水性锌—铝基金属微粉涂层的选料及涂层组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前金属防护工业受到环保和节能等方面的日益严峻的压力,涂料工业向环保型发展已是大势所趋。水性金属基微粉涂层是利用片状金属微粉,以无机盐或者有机溶剂为粘结剂,加入其他表面活性剂等配成浆料,涂覆于金属件上,经过烧结形成的金属基涂层。水性金属涂层在金属防护中以其优异的耐蚀性、耐热性、无氢脆、可再涂性和施工方便等诸多优点逐渐成为了当今研究的热点。
     论文在总结了前人研究工作的基础上发现,在水性金属基涂层的研发和应用上还存在组元选择和形层原理上的盲区和不合理性,影响了该种涂层技术的发展和应用。
     针对这些情况,本论文重点从组元的选择原理上入手,分析了原料中各个组份的性能、作用机理,以及对涂层性能的影响,研究了原料组元的选择方法和原则,确定了一套较为合理、科学的选料方法和依据。研究发现:表面张力较小的非极性有机物润湿剂对金属粉的润湿性能较好,并且该润湿剂必须满足:与水能任意互溶;热分解性,涂层固化处理后在涂层中无残余;分散剂能提高涂液中的有机、无机颜料固体颗粒分散性,防止固体颗粒的沉降和凝聚,形成安定悬浮液,实验选取的分散剂F具有良好的分散性;对于增稠剂的选取,质优价廉的纤维素类增稠剂对涂液的增稠效果良好,并对涂液无副作用。
     论文重点研究了粘结剂的选取,对钼酸盐、磷酸盐、硼酸盐和硅酸盐粘结剂形成涂层进行了研究,研究发现钼酸盐、磷酸盐和硼酸盐粘结剂形成的涂层与基体之间的结合力没有化学键结合力,其结合强度较低。硅酸盐粘结剂形成的涂层有化学键作用,其结合强度较以上三种略强。
     在对以上几类无机粘结剂进行了研究分析后,将其中的几类无机粘结剂进行复配后所获得复合粘结剂具有良好的兼容共存性,所获得涂层形成了结构牢固的三维结构涂层,其结合力有化学键结合存在,其综合性能要优于其他几种单一粘结剂涂层。
     论文对复合粘结剂形成的金属锌铝基水性微粉涂层能进行了性能测试分析,结果表明:涂层表面光滑、均匀,呈亮白色,涂层结合力较强,耐蚀性能较好。
     运用体式显微镜、扫描电镜(SEM)、X射线衍射仪等材料的现代检测手段对涂层的微观形貌、与基体的结合状态、空间位置等进行观测,统计分析了涂层中的化学成分,并对各种成分在涂层中的作用进行了分析。研究表明:涂层中片状铝粉基本上是层层叠加,球状锌粉不均匀的夹杂在片状铝粉的间隙间,金属粉通过无机粘结剂粘结在一起。
     根据以上研究结果提出了水性锌—铝基金属微粉涂层的微观结构模型和形层机理:涂层在形层过程中其主体相既无电结晶,也没有高温冶金反应,其形层机理不同于传统的结晶方式,因此该涂层技术属于无结晶方式获得致密的多元合金的技术,该技术有望成为一种新型的环保型保护层。
At present the metal protection industry receives the stern pressure stemming from environmental protection and energy conservation and so on, ultimately the coating industry is developing to environmental protection day by day. The river character metal-based fine powder coating,using the laminated metal fine powder, taking the inorganic salt or the organic solvent as the cementing agent, joins other surface active agent and so on for pulp, then is spreaded on the metal, forming the metal-based coating after the agglutination. The river character metal coating has gradually become the hot spot studies now, for its outstanding corrosion resistance, the thermal stability, without the hydrogen embrittlement, overcoatability and the construction convenience and so on.
     The paper on the foundation of summarizing the predecessor research work's discovered that there are some blind spot and unfairness in the component choice and in the shape level principle of the river character metal-based coating's research and application, which has affected this kind of coating technology development and the application.
     In view of this, this paper started with the principle of selection, analyzed the performance and the role of the materials in each group as well as its impact on coating performance, researched the method and principles of the selection of the material selection, and determined a more reasonable and scientific method and principle of the material selection. It was found that, Smaller surface tension non-polar organic wetting agent on the wettability of the metal powder is better, and the wetting agent must be met,any immiscible with water; thermal decomposition of the coating after curing of the coating without residual; dispersant solution can improve the coating of organic and inorganic pigment dispersion of solid particles to prevent the settlement of solid particles and condensation to form a stable suspension, the experimental F selected dispersant has good dispersion; for thickener selection, lower prices and better quality of the coated cellulose thickener thickening fluid well, and coated solution without side effects.
     Papers focus on the selection of the binder and study the Molybdate, phosphate, and borate and silicate binder coating formation. The study found that the main force between the substrate binding and a binder coating consists of molybdate, phosphate and borate are:Interface static gravity, the van der Waals force between Coating and matrix elements, Mechanical force. The bond strength is low.There is also chemical bonding except for the three forces above, and its bond strength is bigger than the other three.
     Through the analysis of the inorganic binder types mentioned above, we find that the Composite binder which is Mixed by a few kinds of inorganic binders has a good ability of Compatible and co-existence.the new coating has a solid three-dimensional structure coating, Its binding forces include Van der Waals force, mechanical force, electrostatic force and chemical bonding. Its overall performance is superior to several other single binder coating.
     The property of this metal zinc aluminum base river character fine powder coating which is obtained through the experiment is very fine, for its physical property and resisting corrosion:The coating surface is smooth, even, assuming the brilliant white, the strong coating binding force, the fine anticorrosion performance.
     We observed the micromorphology of the coating bonding state with the matrix、Spatial location and analyzed the chemical components of the coating statistically and effect of each component to the coating,by using moden measuring methods such as Stereo microscope、SEM、energy spectrum analyzer. The results indicated that, the aluminium flake placed on top of one another basically, while the Spherical zinc placed among the spaces of the aluminium flakes unevenly and the metal powder.
     Baseding on the above fingdings raised the mechanism of shaping and corrosion of Waterborne Zinc-Aluminum-based Metal Powder Coatings:Waterborne aluminium-based metallic micro-powder coating have no electric crystallization in the forming processof coatings,and no high-temperature metallurgy react, it's mechanism of shaping different from the tradition crystallization way,So technology belongs to one kind of among the technology of obtaning the dense plural alloy-layer by way of there is no crystallizationing. Mechanism of corrosion resistance at both barriers and protective sacrificial anode. The technology is expected to become a new type protective coating that having environmentally friendly.
引文
[1]何明奕,刘丽.铝基金属微粉涂层.金属热处理,2008,28(8):13-16
    [2]刘银庭.水性铝-锌基金属微粉涂层工艺和耐蚀机理研究:[硕士学位论文].昆明:昆明理工大学,2004
    [3]宋积文.无铬水性锌铝涂层制备\性能及耐蚀机理的研究:[硕士学位论文].青岛:中国海洋大学,2007
    [4]朱筱军.水性铝基金属微粉涂层形层机理研究:[硕士学位论文].昆明:昆明理工大学,2006
    [5]周文娟.水性锌铝粉防腐涂层的研究:[硕士学位论文].青岛:中国海洋大学,2007
    [6]秦国治,王顺.富锌涂料综述.腐蚀与防护,2001,5:55
    [7]Malgorzata Zubielewicz A,Witold Gnot,Mechanisms of Non-Toxic Anticorrosive Pigments in Organic waterborn coatings progress in organic coatings,2004 (49):358-371
    [8]李焱.富锌涂料的研究及进展动态.上海涂料,2009(1):36-39
    [9]李艳云.水性无机富锌涂料的研究.[硕士学位论文].昆明:昆明理工大学,2008
    [10]蔡森.水性无机富锌涂料的研究进展.上海涂料,2009(2):23-25
    [11]王石青.高模数硅酸钾水性无机富锌涂料的制备及性能研究.[硕士学位论文].昆明:湖南大学,2007
    [12]何建波,奋道荣,李学良等.达克罗涂层的腐蚀动力学行为研究.化学研究与应用,2002(14):81-83
    [13]张明伟.达克罗-当今世界表面处理的高新技术.材料保护,1995,78(8):19-20
    [14]Sontag A. Dacrometisierung—Korrosinosschutz and Umwelt.Galvano— Technik,1992,83(6):1957-1963
    [15]Zhao Ming, Wu Shusen.Microstructure and Corrosion Resistance of a Chromium-free Multi-elements Complex Coating on AZ91D Magnesium Alloy Materials Chemistry and Physics,2006,99:56-60
    [16]Krause—Heringer.DACROMET:A New Corrosion Protection for fasteners. Protect Finishing,1997,30(5):29
    [17]Narusch,M.J. Anti-corrosion Properties of Zinc Dust Paints.Corrsoin science 1997,17(4)341
    [18]于升学.达克罗处理的现状与发展.电镀与涂饰,2001,3:52-56
    [19]马壮,黄圣玲,李智超等.达克罗技术近期研究进展.现代涂料与涂装2008(6):16-18
    [20]Hartmut Oshs.Effect of temperature cycles on impedance spectra of coatings under immersion conditions.Electrochimica Acta 2004,49:2973-29
    [21]Fourez M, Gheno D F,White P E. The Application of Zinc Aluminium Flake Non-Electrolytic Surface coatings. Transacyions of the Institute of Metal Finishing,1993,71(2):21-25
    [22]Sontag A.Zinc/Aluninium Coatings for Corrosion Protections Finishing,1992,16 (8):38-42
    [23]张志远,钢结构表面防腐新技术-热喷涂锌\铝涂层技术,工业建筑,2000,30:78-79
    [24]李康.方兴未艾的锌铬涂层—达克罗,涂料涂装与电镀,2005,3,(3):31-34
    [25]文光男,刘希柏.锌基涂层的电化学行为和防蚀机理,材料保护.1998,31(2):8-9
    [26]Ikegami,Makoto,Homi,Makoto.Zinc powder dispersible in water and zinc powder-containing water base paint.United States Patent:6,770,124,2004
    [27]Endo, Yasuhiko,Sakai,Tomio,Shimada,Saburo.Surface coated aluminum fine powder and aqueous chromium-free corrosion inhibiting coating composition including the same. United States Patent:6,740,424,2004
    [28]Liu Jianguo,Gong Gaoping,Yan Chanwei. EIS study of corrosion behaviour of organic coating/Dacroment composite systems. Electrochimica acte,2005,50:3320-3332
    [29]王敏.锌基水系复合涂层-达克罗表面处理技术.现代涂料与涂装,2007(10):36
    [30]Foures M,Gheno D F, White P E.The Application of Zinc-Aluminium Flake Non-Electrolytic Surface Coatings. Trans IMF,1993,72,72(1):21
    [31]Endo,Yasuhiko,Sakai,Tomio,shimada,Saburo.Surface coated aluminum fine powder and aqueous chromium-free corrosion inhibiting coating composition including the same United Sates Patent:6,740,424,2004
    [32]Clermont FR, Creil FR,Staint Witz FR.Use of MO3 as corrosion inhibitor,and coating composition containing such an inhibitor.US416375,2004-07-22
    [33]马李洋,丁毅,马立群等.316L不锈钢柠檬酸钝化工艺及其耐点蚀性能研究.表面技术,2002,2(4):39-41
    [34]郝建军,安成强,刘常升.不同添加剂对镀锌层钼酸盐钝化膜腐蚀电化学性能的影响.材料保护,2006,39(10):23-25.
    [35]王爱荣,郝海玲.常用镀锌层钝化工艺概述.电镀与精饰,2006,5(9):29-32.
    [36]David P.Chapman. Challenge:aluminum pigments in aqueous Coatings Journal of Coatings Technology.1996,68(862):30-33
    [37]张俊敏,张宏,文自伟等.达克罗技术的现状及发展方向.表面技术,2004,(6):11-12
    [38]曹茂盛.超细颗粒制备科学与技术.哈尔滨:哈尔滨工业大学出版社,1998
    [39]曾晓雁等.表面工程学.机械工业出版社,2001:15-16.
    [40]刘程等主编.表面活性剂应用手册.北京:化学工业出版社,1995
    [41]吴明.水性涂料中无机增稠剂的应用及研究.无机硅化合物,2007,4(2):60
    [42]王再德,陈玲,焦明泉.无铬达克罗钝化剂的选择.材料保护,2008,41:58-69
    [43]Chen Yiping,Zhang Hanhui.Structure and two-dimensional correlation infrared spectroscopy study of a new one-dimensional chain compound.Chinese J. Struct Chem.2005,24:1033-1038
    [44]石晓波,林秉发.三聚磷酸二氢铝的物化性质.江西师范大学学报(自然科学版),1990,14
    [45]尹汝珊,冯改山.耐火材料技术问答.北京:冶金工业出版社,1994
    [46]高义,蔡庆南.层状结晶二硅酸钠介绍及前景分析.无机盐工业,2004,36:4-6
    [47]郑学家.酸盐工业生产的结构化学.辽宁化工,2001,7:290-293
    [48]何建波,鲁道荣,李学良.达克罗涂层的腐蚀动力学行为研究.化学研究与应用,2002,14:81-83
    [49]陈玲,李宁.达克罗涂层的组织结构及电化学特性研究.高技术通讯,2000,10:74-76
    [50]郑淑萍.达克罗涂料配方研究.硕士论文,昆明理工大学,2005:58
    [51]Nicholas,J.Spibatis.Acid Copper planting.Metal finishing,1984,82(1):45
    [52]陈步宁,黎复华等(译).粘结表面处理技术.北京,化学工业出版社,2003
    [53]Dervosa CT,Novakovica J,Vacuum Heat.Treatment of Electroless Ni-B Coating.Materials letters,2004,58(5):619-623
    [54]刘振磊,阎洪娟等.改善钛基化学镀层结合力的研究.电镀与环保,2007(6):11-l3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700