超精密直线度测量及表面微观形貌分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密加工是现代先进制造技术一个重要组成部分,同时超精密加工又是一项复杂的多学科综合的高级技术,涉及的范围包括加工方法、被加工材料、加工设备、工艺手段、检测方法、环境因素以及操作人员的技艺水平等。本论文以超精密加工中的直线度检测技术与超精密加工表面形成的仿真建模、特征分析及其误差辨识为主要研究内容,具体对如下几个方面进行了研究:
     1.超精密直线度的测量方法。在超精密加工中,常用来测量直线度的扫描测头法有两点法、三点法以及扫描测头加角度检测仪的混合检测方法,并且需要采用误差分离的方法将工件直线度与溜板直线运动误差分离出来,当溜板的偏摆误差不可忽略时,还需采取一定的措施将其分离出来。本论文提出一种新的采用自准直仪加扫描测头的混合检测方法可高精度地测量工件的直线度轮廓,从而也可分离出溜板的直线运动精度。
     2.超精密工件直线度精确重构理论。已有的基于扫描测头法的误差分离技术在当采样间隔小于传感器间距的情况下都是一种近似的或逼近的算法,并且大多基于某种假设的“先验”条件或仅适应某些有一定要求轮廓的测量,不能精确重构出任意被测工件的直线度轮廓。本论文基于差分测量数据,在频域与时域范围分别提出了两种精确重构算法,完美地解决了近二十多年来国内外在该领域研究的问题,将直线度测量的研究推到了一个新的高点。同时这两种精确重构算法均可以应用于剪切干涉的测量,从而赋予剪切干涉测量以新的竞争力,也解决了国内外长久以来对剪切干涉测量重构算法的研究问题。
     3.超精密车削工件表面形貌形成的仿真建模技术。基于机床运动学和切削理论对单点金刚石加工时的工件端面切削及“飞切”加工进行了仿真建模。解决了现有文献中建模算法的不足之处。采用该模型可以模拟刀具切削运动的轨迹、预测工件表面三维微观形貌及二维截面轮廓形状等表面特征,指导实际的加工操作,减少盲目“试切”加工的花费。
     4.工件表面形貌特征的分析。在考虑振动频率与主轴旋转频率之比以及刀具干涉现象对工件表面微观形貌特征的影响的基础上,比较全面地分析了工件三维表面形貌的特征。并采用傅立叶分析技术分别沿工件表面径向、周向与螺旋方向对其频率特征进行理论分析,考虑了各种因素对截面轮廓特征的影响情况。
     5.误差辨识方法。基于工件表面三维形貌的建模对刀具与工件间存在的相对振动进行了辨识,从理论上解决了相对振动辨识的研究问题。并提出了可以辨识振动频率的两种方法,即沿工件径向周向截面的特征分析法和沿工件螺旋截面的特征分析法。
Ultra-precision machining is an important factor of advanced manufacturing technology, on the other hand, it is a complex advanced technology synthesized many techniques which involve machining methods, material, machining tools, technics, measuring methods, environment , arts of operators and so on. The mainbody of this dissertation are measuring method for ultra-precision straightness, modeling the surface topography of ultra-precision turning, analyzing the characteristic of workpiece surface and error identification. Its contents include several aspects as follows.1. Measuring methods of ultra-precision straightness. Some scanning probe methods which include two points method, three points method and the mixed method which employs two scanning probes and one angle probe, and the errors separation methods which can separate workpiece straightness from straightness motion error of the scanning stage are used in precision machining widely. Some methods are needed to be adopted to separate the yaw error of scanning stage when it can't be ignored. This dissertation bring forward a novel method which employs autocollimation and scanning probes. The straightness profile of workpiece can be measured, and the straightness motion errors of scanning stage can be separated precisely.2. The exact reconstruction theory of ultra-precision workpiece straightness. The existing error separation technology based on scanning probe method are all approximate arithmetic, and mostly assume a priori knowledge or only adapt to measuring some special profiles. For more than 20 years, some methods have been developed for these cases of difference measurements, but all these methods cannot exact reconstruct straightness of arbitrary workpiece. This dissertation suggests two methods are named frequency domain method and time domain method. Both can solve this problem. Besides being applied in measuring straightness, these two exact reconstruction methods also can be applied in shearing interferometry. As a consequence, shearing interferometry can hope to compete with the established interferometric methods based on the use of a reference wave.3. The technology of surface topography modeling and simulation for ultra-precision diamond turning. Based on machine kinematics and cutting theories, the simulating method for the generation of three-dimensional surfaces in face turning and flycutting of SPDT is studied. Some problems existing in literature are solved. The model can be used for simulating the locus of tool motion, predicting the surface topography and the characteristic of section profile, and this simulating model also can help to determine the optimal cutting conditions without the need for costly trial-and-error cutting tests.4. Analyzing the characteristic of workpiece surface. Taking into account the ratio between the relative tool-workpiece vibration frequency and the spindle rotating frequency, the phenomena of tool interference, this dissertation analyzes the characteristic of workpiece surface topography more completely. And various factors
    
    which affect the characteristic of section profile are considered. The frequency characteristics of radial, circumferential and spiral section profile are analyzed in theory using Fourier transforms.5. The method of error identification. Based on the model of surface topography, this dissertation solves the problem of identifying the frequency of relative tool-workpiece vibration in theory. Two methods of spiral and radial-circumferential analysis using surface data are proposed.
引文
[1] 王先逵 主编,精密加工技术实用手册,机械工业出版社,2001.3;
    [2] 庞滔,郭大春,庞楠编,超精密加工技术,国防工业出版社,2000.8;
    [3] 万德安 编著,激光基准高精度测量技术(The Technology of High Accuracy Measurement Using Laser Beam As a Straight Datum), 国防工业出版社,1999.6
    [4] Shyh-Tsong Lin, A laser interferometer for measuring straightness, Optics & Laser Technology, 33, 2001, 195-199;
    [5] K.C. Fan, Yang Zhao, A laser straightness measurement system using optical fiber and modulation techniques, International Journal of Machine Tools & Manufacture 40, 2000, 2073-2081;
    [6] J.W. Greve, F.W. Wilson, Handbook of Industrial Metrology, Printice-Hall, Inc, New York, 1967;
    [7] M. Weck, Geometric and kinematic errors, Technol. Machine Tools 5, 1980, 9-12;
    [8] P.A. Hickman, Optical tilting viewed in a new light, Laser Focus 4 (5), 1968, 22;
    [9] A.B. Herrmannsfeldt et al., Precision alignment using a system of large rectangular Fresnel lenses, Appl. Optics 7, 1968,995;
    [10] C. Chou et al., CCD based CMM geometrical error measurement using Fourier phase shift algorithm, Int. J. Mach.Tools Manufact. 37, 1997, 579-590;
    [11] R.J. King, K.W. Raine, Polarimetry applied to alignment and angle measurement, Optical Engng 201, 1981, 39-43;
    [12] C. Yin, W.Z. Chen, Two-dimensional automatic straightness measurement system based on optical activity, Optical Engng 304, 1991,480-482;
    [13] J. Ni, P.S. Huang, S.M. Wu, A multi-degree-of-freedom measurement system for CMM geometric errors, J. Engng Ind., Trans. ASME 114, 1992, 362-369;
    [14] S.G. Ye, Y.Z. Fan, A new method to improve the alignment precision, in: Proc. IMEKO TC, Budapest, Hungary, 1986, 14;
    [15] Using Material Temperature Compensation to Improve Laser Interferometer Measurement Accuracy, Application Note 325-20, Hewlett Packard Co, 1993;
    [16] S. Shimizu, H.S. Lee, N. Imai, Simultaneous measuring method of the table motion errors in 6 degrees of freedom, Int. J. Japan Soc. Prec. Engng 28, 1994, 273-274;
    [17] S.Y. Ma, J.W. Liang, Study on alignment device with light source of laser diode, Acta Metrologica Sinica 14, 1993;
    [18] T.R. Armstrong, M.P. Fitzgerald, An autocollimator based on the laser head of a compact disc player, Measurement Sci. 3, 1992, 1072-1076;
    [19] Alexander H.Slocum, Precision Machine Design, PRENTICE HALL, 1992;
    [20] Chris J.Evans,Robert J.Hocken,W.TylerEstler, Self-Calibration Reversal, Redundancy, Error Separation and 'Absolute Testing', Annals of the CIRP 1996, 45(2), 617-634;
    [21] Tanka H, Yozawa K, Sato H ,O-hori M, Application of a New Straightness Measurement Method to Large Machine Tool, Annals of the CIRP, 1981,30(1), 455-459;
    
    [22] Tozawa K, Sato H and O-hori M, A new method for the measurement of the straightness of machine tools and machined work, [J] Trans. ASME Meek Design 1982,104,587-92;
    [23] Wei Gao, Jun Yokoyama, Hidetoshi Kojima , Satoshi Kiyono, Precision measurement of cylinder straightness using a scanning multi-probe system, Precision Eng 2002; 26:279-288;
    [24] H Su, M S Hong, Z J Li, Y L Weil and S B Xiong, The error analysis and online measurement of linear slide motion error in machine tools, Meas.Sci.Technol. 13, 2002,895-902;
    [25] Eric H K Fung , S M Yang, An error separation technique for measuring straightness motion error of a linear slide, Meas. Sci. Technol. 11, 2000, 1515-1521;
    [26] Eric H K Fung, S M Yang, An approach to on-machine motion error measurement of a linear slider, Measurement 29, 2001, 51-62;
    [27] S M Yang, Eric H K Fung, WM Chiu, Uncertainty analysis of on-machine motion and profile measurement with sensor reading errors, Meas. Sci. Technol. 13,2002, 1937-1945;
    [28] Campbell A. , Measurement of lathe Z-slide straightness and parallelism using a flat land, Precision Engineering, Vol 17, 1995, No. 3, 207-210;
    [29] Yokohama Y. and Hoshina N., A new straightness testing instrument, Proc.spring Mtg of Japan Soc. for Precision Engng, 1968, 327;
    [30] Bryan J., Clouser R., and Holland E., Spindle accuracy, American Machinist, Dec. 4, 1967, 149-164;
    [31] H.J. Pahk, J.S. Park and I. Yeo, Development of straightness measurement technique using the profile matching method, Int. J. Mach. Tolls Manufact. Vol. 37, No. 2, 135-147;
    [32] Thwaite E.G., A Method for Obtaining an Error Free Reference Line for the Measurement of Straightness, 1973, Messtechnik, Vol.81, No. 10, 317-318;
    [33] H.Tanaka and H.Sato, Extensive Analysis and Development of Straightness Measurement by Sequential-Two-Points Method, Trans. ASME J. Engng Industry 108, 1986,176-182;
    [34] Kiyono S., Huang P.and Fukaya N., Datum introduced by software methods, International Conference of Advanced Mechatronics, Tokyo, 1989, 467-472;
    [35] kiyono S. and Okuyama E., Study on measurement of surface undulation (2nd report), J. JSPE 1988, 54, 513-518;
    [36] Omar B. A., Holloway A. J. and Emmony D. C, Differential phase quadrature surface profiling interferometer, Appl Optics 1990, 29, 4715-4719;
    [37] Kiyono S and Gao Wei, Profile measurement of machined surface with a new differential method, Precision Engng 16, 1994, 212-218;
    [38] Gao W and Kiyono S, High accuracy profile measurement of a machined surface by the combined method, Measurement 19(1), 1996, 55-64;
    [39] Von Bieren K., Interferometry of wave fronts reflected off conical surfaces. Appl. Opt. 1983, 22(14), 2109-2114;
    
    [40] Gao W and Kiyono S, On-machine profile measurement of machined surface using the combined three-point method, JSME Int. J. C 40, 1997, 253-259;
    [41] Wei Gao and Satoshi Kiyono, On-machine roundness measurement of cylindrical workpieces by the combined three-point method, Measurement,Vol.21, 4, 1997, 147-156;
    [42] 李圣怡,谭捷,潘培元,精密三点法——在线测量精密机床直线度的新方法,国防科技大学学报,Vol.15,No.3,1993-3;
    [43] 林雪,超精密直线度在线测量方法的研究(硕士学位论文),国防科技大学研究生院,1995.1;
    [44] 洪迈生,钟志峰,李济顺,临床分离工件直线度和工作台直行运动误差的新方法,宇航计测技术,1998.8,Vol.18,No.4,1-6:
    [45] Whitehouse D J, Some theoretical aspects of error separation techniques in surface metrology, J. Phys. E: Sci. Instrum., 1976;
    [46] Li C J, Li S and Yu J, High resolution error separation technique for in-situ straightness measurement of machine tools and workpiece, Mechatronics 6 1996, 337-347;
    [47] 王宪平,超精密直线度测量技术研究(硕士学位论文),国防科技大学研究生院,1998.2:
    [48] Kiyono S, Asakawa Y, Inamoto M, Kamada O. A differential laser autocollimation profile for on-machine measurement. Precision Eng 1993; 15(2): 68-76;
    [49] Gao W, Kiyono S. Development of an optical probe for profile measurement of mirror surfaces. Opt Eng 1997; 36(12): 3360-3366;
    [50] 张镭,张玉,时域二点法和三点法直线度EST的误差分析,仪器仪表学报,Vol.19,1998,No.1,106-108,112;
    [51] 孙宝寿,詹圣望,三点法测量直线度误差应用研究,华东冶金学院学报,2000,Vol.17,No.3,217-220;
    [52] 廖念钊,彭(王争)琪,误差分离技术在直线度误差测量中的应用,计量技术(专辑),1985;
    [53] Fu Pan, Liao Nianzhao, On-Line Measuring MethodUsing Error Separating Technique to Measure Form and Position Error of Large Scale Workpiece, 1st, ISPAMIE'87 Proceedings;
    [54] L.Zhang , J.Q.Jin , Y.Zhang, Comparison and Analysis of the Effect of Initial-Value Error on Three-Point Straightness EST Methods in Frequency-Domain and Time-Domain, Proceeding of the ICPE'96 and 6th SJSUT;
    [55] L.Zhang ,Y.Zhang ,X.M.Yang, Imitation Analysis of the Effect of Initial-Value Error on Straightness EST Method in Time-Domain, Proceeding of the ICPE'96 and 6th SJSUT;
    [56] 王宪平,李圣怡,直线度误差分离方法的误差分析,仪器仪表学报,2000.6,Vol.21,No.3;
    [57] 谭久彬,精密测量中的误差补偿技术,哈尔滨工业大学出版社 1995;
    [58] Rimmer M P, et al., Evaluation of large aberrations using a lateral shear interferometer hanving variable, App. Opt., 1975, 14(1), 142-150;
    
    [59] Welsh B M, et al., Fundamental performance comparison of a Hartmann and a shearing interferometer wavefront sensor, App. Opt., 1995, 34(21), 4186-4195;
    [60] Spooren Rudie, Dyrseth Astrid Aksnes, Vaz Mario, Electronic shear interferometry application of a (double-) pilsed laser, App. Opt., 1993, 32(25), 4719-4727;
    [61] 史红民,倪受庸,付雷,王昊,陆耀东,剪切干涉技术的新进展,激光杂志,Vol.20 No.4,1999,6-7,15;
    [62] 徐德衍编著,剪切干涉仪及其应用,机械工业出版社,1987.8;
    [63] Shekhtman V N, Rodionov A Au, Pelmenev A G., Reconstruction of a light beam wavefront by synthesis of a shear interferogram, High Power Lasers-Science and Engineering, 1996, Edited by R.Kossowsky et al, 1996, 433-447;
    [64] Daniel Malacara, Optical Shop Testing, John Wiley & Sons, Inc. 1978;
    [65] 杨甬英,卓永模,偏振共路扫描剪切干涉仪及其二维剪切波面重构的研究,浙江大学学报,25(1),1991,86;
    [66] H.Von Brug, Zemike polynomials as a basis for wave-front fitting in lateral shearing interferometry, Appl. Opt.36, 1997, 2788-2790;
    [67] K.R. Freischlad and C.L. Koliopoulos, Modal estimation of a wave front from difference measurements using the discrete Fourier transform, J. Opt. Soc. Am. A 3, 1986,1852-1861;
    [68] D.L.Fried, Least-squares fitting a wave-front distortion estimate to an array of phase-difference measurements, J. Opt. Soc. Am. 67, 1977, 370-375;
    [69] R.L. Frost, C.K. Rushforth, and B.S. Baxter, Fast FFT-based algorithm for phase estimation in speckle imaging, Appl. Opt. 18, 1979, 2056-2061;
    [70] D.C. Ghiglia and L.A. Romero, Direct phase estimation from phase differences using elliptic partial differential equation solvers, Opt. Lett. 14, 1989, 1107-1109;
    [71] G. Harbers, RJ. Kunst, G.W.R. Leibbrandt, Analysis of lateral shearinginterferograms by use of Zernike polynomials, Appl. Opt. 35, 6162-6172, 1996;
    [72] R.H. Hudgin, Wavefront reconstruction for compensated imaging, J.Opt.Soc.Am. 67, 1977, 375-378;
    [73] B.R. Hunt, Matrix formulation of the reconstruction of phase values from phase differences, J.Opt.Soc.Am. 69, 1979, 393-399;
    [74] G.W.R. Leibbrandt, G. Harbers and P.J. Kunst, Wave-front with high accuracy by use of a double-grating lateral shearing interferometer, Appl. Opt.35, 1996, 6151-6161;
    [75] S.Loheide and Weing(?)rtner, New procedure for wavefront reconstruction, Optic, 108, No.2, 1998, 53-62;
    [76] R.J. Noll, Phase estimates from slope-type wavefront sensors, J.Opt.Soc.Am. 68, 1978, 139-140;
    [77] M.P. Rimmer, Method for evaluating lateral shearing interferometer, Appl. Opt. 13, 1974, 623-629;
    [78] M.P. Rimmer and J.C. Wyant, Evaluation of large aberrations using a lateral-shear interferometer having variable shear, Appl. Opt. 14, 1975, 142-150;
    [79] F. Roddier and C. Roddier, Wavefront reconstruction using iterative Fourier transforms, Appl. Opt. 30, 1991, 1324-1327;
    [8
    
    [80] H.Schreiber and J.Schwider, Lateral shearing interferometer based on two Ronchi gratings in series, Appl. Opt. 36, 1997,5321-5324;
    [81] M. Servin, D. Malacara, and J.L. Marroquin, Wave-front recovery from two orthogonal sheared interferograms, Appl. Opt. 35, 1996, 4343-4348;
    [82] W.H. Southwell, Wavefront estimation from wavefront slope measurements, J.Opt.Soc.Am. 70, 1980, 998-1006;
    [83] H.Takajo and T.Takahashi, Least-squares phase estimation from the phase difference, J.Opt.Soc.Am. A 5, 1988, 416-425;
    [84] X.Tian, M.Itoh, and T.Yatagai, Simple algorithm for large-grid phase reconstruction of lateral-shearing interferometry, Appl. Opt. 34, 1995, 7213-7220;
    [85] K. Freischlad, Sensitivity of heterodyne shearing interferometers, Appl. Opt. 26, 1987, 4053-4054;
    [86] I. Weing(?)irtner and H. Stenger, A simple shear interferometer for the measurement of wavefront aberration, Optik 70, 1985, 124-126;
    [87] J.B. Saunders, Measurement of wavefront without a reference standard, Part 1. The wavefront shearing interferometer, J. Res. Narl. Bur. Stand. Sect. B65B, 1961, 239-244,;
    [88] 许晓军,陆启生,姜宗福,刘泽金,波前延拓剪切干涉的数学原理与数值模拟,光学学报,Vol.20,No.2,2000,214—218;
    [89] 许晓军,陆启生,刘泽余,舒柏宏,横向剪切干涉的波前重构新方法,强激光与粒子束,Vol.13 No.3,2001,261—266;
    [90] Ingolf Weingartner "Ultra-precise Scanning Technique for Measurement of Topographies in the nanometric Range" Proceeding of 1st euspen, 2000, 126-129;
    [91] Clemens Elster, Ingolf Weing(?)rtner, Solution to the shearing problem, [J] Appl. Optics, Vol.38, 1999, 5024-5031;
    [92] Clemens Elster, Ingolf Weing(?)rtner, Exact wave-front reconstruction from two lateral shearing interfergrams, J. Opt. Soc. Am. A, Vol.16, No. 9, September 1999,2281-2285;
    [93] Clemens Elster, Recovering wavefronts from difference measurements in lateral shearing interferometry, Journal of Computational and Applied Mathematics 110, 1999,177-180;
    [94] Clemens Elster, Exact two-dimensional wave-front reconstruction from lateral shearing interferograms with large shears, Applied Optics, Vol. 39, No. 29, 2000, 5353-5359;
    [95] Ingolf Weingaertner, Michael Schulz, Peter Thomsen-Schmidt, Methods, error influences, and limits for the ultraprecise measurement of slope and figure for large, slightly nonflat, or steep complex surfaces, Proc. SPIE Vol. 4099, 2000, 142-153;
    [96] Ingolf Weingaertner, Michael Schulz, Clemens Elster, Novel scanning technique for ultraprecise measurement of topography , Proc. SPIE Vol. 3782, 1999, 306-317;
    
    [97] Ingolf Weingaertner, Michael Schulz, Novel scanning technique for ultra-precise measurement of slope and topography of flats, aspheres, and complex surfaces, Proc. SPIE Vol. 3739, 1999, 274-282;
    [98] Michael Schulz, Ingolf Weingaertner, Avoidance and elimination of errors in optical scanning, Proc. SPIE Vol. 3823, 1999,133-141;
    [99] Ingolf Weingaertner, Michael Schulz, Stefan Loheide, Ludolf Schneider, New methods for measuring wave aberrations of high-quality imaging systems over an extended image field, Proc. SPIE Vol. 3134,1997, 407-418;
    [100] Ralf Geckeler, Ingolf Weingartner, Use and treaceable calibration of autocollimators for ultra-precise measurement of slope and topography, Proc SPIE Vol. 4401,2001, 184-195;
    [101] Ralf D.Geckeler, Ingolf Weingaertner, Sub-nm topography measurement of large flats: an ultra-precise flatness standard for semiconductor industry, Proc. SPIE Vol. 4779,2002, 1-12;
    [102] Ingolf Weingaertner, Matthias Wurm, Ralf D.Geckeler, Clemens Elster, Michael Schulz, Eugen Dumitrescu, Stefan Krey, Josef Heinisch, Novel scheme for the ultra-precise and fast measurement of the nanotopography of large wafers, Proc SPIE Vol. 4779, 2002,13-22;
    [103] Ingolf Weingaertner, Michael Schulz, Clemens Elster, Joachim Gerhardt, Axel Lucas, Simultaneous distance, slope, curvature, and shape measurement with a multipurpose interferometer, Proc SPIE Vol. 4778, 2002, 198-205;
    [104] http://www.ptb.de;
    [105] Mckeown PA. The role of precision engineering in manufacturing of the future. Annals of the CIRP 1987, 36(2), 496-501; .
    [106] Ikawa N, Donaldson RR, Komanduri R, KoK nig W, Aachen TH, McKeown PA, Moriwaki T, Stowers IF.Ultra-precision metal cutting - the past, the present and the future. Annals of the CIRP 1991 ;40(l):587-94;
    [107] M. Masuda, Y. Maeda, T. Nishiguchi, M. Sawa, R. Ito, A study on diamond turning of Al-Mg alloy-generation mechanism of surface machined with worn tool, Annals of the CIRP, 1989,38 (1)111-114;
    [108] T. Sugano, K. Takeuchi, Diamond turning of an aluminium alloy for mirror, Annals of the CIRP, 1987, 36 (1), 17-20;
    [109] Y. Furukawa, N. Moronuki, Effect of material properties on ultra precise cutting processes, Annals of the CIRP, 1988, 37 (1), 113-116;
    [110] T.P. Tai, Y.C. Yang, Y.C. Hwong, C.H. Ku, A new concept of cutting marks formation in metal cutting vibration, in: Proceedings of the 20th MTDR, 1992, pp. 449-456;
    [111] W.B. Lee, C.F. Cheung, S. To, Materials induced vibration in ultra-precision machining, J. Mater. Process. Technol.89-90, 1999, 318-325;
    [112] W.R. DeVries, Autoregressive time series models for surface profile characterization, Annals of the CIRP, 1979, 28, (1), 437-440;
    [113] B. Nowicki, Investigation of the surface roughness range, Annals of the CIRP, 1981, 30,(1), 493-497;
    [114] T.R. Thomas, Characterization of surface roughness, Precis. Eng. 3, 1981, 97-104;
    [1
    
    [115] 余贵华,樊瑜瑾,应用光切法显微镜测量三维表面的形貌研究,检测,VOl.38,No433,2000,48;
    [116] S.J. You, K.F. Ehmann, Computer synthesis of three-dimensional surfaces, Wear 145 (1991) 29-42;
    [117] 李成贵,董申,三维表面微观形貌的表征趋势,中国机械工程,VOL.11 No.5,2000,488-492;
    [118] Thomas T R, Chariton G, Variation of Roughness Parameters on Some Typical Manufactured Surfaces, Precis. Eng., 1981, 3(2), 91-96;
    [119] Devries W., A Three-dimensional Model of Surface asperities Developed Using Moment Theory, J. Eng. Ind., Trans. ASME, 1982,104,243-248;
    [120] Tsukada T, Sasajima K. A Three-dimension Technique for Surface Asperities. Wear, 1981, 71,1-14;
    [121] Teague E C, Scire F E., Three-dimension Stylus Profilometry, Wear, 1982, 83, 1-12;
    [122] De Chiffre L, Strobek Nielsen H., A Digital System for Surface Roughness Analysis of Plane and Cylindrical Parts. Prec. Eng., 1987, 9(2), 59-64;
    [123] 毛起广,高思田,王景新,一种新型的表面粗糙度测量系统,计量学报,1989,10(4),267-272;
    [124] 高咏生,李柱,表面统计粗糙度理论与评定方法,计量学报,1987,8(2),134-139;
    [125] 蒋庄德,赵卓贤,形状误差波度和表面粗糙度划分的谱分析法,计量学报,1989,10(3),170-175;
    [126] 强锡富,唐文彦,于英满,表面粗糙度三维测量系统,仪器仪表学报,1988,9(2),141-148;
    [127] http://www.veeco.com;
    [128] Binnig G, Rohrer H, Gerber ch et al., Tunneling Through a Controllable Vacuum Gap. Applied Physical Letters, 1981,40, 178-180;
    [129] Binnig G, Quate C F, Gerber ch., Atomic Force Microscope, Physical Review Letters, 1986, 56(9), 930-933;
    [130] Downs M N, Mc Givem W H., Optical System for Measuring the Profiles of Supersmooth Surfaces, Prec. Eng., 1985, 7(4), 211-215;
    [131] Johannesh G., Technology and Applications of Grating Interferometers in High-precision Measurement, Prec. Eng., 1992, 14(3), 147-154;
    [132] Bowen D K, Wormington, M., Measurement of Surface Roughness and Topography at nanometers Levels by Diffuse X-ray scattering, Annals of the CIRP, 1994, 43(1), 497-500;
    [133] Thmos T R., Trends in Metrology, Int. J. Mach, Tools Manufact., 1998, 38(5/6), 1-3;
    [134] 蒋剑峰,何永辉,赵万生,表面三维形貌检测技术及其发展,中国机械工程,Vol.10,No.12,1999,1418-1420;
    [135] 梁嵘,李达成,曹芒,赵洋,表面微观形貌测量及其参数评定的发展趋势,光学技术,1998,11,No.6,66-68;
    [136] 李成贵,董申,表面粗糙度的光学测量方法,国外计测,Vol.20,No.2, 2000,28-32;
    [1
    
    [137] 李成贵,董申,3D表面粗糙度的测量方法分析,航空精密制造技术,Vol.35,No.2,1999,36-40;
    [138] 包学成,周志尧,非接触式表面微观形貌光学测量技术的进展,现代科学仪器,1999,6,8—10;
    [139] http://www.zyco.com;
    [140] Tai T P, Yang Y C, Hwong Y C et al. A New concept of Cutting Marks Formation in Metal Cutting Vibration. Proceedings of 20th MTDR, 1980, 449-456;
    [141] DeVries, W.R., Autoregressive time series models for surface profile characterization, Ann. CIRP, 1979, 28(1), 437-440;
    [142] A.O. Tay, M.G. Stevenson, G.de Vahl davis, Using the finite element method to determine temperature distributions in orthogonal machining, Proc. Inst. Mech. Engrs. 188(1974), 627;
    [143] Jaroslav Mackerle, Finite-element analysis and simulation of machining: a bibliography (1976-1996), Journal of Materials Processing Technology 86(1999), 17-44;
    [144] 罗熙淳,基于分子动力学的纳米加工表面形成机理研究,哈尔滨工业大学博士论文,2002.3;
    [145] J.Belak, W.G.. Hoover, A.J. De and I.F. Stowers, Molecular Dynamics Modeling Applied to Indentation and Metal Cutting Problems, Thrust Area Reps., 1990, (89), 4-8;
    [146] N. Ikawa, S. Shimada and H. Tanka, Minimum Thickness of Cutting in Micromachining, Nanotechnology, 1992, 3(1), 6-9;
    [147] T. Inamura, H. Suzuki and N. Takezawa, Cutting Experiment in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool, JSPE, 1990, 56(8), 1480-1486;
    [148] S. Shimada, N. Ikawa, G.. Ohmori, Molecular Dynamics Analysis as Compared with Experimental Result of Micromachining, Annals of the CIRP, 1993, 42(1), 91-94;
    [149] 温诗铸,纳米摩擦学进展,清华大学出版社,1996,69-80;
    [150] 林滨,工程陶瓷超精密磨削技术研究,天津大学博士学位论文,1998,30-31;
    [151] Tai, T.R, Yang, Y.C., Hwong, Y.C. and Ku, C.H., Anew concept of cutting marks formation in metal cutting vibration, In Proceedings of 20th MTDR, 1980, 449-456;
    [152] Stao H , O-hori M. Characteristics of Two Dimensional Surface Roughness-Taking Self- Exicited Chatter Marks as Objective. Annals of the CIRP, 1981, 30(1), 481-486;
    [153] S. M. Pandit and Revach S., A data dependent systems approach to dynamics of surface generation in turning, Transactions of ASME, Journal of Engineering for Industry, 103 (1981), 437-445;
    [154] S. M. Pandit, Characteristic Shapes and Wavelength Decomposition of Surfaces in Machining, Annals of the CIRP, 1981, 30(1), 487-492;
    [155] T. Sata, M. Li, S. Takata et al. Analysis of Surface Roughness Generation in Turning Operation and its Applications, Annals of the CIRP, 1985, 34(1), pp473-476;
    
    [156] F. Ismail, M.A. Elbestawi, R. Du, K. Urbasik, Generation of milled surfaces including tool dynamics and wear, Transactions of ASME, Journal of Engineering for Industry, 115, 1993, 245-252;
    [157] S.J. You, K.F. Ehmann, Synthesis and generation of surfaces milled by ball nose and mills under teriary cutter motion, Transactions of ASME, Journal of engineering for industry 113, 1991, 17-24;
    [158] D.Montgomery, Y. Altintas, Mechanism of cutting force and surface generation in dynamic milling, Transactions of ASME, Journal of engineering for industry 113, 1991,160-168;
    [159] S.C. Lin, M.F. Chang, A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning, International Journal of Machine Tools & Manufacture 38, 1998, 763-782;
    [160] Bispink T., M.Weck, Performance Analysis of Feed - Drive Systems in Diamond Turning by Machining Specified Test Samples. Annals of the CIRP, 1992, 41(1), 601-604;
    [161] Byne G, A New Approach to the Theoretical Analysis of Surface Generation Mechanisms in Machining. Annals of the CIRP, 1992, 41(1), 67-70;
    [162] Tsai, M.D., Takata, S., Inui, M., Kimura, F., and Sata. T., Prediction of chatter vibration by means of a modelbased cutting simulation system, Annals of the CIRP, 1990, 39(1), 447-450;
    [163] Week, M., Hartel, R. and Modemann, K., Performance asseeement in ultra-precision micromachining, Annals of the CIRP, 1988, 37(1), 499-502;
    [164] M.Weck, K.Modemann, Surface quality as a function of static and dynamic machine tool behavior during the cutting process, surface Topography 1, 1988, 291;
    [165] M.D. Tsai, S. Takata, M. Inui, F. Kimura, T. Sata, Prediction of Chatter Vibration by Means of a Model-Based Cutting Simulation System, Annals of the CIRP, 1990,39(l),447-450:
    [166] R.Haberland, GPfeifer, Generation of Surface Topology by Interaction, Spindle Speed and Feed Velocity, SPIE Vol. 1266 In-ProcessOptical Measurements and Industrial Methods, 1990, 245-253;
    [167] R.Haberland, Machine vibration and machined surface, Proc. Of 2nd euspen international Conference - Turin, Italy - May 27th - 31st, 2001, 810-813;
    [168] G.M. Zhang, T.W. Hwang and J.F.Song, Dynamic Visualization of the Surface Texture Formed During Machining, Technical Research Report, Tr91-3;
    [169] O. Horiuchi, S. Itoh, Flatness and surface roughness of diamond turned surface, Proc. Of SPIE Vol.2576, 1995, 406-413;
    [170] O. B. Abouelatta and J. Madl , Surface roughness prediction based on cutting parameters and tool vibrations in turning operations, Journal of Materials Processing Technology Vol.118, Issues 1-3, Dec. 2001, 269-277;
    [171] A. Boryczko, Measurement of relative tool displacement to the workpiece for the assessment of influences of machining errors on surface profiles, Measurement 31, 2002, 93-105;
    [1
    
    [172] 王洪祥,孙涛,董申,李旦,超精密车削表面微观形貌的几何建模与仿真研究,中国机械工程,Vol.13,No.13,2002,1131-1134;
    [173] 张军,唐文彦,强锡富,切削振动条件下工件表面轮廓的形成机理,仪器仪表学报,Vol.21,No.3,2000,225—228;
    [174] 张军,唐文彦,强锡富,切削振动条件下的表面轮廓仿真分析,工具技术,Vol.34,No.2,2000,44—46;
    [175] Shuhei Takasu, Masami Masuda , Takashi Nishiguchi, Influence of Study Vibration with Small Amplitude Upon Surface Roughness in Diamond Machining, Annals of the CIRP, 1985, 34(1), 463—467;
    [176] Cheung C F, Lee W B. Modelling and Simulation of Surface Topography in Ultra-precision Diamond Turning , Proc. Inst. Mech.Eng., J.Eng. Manuf., Vol. 214, Part B 2000, 463—480;
    [177] 李荣彬,张志辉,李建广,超精密加工的三维表面形貌预测,中国机械工程第11卷第8期,2000.8:
    [178] Cheung C F, Lee W B. A Theoretical and Experimental Investigation of Surface Roughness Formation in Ultra-precision Diamond Turning. Int. J. Mach. Tools and Manuf., 2000, 40(7), 979-1002;
    [179] Cheung C F, Lee W B, An Investigation of Cutting Dynamics in single point diamond turning, JSME International Journal, 2000, C43(1), 116-126;
    [180] Cheung C F, Lee W B, Characterisation of nanosurface generation in single-point diamond turning, Int. J. Mach. Tools and Manuf., 41, 2001, 851-875;
    [181] Lee W B, Cheung C F, A dynamic surface topography model for the prediction of nano-surface generation in ultra-precsion machining, International Journal of Mechanical Sciences, 43, 2001, 961-991;
    [182] To S., Lee W B, Investigation of surface properties in ultra-precision diamond turning, Proc. of 2nd euspen international Conference - Turin, Italy - May 27th - 31st, 2001, 746-749;
    [183] Cheung C F, Lee W B, Prediction of nano-surface generation in ultra-precision diamond turning from a new materials induced vibration model, Proc. of 2nd euspen international Conference - Turin, Italy - May 27th - 31st, 2001,750-753;
    [184] Cheung C F, Lee W B, A Muti-spectrum analysis of surface roughness formation in ultra-precision turning, Precision Engineering, 2002(24), 77-87;
    [185] R. Ramesh, M.A. Mannan, A.N. Poo, Error compensation in machine tools —a review Part Ⅰ: geometric, cutting-force induced and fixture dependent errors, International Journal of Machine Tools & Manufacture 40, 2000, 1235-1256;
    [186] R. Ramesh, M.A. Mannan, A.N. Poo, Error compensation in machine tools —a review Part Ⅱ: thermal errors, International Journal of Machine Tools & Manufacture 40, 2000, 1257-1284;
    [187] Hua Qiu, Yan Li, Yanbin Li, A new method and device for motion accuracy measurement of NC machine tools, Part 1:principle and equipment[J]. International Journal of Machine Tools & Manufacture, 2001,4(41): 521-534;
    [188] Hua Qiu, Yan Li, Yanbin Li, A new method and device for motion accuracy measurement of NC machine tools, Part 2: device error identification and trajectory measurement of general planar motions, International Journal of Machine Tools & Manufacture, 2001,4(41): 535-554;
    
    [189] D.L.Leete, Automatic compensation of alignment errors in machine-tool, Int. J. Mach. Tools Des.Res.1961, 1, 293-324;
    [190] D.French, S.H.Humphries, Compensation for backlash and alignment errors in a numerically controlled machine-tool by a digital computer program, M.T. D.R.Conf.Proc.1967, 8,707-726;
    [191] W.J.Love ,A.J.Scarr. Determination of the volumetric accuracy of multi-axes machine, M.T. D.R.Conf.Proc.1973,14, 307-315;
    [192] Schultschik R..The Components of Volumetric Accuracy, Annals of the CIRP, 1977,26(1), 223-228;
    [193] Hocken R., et al., Three Dimensional Metrology, Annals of the CIRP, 1977 26(1), 403-408;
    [194] P.M.Ferreira, C.R.Liu, An Analytical Quadratic Model for the Geometric Errors of a Machine tool,Journal of Manufacturing System, 1986(5), 1, 51-62;
    [195] Donmez A., A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation, Precision Engineering, 1986(8), 4, 187-196;
    [196] Z.J.Han,K,Zhou, Improvement of positioning accuracy of rotating table by microcomputer control compensation, M.T. D.R. Conf. Proc, 1986, 26, 115-120;
    [197] D.N.Reshetov, V.T.Portman, Accuracy of machine tools, 1988;
    [198] M.Anjanappa, D.K.Anand, J.A.Kirk. Error correction methodologies and control strategies for mumerical control machines, Control Method for Manufacturing Process, 1988, 7, 41-49;
    [199] A.K.ElshchnawyJ.Ham, Performance improvement of in coordinate measuring machines by error, Manufacturing Systems, 1989(9), 2, 151-158;
    [200] K. Kim, M.K.Kim, Volumetric accuracy analysis based generalized geometric error model in multi-axes machine tools, Mech.Mach.theory, 1991(26), 2, 207-219;
    [201] J. A. Soons,F.C.Theuws, P.H.Schellenkens, Modeling the errors of multi-axis machines: a general methodology, Precision Engineering , 1992(Vol.l4), 1, 5-19;
    [202] Chen J.S., Yuan J., Ni J., Compensation of Non-Rigid Body Kinematics Effect of a machining Center, Transaction of NANRI, 1992(20), 2, 325-329;
    [203] P.D. Lin,K.F.Ehmann, Direct volumetric error evaluation for multi-axis machines, International Journal of Machine Tools & Manufacture, 1993(33), 5, 675-693;
    [204] V.Kiridena,P.M.Ferreira, Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools, International Journal of Machine Tools & Manufacture, 1993(33), 3, 417-437;
    [205] A.K.Srivastava,S.C.Veldhuis,M.A.Elbestawit, Modeling geometric and thermal errors in a five-axis CNC machine tool, International Journal of Machine Tools & Manufacture, 1995,9, 1321-1337;
    
    [206] K.F.eman,B.t.Wu, A generalized geometric error Model for Multi-Axis Machines, Annals of CIRP, 1987(36), 1,253-256;
    [207] John C. Ziegert and Prashant Kalle, Error Compensation in Machine Tools: A Neural Network Approach, Journal of Intelligent Manufacturing, 1994,5, 143-151;
    [208] 朱建忠,李圣怡,黄凯,超精密机床变分法精度分析及其应用,国防科技大学学报,1997,4,36-40;
    [209] 朱建忠,精密超精密机床精度分析、建模与精度控制技术研究,博士学位论文,国防科技大学,1997,10;
    [210] 杨建国,潘志宏,薛秉源,数控机床几何和热误差综合的运动学建模,机械设计与制造,1998,5,31-32;
    [211] 杨国华,潘志宏,薛秉源.数控双主轴车床几何和热误差综合数学模型及实时补偿,机械设计与研究,1998,1,44-46;
    [212] Mahbubur Rahman, Jouko Heikkala,Kauko Lappalainen, Modeling, measurement and error compensation of multi-axis machine tools. Part Ⅰ:theory, International Journal of Machine Tools & Manufacture, 2000, 40, 1535-1546;
    [213] V.S.B.Kiridena, P.M.Ferreira, Kinematic modeling of quasistatic errors of three-axis machining centers, International Journal of Machine Tools & Manufacture, 1994(34), 1, 85-100;
    [214] V.S.B.Kiridena, P.M.Ferreira. Parameter estimation and model verification of first order quasistatic error model for three-axis machining centers, International Journal of Machine Tools & Manufacture, 1994(34),1, 101-125;
    [215] 粟时平,多轴数控机床精度建模与误差补偿方法研究,博士学位论文,国防科技大学,2002.9;
    [216] S.Yang, J.Yuan,J.NI, The improvement of thermal error modeling and compensation on machine tools by CMAC neural network, International Journal of Machine Tools & Manufacture, 1996, 36, 527-537;
    [217] Hong S.W, An effect method for identification of motion error sources from circular test result in NC machine, Int. J. Mach. Tools, Manufac. 1997, 37(3), 327-340;
    [218] 洪迈生,何永勇,精度诊断在先进制造技术领域中的重要作用,振动、测试与诊断,Vol.17 No.4,1997,1-11;
    [219] 洪迈生,苏恒,李自军,魏元雷,数控机床的运动精度诊断——评述与对策,机械工程学报,Vol.38,No.2,2002,90-94;
    [220] 张虎,周云飞,唐小琦,陈吉红,师汉民,数控机床空间误差球杆仪识别和补偿,机械工程学报,Vol.38,No.10,2002,108-113;
    [221] 粟时平,李圣怡,王贵林,基于空间误差模型的加工中心几何误差辨识方法,机械工程学报,Vol.38,No.7,2002,121-125;
    [222] JRaja, Field testing of machine tool diagnostic techniques using surface metrology, Annals of the CIRP Vol.32(1) 1983,503-506;
    [223] D.Jaume, M. Verge, A. Rault, Amodel-based diagnosis in machine tools: application to the milling cutting process, Annals of the CIRP Vol.39(1) 1990, 443-446;
    [224] Senng-Woo Kim, Dong-Sik Kim, In-Chul Chang, Tae-Ho Keem, Seung-Bong Yoo, Very Large Scale Phase Measuring Interferometry of Work Surface for Diagnostic Analysis of Diamond Turning Process, Proceeding of 1st euspen, 2000, 24-27;
    [2
    
    [225] Dong-Sik Kim, In-Cheol Chang, Seung-Woo Kim, Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces, Precision Engineering 26 (2002) 168-174;
    [226] Seung-Woo Kim, In-Cheol Chang, Dong-Sik Kim, Very Large Scale Analysis of Surfaces for Diamond Turned Machine Diagnosis,(韩文),韩国精密工学会,2000年度,春季学术大会论文集;
    [227] Satoshi Kiyono and Zongtao Ge, Subnanometric calibration of a differential interferometer, Precision Engineering, Vol. 19 No. 2/3, 1996, 187-197;
    [228] J. Raja, B. Muralikrishnan, Shengyu Fu, Recent advances in separation of roughness, waviness and form, Precision Engineering, 26 (2002) 222-235;
    [229] Liu X, Raja J., Analyzing engineering surface using wavelet filter, Proceedings of the SPIE. Vol. 2825, 1996, 942-949;
    [230] X.Q. Jiang, L. Blunt, K.J. Stout, Lifting wavelet for three-dimensional surface analysis, International Journal of Machine Tools & Manufacture 41 (2001) 2163-2169;
    [231] X.Q. Jiang, L. Blunt, K.J. Stout, Application of the lifting wavelet to rough surface, Precision Engineering, Vol.25,2001, 83-89;
    [232] W. Sweldens, The lifting scheme: A construction of second generation wavelets, Tech. Rep. 1995:6,Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1995,(ftp://ftp.math.sc.edu/pub/imi95/imi95 6.ps);
    [233] W. Sweldens, The lifting scheme:A custom-design construction of biorthogonal wavelets, Appl. Comput.Harmon. Anal., vol. 3(2), 1996, 186-200;
    [234] W. Sweldens and P. Schr oder, Building your own wavelets at home, Tech. Rep. 1995:5, In-dustrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1995,(ftp://ftp.math.sc.edu/pub/imi95/imi95 5.ps);
    [235] H.J.A.M. Heijmans and J. Goutsias, Multiresolution signal decomposition schemes. Part 2:Morphological wavelets, CWI Report PNA-R9905, Centrum voor Wiskunde en Informatica, Amsterdam, 1999. www.cwi.nl/ftp/CWIreports/PNA/PNA-R9905.pdf;
    [236] Billur Barshan, Deniz Bas7 kent, Morphological surface profile extraction with multiple range sensors, Pattern Recognition 34 (2001) 1459-1467;
    [237] Whitehouse, D.J., Handbook of surface metrology, Institute of Physics Publications, Philadephia, Pennsylvania, 1994;
    [238] 任海霞,田爱玲,刘中本,几种波面重构方法的探讨,西安工业学院学报,Vol.20,No.3,Sept.2000,215-219;
    [239] User's Manual Accumeasure Systen 9000 Capacitance Sensor Amplifier, MTI Instruments Inc. Rev. 2.1;
    [240] 胡广书 编著,数字信号处理—理论、算法与实现,清华大学出版社,1997.8;
    [241] 杨力 主编,先进光学制造技术,科学出版社,2001.9;
    [242] 吴松青 编著,表面粗糙度应用指南,机械工业出版社,1990.3,第一版。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700