数控机床误差补偿关键技术及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床误差补偿技术是提高机床精度的一种经济而有效的方法和手段。基于高等学校全国优秀博士学位论文专项资金资助项目、云南省省院省校科技合作计划项目、《上海市引进技术的吸收与创新计划》等项目,本文研究了数控机床误差测量、建模和实时补偿等数控机床误差补偿的关键技术及其应用。
     本文的主要研究内容包括:
     (1)分析了数控机床存在的空间定位误差,利用齐次坐标变换方法,通过在床身基座上建立基坐标系(参考坐标系),在各轴(刚体)上分别建立子坐标系,根据刀具、主轴到机架之间的“刀具-机架”运动链和工件到机架之间的“工件-机架”运动链之间的变换关系,建立了四种不同类型三轴数控机床的空间定位误差综合模型,为机床误差测量和补偿提供了理论基础。
     (2)研究和分析了激光测量仪在直线、平面对角线和空间体对角线进行数控机床误差测量时,激光测量仪所获得的测量值同机床空间定位误差值之间的关系,着重介绍了机床工作空间体对角线测量方法的优点与不足。通过对三个坐标轴方向的误差进行矢量分解,在现有的体对角线方法的基础上,提出了一种改进的分步体对角线测量方法,这种方法通过分步测量机床工作空间的四条体对角线可以快速获得分解后得到的9项位置误差。进一步提出直接利用这9项位置误差进行误差补偿的思想,并通过实验进行了验证。这种方法既节省了测量和辨识的时间,又提高了补偿的效率。
     (3)研究和分析了机床空间定位误差同机床温度变化之间的对应关系。通过使用可以快速测量空间定位误差的分步体对角线测量方法,在不同的温度条件下对数控机床进行了误差的测量,得到了机床9项位置误差随温度变化的曲线。提出了对不同温度条件下的空间定位误差进行有效预测的直接插补、曲线拟合和神经网络等方法,并对这些方法进行了对比。对空间定位误差不同温度下的热变化分析和预测,使得空间定位误差的建模和补偿不但考虑了机床的位置变化而且考虑了温度变化,通过补偿实验证明这种方法有助于进一步提高机床补偿的精度。
     (4)研究和分析了机床热误差建模方法,提出了一种基于偏最小二乘回归神经网络进行热误差建模的方法,该方法通过引入神经网络的学习原理对传统偏最小二乘回归方法中的线性方法进行了改进,用以解决机床热误差建模中温度变量共线性和热误差非线性的问题。文中论述了这种方法的基本算法并在一台数控机床上通过实验数据对模型的预测和鲁棒性能进行了验证。
     (5)研究和分析了机床误差实时补偿实施方法,提出了一种基于数控机床外部坐标系偏移功能,可以对数控机床热误差和定位误差等进行实时补偿的装置。通过硬件和软件的设计,可以根据机床的温度和位置信息进行误差的实时计算和补偿。进一步,提出了一种针对热误差补偿的简化装置。误差补偿装置的研制为误差的实时补偿提供了有效的实施方法。
     (6)介绍了在与云南机床厂合作研究项目中对其生产的CY-K360型数控车床进行误差补偿实施以提高产品精度的应用实例。通过对机床定位误差和主轴热误差进行检测,并使用基于外部机床坐标系偏移的误差实时补偿装置对数控机床实施误差补偿后,机床精度得到了明显提高。
The error compensation for CNC machine tools is an economical and effective method to improve the machine tool precision. In this dissertation, key technologies and their applications for error compensation such as error modeling, measurement and real time error compensation implementation are studied, based on the projects supported by“The Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China”,“The cooperative plan on science and technology of Yunnan province”and“The assimilation and innovation plan for introduced technology of Shanghai”.
    
     The main contents of this dissertation can be described as follows:
     (1) The volumetric positioning error of CNC machine tools is analyzed. A reference coordinate system is created on the machine body,some sub-coordinate systems are set on each saddle, so the relationship between tool and workpiece can be expressed as the relationship between“tool-machine body”chain which is from tool to machine body and“workpiece-machine body”chain which is from workpiece to machine body, then the synthesis models of four types of 3-axis machine tool are derived by the homogeneous coordinate transformation method which provides a theory base for the error measurement and compensation.
     (2) The relationship between the values measured with laser interferometer along the line, face and body diagonal directions and positioning errors are studied and analyzed. The advantages and shortcomings of body diagonal direction in accuracy calibration are discussed. A new sequential step diagonal measurement method has been proposed based on the conventional diagonal measurement. In this method, the error in three axis directions can be divided 9 synthesis errors and they can be identified based on the values measured along four body diagonals. The idea of compensating the volumetric error directly based on these 9 synthesis errors are proposed and verified by the measurement and compensation experiment. With this method, the time for error measurement and identification is saved and the efficiency for error compensation is improved.
     (3) The relationship between the volumetric positioning errors and the temperature fields are studied and analyzed. Volumetric errors under different temperature conditions are measured by the sequential step diagonal measurement method, and the variation curves of the 9 synthesis errors are obtained. The methods for the prediction of volumetric errors under certain temperature condition such as simple interpolation, curve fitting and neural networks are proposed and compared. The error compensation effect is improved by analyzing and predicting the volumetric positioning errors considering not only the position variation but also the temperature variation. The compensation results show that this method can help to further improve the precision of the machine tool.
     (4) The modeling methods for thermal error modeling is studied and analyzed. A partial least squares neural network modeling method for CNC machine tool thermal errors is proposed. This method uses the neural network learning rule to obtain the PLS parameters instead of the traditional linear method in partial least squares regression so as to overcome the multicollinearity and nonlinearity problem in thermal error modeling. The basic principle of PLSNN is described and the prediction performance and robustness of the new method is validated by the thermal error modeling application on a CNC turning center.
     (5) The implementation method for real time error compensation is studied and analyzed. The function of the CNC system for external coordinate system shift is analyzed and a real time compensation system has been developed. With hardware and software design, the machine tool error can be calculated and compensated based on the external thermal and position signals. Furthermore, a simplified thermal error compensation device is also proposed. The development of this device provides an effective implementation method for real time error compensation.
     (6) The real time error compensation technique is implemented on a CY-K360 CNC lathe as a real case in the cooperative research project with CY Group to improve their manufactured machine tools.The positioning errors considering temperature variation and the spindle thermal drifts are measured, predicted and finally compensated by the real time compensation system based on the external coordinate system shift and the precision of the machine is improved significantly.
引文
[001] Bryan, J. B. International Status of Thermal Error Research. Annals of CIRP, 1990, 39 (2): 645-656
    [002] Ferreira, P. M., Liu, C. R. A method for Estimating and Compensating Quasistatic Errors of Machine Tools. Journal of Engineering for Industry, 1993, 115 (1): 149-159
    [003] Robert B. Aronson. War Against Thermal Expansion. Manufacturing Engineering, 1996, 116 (6): 45-50
    [004] Leete D.L. Automatic Compensation of Alignment Errors in Machine Tools. International Journal of Machine Tools and Manufacture, Des. Res.1,1961:293-324
    [005] Schultschik R. The components of volumetric accuracy, Annals of CIRP,1977, 25(1): 223-228
    [006] Zhang G., Veale R., Charlton T., Borchardt B. and Hocken R. Error compensation of coordinate measuring machines, Annals of the CIRP, 1985,34(1), 445-448
    [007] Busch K., Kunzmann H. and Waldele F. Calibration of coordinate measuring machines, Butterworth and Co (Publishers) Ltd, 1985, 7(3): 139-144.
    [008] Ferrerira, P. M., Liu C. R. An Analytical Quadratc Model for the Geometric Error of a Machine Tool. Journal of Manufacturing Systems, 1986, 5 (1): 51-62
    [009] Donmez M. A., Blomquist D. S., Hocken R. J., Liu C. R., and M. M. Barash, A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation. Precision Engineering, 1986, 8 (4): 187-196
    [010] Ruegg A. A generalized kinematics model for three to five axis milling machine and their implementation in a CNC. Annals of the CIRP, 1992,41(1): 547-550
    [011] Chen J. S., Yuan J., Ni J. Compensation of Non-Rigid Body Kinematic Effect of a machine Center. Transaction of NAMRI, 1992, 20: 325-329
    [012] Lin P.D. and Ehmann F.K. Inverse error analysis for multi-axis machines, Journal of Engineering for Industry, Transaction of the ASME, 1996, 118:88-94
    [013] Chana R., Manukid P. Geometric and force errors compensation in a 3-axis CNC milling machine. International Journal of Machine Tools and Manufacture,2004,44: 1283–1291
    [014]李书和,张奕群等.多轴机床几何误差的一般模型.航空精密制造技术. 1996, 03: 9-12
    [015]杨建国,潘志宏等.数控机床几何和热误差综合的运动学建模.机械设计与制造. 1998,05:31-33
    [016]章青,赵宏林等.数控机床误差补偿技术及应用热误差补偿技术.制造技术与机床. 1999,03:26-27
    [017]刘又伍,章青等.基于多体理论模型的加工中心热误差补偿技.机械工程学报. 2002,38(1):127-130
    [018] Huang P. S.; Ni J. On-line error compensation of coordinate measuring machines ,International Journal of Machine Tools and Manufacture, 1995,35(5) :725-738
    [019] Lee E.S., Suh S.H. and Shon J.W. A comprehensive method for calibration of volumetric positioning accuracy of CNC-machines, The International Journal of Advanced Manufacturing Technology,1998,14(1): 43– 49
    [020] Okafor A.C., Ertekin Y.M. Vertical machining center accuracy characterization using laser interferometer: Part 1. Linear positional errors,Journal of Materials Processing Technology,2000,105(3): 394-406
    [021] Okafor A.C., Ertekin Y.M. Vertical machining center accuracy characterization using laser interferometer Part 2. Angular errors, Journal of Materials Processing Technology ,2000,105: 407-420
    [022]张虎,周云飞等.基于激光干涉仪的数控机床运动误差识别与补偿.中国机械工程. 2002,21:1838-1841
    [023] Castro H.F.F., Burdekin M. Evaluation of the measurement uncertainty of a positional error calibrator based on a laser interferometer, International Journalof Machine Tools and Manufacture ,2005,45:285–291
    [024] Zhang G., Quang R., Lu B., Hocken R., Veale R. A.Donmez. A Displacement Method for Machine Geometry Calibration. Annals of CIRP, 1988(37):515-518.
    [025] Chen G.Q., Yuan J.X., Ni.J. A Displacement measurement approach for machine geometric error assessment. International Journal of Machine Tools and Manufacture, 2001,1(41):149-161
    [026]范晋伟,田越等.基于14条位移线测量法的数控机床误差参数辨识技术.北京工业大学学报. 2000,2(26):11-15
    [027]刘又午,刘丽冰,赵小松等.数控机床误差补偿技术研究.中国机械工程. 1998,9(12):48-52
    [028] Knapp W. and Hrovat S. The Circular Test, S Hrovat Trottenstrasse 79, Switzerland. 1986
    [029] ISO 230-2 (1990), Acceptance Code for Machine Tools.
    [030] Kakino Y., Ihara Y. and Shinohara A. ,Accuracy Inspection of NC Machine Tools by Double Ball Bar Method. Hanser publishers, Munich, Germany,1993
    [031] Heidenhain A.G., DBB 110 Double Ball Bar Measuring System for the Circular Test, User Handbook,1993
    [032] Florussen, G.H.J.; Delbressine, F.L.M.; van de Molengraft, M.J.G.; Schellekens, P.H.J. Assessing geometrical errors of multi-axis machines by three-dimensional length measurements ,Measurement,2001,30(4) :241-255
    [033] Jywe W.Y. and Liu C.H. Application of Ball Bar System and Genetic Algorithms for CNC Lathe Contouring Compensation,The International Journal of Advanced Manufacturing Technology, 2001,17(3): 189-195
    [034] Lai J.M., Liao J.S. and Chieng W.H., Modeling and analysis of nonlinear guideway for Double ball bar (DBB) measurement and diagnosis. International Journal of Machine Tools and Manufacture, 1997, 37(5): 687-707
    [035] Lei W.T., Hsu Y.Y. Accuracy test of five-axis CNC machine tool with 3D probe–ball.Part I: design and modeling,International Journal of Machine Tools and Manufacture,2002, 42:1153–1162
    [036] Lei W.T., Hsu Y.Y. Accuracy test of five-axis CNC machine tool with 3Dprobe–ball.Part II: errors estimation International Journal of Machine Tools and Manufacture 2002,42:1163–1170
    [037] Yang S.H., Kim K.H, Park Y.K., et al ,Error analysis and compensation for the volumetric errors of a vertical machining centre using a hemispherical helix ball bar test, The International Journal of Advanced Manufacturing Technology , 2004,23(7-8):495-500
    [038] Jae H. A new technique for volumetric error assessment of CNC machine tools incorporating ball bar measurement and 3D volumetric error model, The International Journal of Advanced Manufacturing Technology,1997,37(11): 1583-1596
    [039]张虎,周云飞等.数控机床空间误差球杆仪识别和补偿.机械工程学报. 2002, 38(10):108-113
    [040]刘焕牢,李斌等.基于球杆仪数控机床误差补偿方法研究.工具技术. 2003, 39(8):41-43
    [041]洪迈生,苏恒等.数控机床运动误差检测技术.组合机床与自动化加工技术. 2002, 01:18-23
    [042]孙振勇.数控机床热误差的双球规检测法和温度测点优化布置技术.上海交通大学工学硕士学位论文.上海:上海交通大学2000
    [043] Yang S.H., Kim K.H., Park Y.K. Measurement of spindle thermal errors in machine tool using hemispherical ball bar test ,International Journal of Machine Tools and Manufacture,2004,44(2-3): 333-340
    [044] Yang M., Lee J. Measurement and prediction of thermal errors of a CNC machining center using two spherical balls, Journal of Materials Processing Technology , 1998,75(1-3):180-189
    [045] Ibaraki S., Kakino Y., Lee K., Ihara Y. Braasch J and Eberherr A. Diagnosis and compensation of motion errors in CNC machine tools by arbitrary shape contouring error measurement, laser metrology and machine performance V, WIT press, Southampton, UK, 2001
    [046] Knapp W., Weikert S. Testing the contouring performance in 6 degrees offreedom .Annals of the CIRP, 1999, 48 (1) :433-436
    [047]沈云波,刘建亭,李济顺.机床误差的正交光栅检测及分离.河南科技大学学报(自然科学版). 2003,24(3): 37-39
    [048] Camera A., Favarato M., Militano L., et al. Analysis of the Thermal Behavior of a Machine Tool Table Using the Finite Element Method. Annals of CIRP, 1976, 25 (1)
    [049] Schafer W.机床的热变形补偿. Ind.-Anz. 1990,112 (72)
    [050]松尾光荣.通过对加工中心的温度分布测量进行热位移补偿(II).精密工学杂志. 1991, 57 (3)
    [051] Kakino Y., Ihara Y., Shinohara A. Accuracy inspection of nc machine tools by double ball bar method, Hanser publishers,Munich Vienna New York,Hanser/Gardner Publications,Inc.,Cincinnati, 1993
    [052] Veldhuis S. C., Elbestawi M. A. A Strategy for Compensation of Errors in Five-Axis Machining. Annals of CIRP, 1995, 44 (1): 373-377
    [053] Hatamura Y., et al. Development of an Intelligent Machining Center Incorporating Active Compensation for Thermal Distortion. Annals of CIRP, 1993, 42 (1): 549-552
    [054] Weck M., et al. Reduction and Compensation of Thermal Error in Machine Tools. Annals of CIRP, 1995, 44 (2): 589-597
    [055] Veldhuis S. C., Elbestawi M. A. A Strategy for Compensation of Errors in Five-Axis Machining. Annals of CIRP, 1995, 44 (1): 373-377
    [056] Chen J. Computer-aided Accuracy Enhancement for Multi-Axis CNC Machine Tool. International Journal of Machine Tools and Manufacture, 1995,35 (4): 593-605
    [057] Kim,S.K., Cho D.W. Real-Time Estimation of Temperature Distribution in a Ball-Screw System, Internatinal Journal of Machine Tools and Manufacture, 1997, 37(4): 451-464
    [058] Fraser S., Attia M.H.,Osman M.O. Modeling,Identification and Control of Thermal Deformation of Machine Tool Structures, Part I:Concept Of Generalized Modeling, ASME Journal of Manufacturing Science andEnginnering ,1998,120(3):623-631
    [059] Fraser S., Attia M.H., Osman M.O. Modeling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part II:Generalized Transfer Functions, ASME Journal of Manufacturing Science and Enginnering, 1998,120(3): 632-639
    [060] Krulewich D.A. Temperature integration model and measurement point selection for thermally induced machine tool errors. Mechatronics, 1998,8(4):395-412
    [061] Lo C.H., Yuan J., Ni J. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation,International Journal of Machine Tools and Manufacture,1999,39(9):1383-1396
    [062] Attia M.H., Fraser S. A generalized modelling methodology for optimized realtime compensation of thermal deformation of machine tools and CMM structures, International Journal of Machine Tools and Manufacture 1999,39: 1001–1016
    [063] Mize C. D., Ziegert J. C. Neural network thermal error compensation of a machining center, Precision Engineering,2000,24(4):338-346
    [064] Lee J.H., Yang S.H. Statistical optimization and assessment of a thermal error model for CNC machine tools, International Journal of Machine Tools and Manufacture,2002,42(1):147-155
    [065] Ko T.J, Gim T.W., Ha, J.Y. Particular behavior of spindle thermal deformation by thermal bending, International Journal of Machine Tools and Manufacture , 2003, 43(1) :17-23
    [066] Yang H., Ni J. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error, International Journal of Machine Tools and Manufacture,2005,45(4-5): 455-465
    [067]陈子辰.热模态理论和机床热态精度控制策略研究.浙江大学博士学位论文, 1989
    [068]陈子辰等.热敏感度和热偶合度研究.全国机床热误差控制和补偿研究会议论文集.浙江大学出版社会, 1992.11
    [069]张德贤等.神经网络在数控机床热变形控制中的应用.制造技术与机床. 1995, 1: 8-11
    [070]张奕群,李书和,张国雄.机床热误差建模中温度测点选择方法研究.航空精密制造技术. 1996, 32 (6): 37-39
    [071]李书和等.加工中心热误差补偿研究.制造技术与机床. 1997, 6: 16-19
    [072]张奕群,李书和等.机床热变形误差的混合输入动态模型.航空精密制造技术. 1998,34(5):28-31
    [073]张奕群.李书和等.基于主轴转速的机床热误差状态方程模型.仪器仪表学报. 1998,19(5):460-463
    [074]杨建国.数控机床热误差鲁棒建模新方法及实时补偿.制造技术与机床. 1998,6:8-11
    [075]杨建国,潘志宏等.回归正交设计在机床热误差建模中的应用,航空精密制造技术, 1999, 35(5):33-37
    [076]李小力.周云飞等.数控机床热敏感点识别研究.机械与电子. 1998,6:30-32
    [077]傅龙珠,狄瑞坤等. BP神经网络补偿热变形误差的研究.精密制造与自动化. 2002,3:26-28
    [078]赵大泉,张伯鹏.主轴热误差的自组织补偿原理及其仿真.清华大学学报(自然科学版). 2004,44(2):209-211
    [079]李永祥,杨建国等.数控机床热误差的混合预测模型及应用.上海交通大学学报. 2006.40(12):2030-2033
    [080] Rahman M. Modeling and measurement of multi-axis machine tools to improve positioning accuracy in a software way. Doctoral dissertation of University of Oulu, Finland
    [081] Rahman M., Heikkala J., Lappalainen K and Karjalainen J. Positioning accuracy improvement in five-axis milling by post processing, International Journal Machine. Tools and Manufacturing, 1997,37(2): 223-236.
    [082]张虎,周云飞等.数控加工中心误差G代码补偿技术.华中科技大学学报. 2002,30(2):13-16
    [083] Sinumerik. Extended Functions (Part 2) Sinumerik 840D/840Di/810D (CCU2) 2002,www.ad.siemens.de
    [084] Heidenhain A.G. Technical Manual iTNC 530, NC Software 340 420-07, 2002
    [085] Donmez M.A., Blomquist D.S., Hocken R.J., Liu C.R. and Barash M.M. A general methodology for machine tool accuracy enhancement by error compensation, Precision Engineering,1986, 8(4): 187-196.
    [086] Ni J. CNC machine accuracy enhancement through real-time error compensation, Journal of Manufacturing Science and Engineering, 1997, 119: 717-725.
    [087] Chen J.S. Computer-aid Accuracy Enhancement for Multi-Axis CNC Machine Tool. International Journal of Machine Tools Manufact, 1995, 35(5):593-605
    [088] ISO 230-6:2002, Test code for machine tools, Part6.Determination of positioning accuracy on body and face diagonals (diagonal displacement tests)
    [089] ASME B5.54-1992,Methods for performance evalutation of computer numerical controlled machining centers
    [090] Wang C. Laser Vector measurement technique for the determination and compensation of volumetric positioning errors. Part I: basic theory. Review of Scientific Instruments, 2000,71(10): 3933-3937
    [091] Castro H.F.F., Burdekin M. Evaluation of the measurement uncertainty of a positional error calibrator based on a laser interferometer,International Journal of Machine Tools & Manufacture,2005,45:285–291
    [092]巴特拉柯夫A.C.激光测量系统.北京:电子工业出版社.1989
    [093]花国梁.精密测量技术.北京:中国计量出版社.1990
    [094]孙渝生.激光多普勒测量技术及其应用.上海:上海科学技术文献出版社.1995
    [095]金国潘,李景镇.激光测量学.北京:科学出版社.1998.
    [096]杨建国.数控机床误差综合补偿技术及应用.上海交通大学博士学位论文.1998
    [097]任永强.数控机床误差高效测量、建模及补偿应用研究.上海交通大学博士学位论文.2004
    [098]李济顺,王中宇,林敏著.制造工程中的精密技术.北京:机械工业出版社.2001
    [099]蔡自兴.机器人学.北京:清华大学出版社.2000
    [100]王庭树.机器人运动学及动力学.西安:西安电子科技大学出版社.1990
    [101]郑修本.机械制造工艺学.北京:机械工业出版社.1999
    [102]吴祖育,秦鹏飞.数控机床第二版.上海:上海科学技术出版社.1990
    [103]陈兆年,陈子辰.机床热态特性学基础.北京:机械工业出版社.1989
    [104]梁允奇.机械制造中的传热与热变形基础.北京:机械工业出版社.1983
    [105]田维贤.机械制造中的热变性.湖南:华中理工大学出版社.1992
    [106]肖劲松. Matlab 5.X与科学计算.北京:清华大学出版社.2001
    [107]闻新等. Matlab神经网络应用设计.北京:科学出版社.2002
    [108]袁志发,周静芋.多元统计分析.北京:科学出版社.2003
    [109]王苏斌等. SPSS统计软件分析.北京:机械工业出版社:2003
    [110]王惠文等.偏最小二乘回归的线性与非线性方法.北京:国防工业出版社.2006
    [111] Wold H., Joreskog K.G.“Soft Modeling: The basic design and some extensions”, Systems under indirect observation.Amserdam: North-Holland, 1982
    [112] Fredric M.H.,Ivica K.神经计算原理.北京:机械工业出版社.2003
    [113] Ronchetti E., Staudte R.G. A robust version of Mallows' Cp. Journal of the American Statistical Association.1994,89:550-559
    [114] Yang J.G.,Yuan J.X., Ni J. Thermal error mode analysis and robust modeling for error compensation on a CNC turning center,International Journal of Machine Tools and Manufacture,1999, 39:1367–1381
    [115] Du Z.C., Yang J.G., Yao Z.Q., Xue, B.Y. Modeling approach of regression orthogonal experiment design for the thermal error compensation of a CNC turning center,Journal of Materials Processing Technology, 2002, 129 (1-3):619-623
    [116] Yang H., Ni J. Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy, International Journal of Machine Tools and Manufacture, 2005, 45(1): 1-11
    [117] Kang Y., Chang C.W., Huang Y., Hsu C.L. and Nieh I.F. Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools, International Journal of Machine Tools and Manufactur, 2007, 47(2): 376-387
    [118] GE Fanuc Automation. PMC Model PA1/ PA3/ SA1/ SA2/ SA3/ SA5/ SB/ SB2/ SB3/ SB4/ SB5/ SB6/ SC/ SC3/ SC4/ NB/ NB2/ NB6 Ladder Language.2001
    [119] Lo C.H., Yuan J.X., Ni J. An application of real-time error compensation on a turning center, International Journal of Machine Tools and Manufacture, 1995,35(12): 1669-1682
    [120] Li S.H., Zhang Y.Q., Zhang G.X. A study of pre-compensation for thermal errors of NC machine tools,International Journal of Machine Tools and Manufacture, 1997,37(12): 1715-1719
    [121] Tseng P.C., Ho J.L. A Study of High-Precision CNC Lathe Thermal Errors and Compensation, International Journal of Advanced Manufacturing Technology,2002,19:850-858
    [122] Yang S., Yuan J., Ni J. Accuracy Enhancement of a Horizontal Machining Center by Real-Time Error Compensation. Journal of Manufacturing Systems, 1996, Vol. 15 (2): 113~124
    [123] Tseng P.C. A real-time thermal inaccuracy compensation method on a machining centre,"The International Journal of Advanced Manufacturing Technology,1997,13(3):182-190
    [124] Liang J. C., Li H. F., YuanJ. X. and Ni J. A comprehensive errorcompensation system for correcting geometric, thermal, and cutting force-induced errors,The International Journal of Advanced Manufacturing Technology,1997,13(10): 708– 712
    [125] Pahk H.J., Lee S.W. Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error, International Journal of Advanced Manufacturing Technology,2002,20:487-494
    [126] Yang, J.G., Ren, Y.Q., Du, Z.C. An application of real-time error compensation on an NC twin-spindle lathe ,Journal of Materials Processing Technology,2002,129(1-3): 474-479
    [127] Raksiri C., Parnichkun M. Geometric and force errors compensation in a 3-axis CNC milling machine, International Journal of Machine Tools and Manufacture. 2004, 44(12-13): 1283-1291
    [128]齐从谦,王士兰. PLC技术及应用.北京:机械工业出版社.2000
    [129]杨公源.可编程控制器(PLC)原理与应用.北京:电子工业出版社.2004
    [130]任永强,杨建国,罗磊等.基于外部机床坐标系偏移的热误差实时补偿.中国机械工程. 2003,14(14):1243-1245
    [131]陈励华等.多路模拟量采集方法研究.工业控制.2007,17(10):24-26
    [132]宋宇峰等. Lab Windows/CVI逐步深入与开发实例.北京:机械工业出版社.2003
    [133]刘君华.基于Lab Windows/CVI的虚拟仪器设计.北京:电子工业出版社.2003
    [134]曹巧媛.单片机原理及应用(第二版).北京:电子工业出版社.2002
    [135]徐爱钧,彭秀华.单片机高级语言C51 Windows环境编程与应用.北京:电子工业出版社.2001
    [136]周航慈. PHILIPS 51LPC系列单片机原理及应用设计.北京:北京航空航天大学出版社.2001
    [137]马忠梅等.单片机的C语言应用程序设计.北京:北京航空航天大学出版社.2003
    [138]张义和. Protel PCB 99设计与应用技巧.北京:科学出版社.2000
    [139]卢文祥,杜润生.工程测试与信息处理.湖北:华中科技大学出版社.2002
    [140]张朝晖.检测技术及应用.北京:中国计量出版社.2005
    [141]马明建.数据采集与处理技术.西安:西安交通大学出版社.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700