加工中的应用[J].机床与液压,2011,(02):65-66
    [66]肖华军.基于圆柱插补的槽辊加工方法[J].工具技术,2010,(03):57-59
    [67]李军,孙建刚,罗德军.采用虚拟“Y”轴的车铣复合加工中心[J].制造技术与机床,2007,(04):60-62.
    [68]颜克辉,孔祥志,罗志久,李鹏.车铣复合加工中心的Y轴实现形式及加工对象[J].制造技术与机床,2011,(03):45-47.
    [69]周刚,邬义杰,潘晓弘.数控系统软件模块实时调度方法[J].机械工程学报,2009,45(1):162-166.
    [70]赵薇.多过程数控系统解释器及RTCP功能的设计与实现[D].沈阳:中国科学院研究生院中国科学院沈阳计算技术研究所,2008.
    [71] SHACKLEFORD W P, PROCTOR F M, MICHALOSKI J L. The NeutralMessage Language: A Model and Method for Message Passing inHeterogeneous Environments[C]. Proceedings of the2000WorldAutomation Conference, Maui,HI,6-11,2000.
    [72]朱利民,丁汉,熊有伦.非球头刀宽行五轴数控加工自由曲面的三阶切触法(II):刀位规划算法[J].中国科学:技术科学,2010,40(12):1460-1467.
    [73] SIEMENS. Sinumerik5-axis machining Manual.6FC7095-0AB10-0BP1[R],2009.
    [74]邓奕,彭浩舸,谢骐. CAM后置处理技术研究现状与发展趋势[J].湖南工程学院学报,2003,12(4):46-49.
    [75] SORBY K. Inverse kinematics of five-axis machines near singularconfigurations[J]. International Journal of Machine Tools&Manufacture,2007,(47):299-306.
    [76]郑飂默,林浒,盖荣丽.基于通用模型的五轴机床后置处理[J].计算机集成制造系统,2010,16(5):1006-1011.
    [77] TUTUNEA-FATAN O R, FENG H-Y. Configuration analysis of five-axismachine tools using a generic kinematic model[J]. International Journal ofMachine Tools&Manufacture,2004,44:1235-1243.
    [78] SHE C H, CHANG C C. Design of a generic five-axis postprocessorbased on generalized kinematics model of macine tool[J]. InternationalJournal of Machine Tools&Manufacture,2007,47:537-545.
    [79] NIKU S B.机器人学导论——分析、系统及应用(孙富春,朱纪洪,刘国栋, et al.)[M].北京:电子工业出版社,2004.
    [80] BOHEZ E L J. Compensating for systematic errors in5-axis NCmachining[J]. Computer-Aided Design,2002,34:391-403.
    [81] MUNLIN M, MAKHONOV S S, BOHEZ E L J. Optimization ofrotations of a five-axis milling machine near stationary points[J].Computer Aided Design,2004,36(12):1117-1128.
    [82] BOHEZ E L J. Compensating for systematic errors in5-axis NCmachining[J]. Computer-Aided Design,2002,34:391-403.
    [83]范晋伟,王晓峰,王称心, et al.基于多体理论的双摆头五轴数控机床RTCP误差研究[J].北京工业大学学报,2012,38(5):658-662.
    [84]陈则仕,张秋菊. D-H法在五轴机床运动学建模中的应用[J].机床与液压,2007,35(10):88-93.
    [85]冯显英,葛荣雨.五坐标数控机床后置处理算法的研究[J].工具技术,2006,40(4):44-46.
    [86]刘日良,张承瑞.5轴数控机床坐标系统的一个特例及其后置处理方法[J].机械设计与制造工程,2002,31(3):61-62.
    [87] TUTUNEA-FATAN O R, FENG H-Y. Configuration analysis of five-axismachine tools using a generic kinematic model[J]. International Journal ofMachine Tools&Manufacture,2004,44:1235-1243.
    [88]何耀雄,徐起贺,周艳红.任意结构数控机床机构运动学建模与求解[J].机械工程学报,2002,38(10):32-36.
    [89] FANUC. FANUC Series30i/300i/300is-MODEL A,FANUC Series31i/310i/310is-MODEL A5,FANUC Series31i/310i/310is-MODEL A,FANUC Series32i/320i/320is-MODEL A (Common to LatheSystem/Machining Center System) USER'S MANUAL (Volume1of2).B-63944EN [R],2004.
    [90] ZHENG Liaomo,LIN Hu,WANG Feng,et al. Integration of the five-axistool center point control function in CNC system[C]//The5th IEEEConference on Industrial Electronics and Applications (ICIEA), June15-17,2010, Taichung, Taiwan, Piscataway: IEEE Computer Society,2010:439-444.
    [91]陈良骥.五轴CNC系统中有效降低非线性误差的两种方法[J].郑州大学学报(工学版),2009,30(2):107-111.
    [92]石宏,蔡光起,李景奎.混联机床五轴联动加工时刀摆的非线性误差分析与控制[J].中国机械工程,2008,(06):675-677,682
    [93] Takeuchi Y, Idemura T.5-Axis Control Machining and Grinding Basedon Solid Model[J]. CIRP Annals-Manufacturing Technology.1991,40(1):455-458.
    [94]张宏韬.双转台五轴数控机床误差的动态实时补偿研究[D].上海交通大学,2011.
    [95]孟翔宇.五轴数控机床几何误差建模与测量技术[D].大连理工大学.2008.
    [96]唐洪莉,王峰.机床加工精度的误差分析[J].中国新技术新产品,2011,(6):164.
    [97]李小彭,刘春时,马晓波,李晖.数控机床加工精度提高技术的进展及其存在的问题[J].组合机床与自动化加工技术,2010,(11):1-4.
    [98] Masaomi Tsutsumi,Akinori Saito.Identification of angular and positionaldeviations inherent to5-axis machining centers with a tilting-rotary tableby simultaneous four-axis control movements[J].International Journal ofMachine Tools&Manufacture,2004:1333-1342.
    [99] ANOTAIPAIBOON W,MAKHANOY S S,BOHEZ. Optimal setup forfive-axis machining[J].International Journal of Machine Tools&Manufacture2006,46(9):964–977.
    [100]王秀山,陈英.国外数控机床误差建模与补偿技术研究的历史及现状分析[J].科技情报开发与经济,2010,20(31):151-154.
    [101]易刚.五轴头技术水平分析及关键技术[J].金属加工,2011,(5):46-47.
    [102] FIDIA S.p.A. System and process for measuring, compensating andtesting numerically controlled machine tool heads and/ortables[P].US:7245982B2,2007.
    [103]陈慧超,李寅,陈永明.用于五轴联动数控系统研发的实验平台设计与实现[J].科技传播,2010,(8):222-223.
    [104]张虎,周云飞,唐小琦,陈吉红,师汉民.数控机床空间误差球杆仪识别和补偿[J].机械工程学报,2002,38(10):108-113.
    [105]李剑锋.数控车铣控制系统的软件设计及加工误差分析「.河南科技大学硕士学位论文].2006.
    [106]朱建忠.精密超精密机床精度分析、建模与精度控制技术研究[D].长沙:国防科技大学,1997:10.
    [107]贾时平.多轴数控机床精度建模与误差补偿方法研究[D].长沙:国防科学技术人学研究生院,2002,(10):4-5.
    [108] Mahbubur Rahman, Jouko tteikkala, Kauko Lappalainen.Modeling,Measurement and error compensation of multi-axis machinetoots. Part I: theory [J]. International Journal of Machine Tools&Manufacture,2000,40:1535-1546.
    [109]范晋伟,张涛,王波雷,王艳君.多学科设计优化理论的复合数控机床误差补偿技术研究[J].现代制造工程,2010,(10).
    [110]韩军,常瑞丽.车铣复合机床回转轴精度检测和误差补偿分析[J].机床与液压,2010,(07).
    [111]赵小松,方沂,章青等.四轴联动加工中心误差补偿技术的研究[J].中国机械工程,2000,(6):637-639.
    [112]杨建国.数控机床误差综合补偿技术及应用[D].上海:上海交通大学,1998.
    [113]赵小松,方忻,章青.四轴联动加工中心的误差补偿技术的研究[J],中国机械工程,2001(6):73-77.
    [114] GB/T4020-97卧式车床精度检验[D].北京:中国标准出版社,1997.
    [115]卢碧红,葛研军,王启义.虚拟数控车削加工精度预测研究.机械工程学报[J],2002,35(2):82-85
    [116] J. G. Yang, Y Q. Ren, Z. C. Du. An application of real-time errorcompensation on an NC twin-spindle lathe Journal of MaterialsProcessing Technology[J],2002(129):474-479
    [117] Saito A, Miyakawa M, Tsutsumi M (2001) Evaluation Method ofPositional and Geometric Deviations Using Simultaneous4-axisControlled Technique in5-axis Machining Center. Journal of JSPE67(2):306–310.
    [118] Saito A, TsutsumiM, Ushiku K (2003) Development of CalibrationMethods of5-axis Controlled Machining Centers (2ndReport)—Estimation of Positional and Angular Deviation by Means ofSimultaneous3-axis Motion. Journal of JSPE69(2):268–273.
    [119] Saito A, TsutsumiM, Mikami S, Sisavath S (2003) Development ofCalibration Methods of5-axis Controlled Machining Centers (3rdReport)—Measurement Methods for Various Structural Configurations of5-axis Controlled Machining Centers. Journal of JSPE69(6):809–814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700