猪A组轮状病毒VP6基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪轮状病毒(Porcine Rotavirus,PRV)属于呼肠孤病毒科、轮状病毒属,它作为腹泻的主要病原在世界范围内广泛流行,是引起仔猪病毒性腹泻的主要病原之一。该病幼畜最为易感,1-4周龄仔猪发病率超过80%,死亡率7-20%,且症状严重,主要表现为严重腹泻,部分病例因严重脱水、酸碱平衡失调、继发感染而死亡[91]。鉴于其危害严重且无有效治疗手段,世界卫生组织将RV疫苗列为最优先发展的疫苗项目之一,尤其是它的基因工程疫苗的研制更为重要。
     动物机体存在着完整的粘膜免疫系统,该系统包括肠道相关的淋巴组织、呼吸道淋巴组织及乳腺、泌尿生殖道粘膜。肠道壁是机体的最大免疫器官,其粘膜产生的抗体远远大于体液。加之粘膜又是大多数病原的入口。因而,有人预测:未来的疫苗将主要发展成为经肠道免疫的疫苗。研究证实,小肠IgA为抗RV保护作用的相关因素,对于RV疫苗的研究者来说,最重要也是最富有挑战性的任务是构建一种能在肠粘膜表面诱导产生病毒特异性IgA的疫苗。RV组特异性抗原VP6蛋白,位于病毒的内壳,全长基因为1356bp,占病毒颗粒的51%,它在病毒的复制装配过程中起着重要作用,被认为是RV产生免疫的最重要蛋白,其虽不能刺激机体产生中和抗体,但可以刺激粘膜分泌sIgA,从而介导粘膜免疫,抵抗再次感染。该蛋白也具有一个能与细胞毒性T淋巴细胞(CTL)产生交叉反应的抗原表位,同时VP6为RV组和亚组特异性抗原,无种属特异性,在疫苗中纳入该抗原可能有助于解决病毒变异问题。
     RV主要保护性抗原基因已经被克隆和测序,但迄今为止报道的表达载体系统,多是以抗生素抗性作为外源基因稳定表达的压力。以抗生素为选择压力,虽然对克隆子容易进行筛选,但是由于抗药性基因不断向环境中漂移扩散,可能造成对环境微生态的破坏,带来严重后果,因而这类表达系统也离“食品级”还有很大的距离,不能直接用于人和动物。非抗性表达载体系统日益受到人们的关注。
     由于重组保护性抗原受体菌株主要是活的减毒病原菌,而细菌疫苗的免疫保护力往往和菌株的残余毒力成正比。所以试图寻找能良好地表达外源性抗原且安全的受体菌株日益受到人们的关注。乳酸杆菌为人及动物体内正常菌群的重要成员,以乳酸杆菌作为表达外源保护性抗原基因的受体菌株,就可以将乳酸菌的生物学功能和外源功能抗原基因的特异性免疫相结合,同时乳酸杆菌作为正常生理性细菌,又符合新型疫苗的口服安全、方便、廉价等特点。
    
    吉林农业大学硕士学位论文
    猪A组轮状病毒VP6基因的克隆与表达
     不难想象,如果将以非杭性载体表达系统基因为选择压力的“食品级”和“饲料级”
    系统构建成功,就可以把RV的保护性抗原基因克隆入这种载体中,再导入乳酸菌受体
    菌中,得到的这种重组工程乳酸杆菌将集益生菌和Rv基因产物的功能于一体,其科学
    意义和应用前景将十分广阔。这类疫苗的研制成功将为Rv疫苗的发展探索一条新路。
     本研究用恒河猴胚肾细胞(MA一104细胞系)增殖并扩增了PRv。根据Genebank已
    发表的PRv vP6基因cDNA序列,利用Prime:5.0软件设计并合成了一对引物,通过反
    转录聚合酶链式反应(RT一PCR)技术,从PRV的总RNA中扩增出长1 1 72bp的vP6基因
    片段。通过T4 DNA连接酶将其直接连于克隆载体pGEM一T一easy中,构建了重组质粒
    PGEM一T一P Rv6,再转化至受体菌JMI 09中。然后进行质粒提取并通过酶切、PCR鉴定、序
    列测定,证明重组质粒中pT一P RV6中含有轮状病毒vP6基因。经氨基酸序列分析,表明
    克隆了轮状病毒的主要保护性杭原vP6全基因的杭原表位区。
     进一步将上述VP6基因克隆至PW425t的Sacl和KPnl之间的多克隆位点上,该载
    体是以ThyA基因[”,96]为选择压力的非杭性的可在大肠杆菌和乳酸菌之间穿梭表达的
    载体,将重组表达载体命名为pw425t一PRv6。经转化、鉴定,将阳性克隆pw425t一PRv6
    在ThyA基因缺陷的大肠杆菌中进行表达。通过SDS一聚丙烯酞胺凝胶电泳(SDS一PAGE)
    分析,表明vP6基因在大肠杆菌中得到了表达。we 5 t ern一blot检测,表明其具有免疫活
    性。从而为下一步在乳酸菌中表达莫定基础。此技术平台为PRV的免疫防制提供新的手
    段和可能,也为各种外源和内源的功能基因通过此载体在肠道共生乳酸菌中表达而更好
    地发挥转基因工程乳酸菌的双重功能开创了一条崭新的道路。
Porcine Rotavirus (PRV) belongs to the family reoviridae, species rotavirus. It is one of the major pathogens that cause life-threatening diarrhea in piglets. The young animals are the most easily infected. Its infectious ratio is over 80%, and its death rate is 7-20% in 1-4 weekage pigs. Rotavirus diarrhea's typically clinical manifestation is serious diarrhea. Partial infected piglets were dead due to severe loss of water, imbalance of acid alkali and secondary infection. Accurate diagnosis and effective vaccination are main means for the prevention of porcine diarrhea. World Health Organization (WHO)gives priority to the development of rotavirus vaccine, especially its engineering vaccine.
    The mucosal surfaces represent a critical component of the mammalian immunologic repertoire. The immunologic network operating on external mucosal surfaces in animal body consists of gut-associated lymphoid tissue (GALT), the lymphoid structures associated with bronchoepimelium and lower respiratory tract (BALT), occular tissue, upper airway, salivary glands, tonsils and nasopharynx (NALT), larynx (LALT), middle ear cavity, male and female genital tracts, mammary glands, and the products of lactation.
    The mucosal surfaces of the gastrointestinal tracts represent the principal portals of entry for most pathogens. Therefore, the use of natural or induced infections and mucosal immunization with specific vaccine antigens continue to remain an attractive possibility for immunization against infections, especially those acquired through mucosal surfaces. The major antibody isotype in external secretions is secretory immunoglobulin A (slgA). Induction of IgA response provides specific protection against many respiratory, enteric, and genital infections.
    It has been illustrated that IgA is an associated factor to resist rotavirus. For those researchers studying rotavirus vaccine, the most important and most challenging task is to construct a kind of vaccine which can induce the intestinal mucosal surface to secrete IgA. Research shows that the inner capsid VP6 takes amount to 51% of virus particle, whose whole length is 1356 bp. It places a most important role in virus duplication and assembling. Though VP6
    
    
    
    can't induce neutralization antibody, it can induce IgA and thus induce mucosal immunity. There is also an antigenic epitope in VP6, which can induce crossing reaction with CTL. At the same time, it has no specificity between species and genus, so it is possible to solve the problem of virus' mutation by using VP6 protein as a major antigen.
    At present, most protective antigenic genes of rotavirus had been cloned and sequenced. But the vectors that have been reported mostly use antibiotics as selective pressure. It becomes important to construct non-antibiotic expression vector systems instead of antibiotic vector systems owing to the spreading problem of resistant genes in the latter ones. Lactobacilli are important members of normal bacteria community in guts of human beings and animals. The use of live microorganisms as an antigen delivery system is an effective means to elicit local immune responses and thus represents a promising strategy for mucosal vaccination. In this respect, Lactic acid bacteria represent an original and attractive approach, as they are safe organisms that are used as food starters and probiotics. Since Lactobacillus is an enteric organism, it colonizes and penetrates the intestinal mucosal following oral administration. The organism has the advantage of being taken up by the intestinal M cells. It should be possible to develop for human or animal use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Lactobacillus strains which are able to persist in the intestinal tract for several days after administration may be particularly interesting for the mucosal presentation of antigens. It is not difficul
引文
[1] 陈元鼎,刘名英,赵玮,等.重组轮状病毒SM11 VP4抗原表位广泛交叉中和抗体反应.中国病学,1998,13(1):57-63
    [2] 陈元鼎,刘名英,邹永健,等.表达轮状病毒SA11株VP4的抗原表位诱导病毒中和抗体生成。中国病毒学,1997,12(2):125-130
    [3] 初秀,许宝琴.仔猪轮状病毒性腹泻的诊断与防治.中兽医医药杂志,1998,5:29-30
    [4] 崔尚金,王惠林,王西川.轮状病毒感染的免疫学.中国人兽共患病杂志,1996,12(1):38-39
    [5] 崔尚金,于康震.禽轮状病毒感染研究进展.中国预防兽医学报,2000,22(6):468-470
    [6] DNA疫苗.《国外医学》预防、诊断、治疗用生物制品分册,2000,23(5):204-207
    [7] 方肇寅,晋圣瑾,秦树民,等.PCR方法用于我国A组轮状病毒的分型研究.病毒学报,1994,10(4):316-320
    [8] 方肇寅.齐锦,杨辉,等.我国1998~1999年流行的婴幼儿腹泻轮状病毒的分型研究[J].病毒学报,2001,17(1):17-23
    [9] 方肇寅.轮状病毒疫苗(RotaShield)和肠套叠发病关系研究进展.国外医学病毒学分册,2003, 10(1):5-7
    [10] 方肇寅.轮状病毒疫苗研究的突破.国外医学病毒学分册,1998,5(2):45-48
    [11] 郭桐生,邹全明.黏膜免疫相关佐剂研究进展.中国人畜共患病杂志[J],2003,19(2):92-94
    [12] 韩新兵,王正党,黄嘉驷.B组轮状病毒RT-PCR来源的cDNA探针核酸诊断方法的建立.病毒学报,1998,14(2):183-183
    [13] 何金生,王健伟,温乐英,等.用重组腺病毒表达A组轮状病毒主要中和抗原VP7可获得良好的免疫效果.病毒学报,2001,17(2):122-126
    [14] 何梦辉,王春风.奶牛乳和血中大肠杆菌和轮状病毒抗体检测比较[J].中国奶牛,2000,2:19-21
    [15] 何湘君,钱渊,靖宇,G1型A组轮状病毒地方株VP7基因在杆状病毒系统中的表达.病毒学报,1999,15(1):75-77
    [16] 何湘君,钱渊,李国华,等.在昆虫细胞中表达G2型轮状病毒地方株VP7基因.病毒学报,1998,14(4):374-376
    [17] 黄英.轮状病毒感染的免疫保护机制.国外医学病毒学分册,1997,4(3):69-72
    [18] 霍云雯.用无菌小猪模型研究轮状病毒腹泻.国外医学病毒学分册,2000,7(3):70-72
    [19] 江志奎,李钟铎.轮状病毒疫苗的研究进展.中国生物制品学杂志,2000,13(1):61-62
    [20] 晋圣瑾,方肇寅,杭长寿,等.A组轮状病毒SA11 VP6基因的克隆和表达。病毒学报,1995,11(2):119-123
    [21] 李春英,高进,张秀英,等.少数民族新生儿及婴幼儿中人轮状病毒分子流行病学研究.中国病毒学,1995,10(3):191-195
    
    
    [22] 李国华,钱渊,何湘君,等.A组轮状病毒我国地方株VP6基因的序列测定及其在杆状病毒系统中的表达的表达.病毒学报,1999,15(3):231-237
    [23] 李国华,钱渊,熊朝晖,靖宇.北京地区G1-G2型人轮状病毒地方株VP7编码基因的序列分析.病毒学报,1998,14(2):126-131
    [24] 李金慧.轮状病毒复制周期早期阶段的研究现状.国外医学病毒学分册,1997,4(4):104-108
    [25] 刘洪云,严仲烈,顾庆国,等.猪轮状病毒对传代细胞的适应性及其增殖特点.上海农业学报,1994,10(3):10-13
    [26] 齐铁雄,谢立新,王永祥,王军民,等.轮状病毒肠炎患儿血清和大便IL-2,IL-6,IFN-Y动态变化及与临床指标关系的研究.中华实验和临床病毒学杂志,2002,16(3):270-273
    [27] 钱渊,袁丽娟,熊朝晖,等.在我国腹泻患儿中发现G9型轮状病毒感染。病毒学报,1994,10(3):263-266
    [28] 钱渊,张又,肖伟.P2、G4型轮状病毒引起产科新生儿腹泻暴发流行.中华儿科杂志,1999,5(37):1-4
    [29] 僧靖静,周建华,刘长江,等.轮状病毒肠炎IL-12的变化及意义。中国免疫学杂志,2002,18(12):868-870
    [30] 孙继国,郑世学,刘美红.犊牛腹泻轮状病毒在3个传代细胞上培养特性的研究。河北农业大学学报,1996,19(1):59-62
    [31] 孙茂盛,Giambiagi S,Afrikanova Ⅰ,等.中国生物制品学杂志, 1998, 11(3):129-132
    [32] 王春凤,秦泽荣.干酪乳杆菌胸苷酸合成酶基因的分子克隆与序列测定.中国预防兽医学报,2000,22(1):55-58,
    [33] 王春凤,秦泽荣.以ThyA基因为选择压力非抗性质粒载体的构建,微生物学通报,2001,28(2):42-46
    [34] 王春凤,秦泽荣,徐镔蕊,等.饲喂转球虫基因功能乳酸杆菌后对雏鸡体重的影响.畜牧兽医学报,2002,33(6):591-593
    [35] 王大燕,王健伟.轮状病毒非结构蛋白NSP4研究进展。国外医学病毒学分册,1997,4(4):32-36
    [36] 王剑红,江丽君,史久华.国外医学-预防、诊断、治疗用生物制品分册,2000,23(5):202-204
    [37] 王明忠,朱进.轮状病毒疫苗研究进展.中国公共卫生,2002,28(6):757-758
    [38] 王鹏雁,陈创夫,余兴龙,等.轮状病毒VP4、VP7基因的克隆与核苷酸序列分析.中国预防兽医学报,2003,25(2):99-103
    [39] 王鹏雁,陈创夫,余兴龙,等.轮状病毒VP4基因的克隆与核苷酸序列分析.动物科学与动物医学,2002,19(5):25-28
    [40] 王正党,单文鲁,黄家驷,等.新疆幼畜和人非典型轮状病毒的调查和鉴定.病毒学报,1995,11(4):336-342
    [41] 肖玮,钱渊,张又.引起产科新生儿腹泻暴发的轮状病毒株VP4、VP7编码基因与其毒力关系的探讨。病毒学报,1999,15(4):314-321
    [42] 肖玮,钱渊.人A组轮状病毒北京地方株VP4血清型特异片段编码基因的序列分析.微生物学
    
    报,1998,38(3):197-203
    [43] 熊朝晖,等.应用多聚酶链扩增技术鉴别混合感染轮状病毒VP7的血清型别.中华微生物学和免疫学杂志,1995,15(2):105-108
    [44] 徐宏军,师东方,李一经,等.A群猪轮状病毒G5型OSU株VP7基因的克隆及其重组杆状病毒的鉴定.中国兽医科技,2002,32(6):18-20
    [45] 杨国锋,周鹏,王健伟.轮状病毒研究进展及其转基因植物疫苗的开发前景.生物技术通报,2001,1:16-19
    [46] 源宣之.轮状病毒感染环的研究进展.广西畜牧兽医,2000,16(4):41
    [47] 郑丽舒.轮状病毒疫苗发展及现状.国外医学病毒学分册,2003, 10(1):1-4
    [48] Anthony H.C. Choi, Mitali Basu, et al. Functional mapping of protective domains and epitopes in the Rotavirus VP6 protein. J. virol, 2000, 11574-11580
    [49] Bernstein, D. I., R. I. Glass, G. Rodgers, B. L. Davidson, and D. A. Sack. Evaluation of rhesus rotavirus monovalent and tetravalent reassortant vaccines in US children. 1995, 273:1191-1196
    [50] Beuret Rotavirus. Christian. Rotafactsheet, 2002
    [51] Centers for Disease Control and Prevention. Wthdrawal of rotavirus vaccine recommendation. Morbid. Mortal. Weekly Rep, 1999, 48;1007
    [52] Chan, R.L., and N. R. Sinclair. Regulation of the immune response. V. An analysis of the function of the Fc portion of antibody in suppression of an immune response with respect to interaction with components of the lymphoid system. Immunology, 1971, 21:967-981
    [53] Charlotte A. Moser, Sarah Cookinham, Susan E. Coffin, H. Fred Clark, and Paul A. Offit. Relative Importance of Rotavirus-Specific Effector and Memory B Cells in Protection against Challenge. J. Virol, 1998, 72(2): 1108- 1114
    [54] Christine M. O' Neal, Gregory R. Harridan, and Margaret E. Conner. Protection of the Villus Epithelial Cells of the Small Intestine from Rotavirus Infection Does Not Require Immunoglobulin A. J. Virol, 2000, 74(9):4102- 4109
    [55] Clark, H.F., P. A. Offit, R. W. Ellis, et al. Plotkin. The development of a multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants. J. Infect. Dis, 1996, 174: 73- 80
    [56] D. C. Hodgins, S. Y. Kang, L. Dearriba, V. Parren, L. A. Ward, L. Yuan, T. TO, and L. J. Sail. Effects of Maternal Antibodies on Protection and Development of Antibody Responses to Human Rotavirus in Gnotobiotic Pigs. J. VirolI, 1999, 73(1): 186 - 197
    [57] D' Ambrosio, D., K. L. Hippen, S. A. Minskoff, I. Mellman, G. Pani, K.A. Siminovitch, and J. C. Cambier. Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by FcgRIIB. Science, 1995, 268:293 -297
    [58] Mahajan, N.P. and Rao, C.D. Nucletide sequence and expression in E. coli of the complete P4 type VP4 from a G2 serotype human rotavirus. Arch Virol, 1996,141:315-329
    [59] E. Mackow. Rotaviruses. Rotavirus lecture, 2001, 1-5
    
    
    [60] EMMANUELLE MAGUIN, HERVE PREVOST, DUSKO EHRLICH, etal. Efficient Insertional Mutagenesis in Lactococci and Other Gram-Positive Bacteria. JOURNAL OF BACTERIOLOGY, Feb. 1996, p. 931-935
    [61] Franco M. Ruggeri, et al. Antirotavirus Immunoglobulin A Neutralizes Virus In Vitro after Transcytosis through Epithelial Cells and Protects Infant Mice from Diarrhea J. Virol, 1998, 72, (4): 2708-2714
    [62] Franco, M.A., and H. B. Greenberg. Role of B cells and cytotoxic T lymphocytes in clearance of and immunity to rotavirus infection in mice. J. Virol. 1995, 69:7800 - 7806
    [63] Franco, M.A., C. Tin, and H. B. Greenberg. CD81T cells canmediate almost complete short-term and partial long-term immunity to rotavirus in mice. J. Virol, 1997, 71:4165 - 4170
    [64] H.-L. ALAKOMI, E. SKYTTA, M. SAARELA, etal. Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 2000, p. 2001-2005
    [60] Harte, P.G., and J. H. L. Playfair. Failure of malaria vaccination in mice born to immune mothers. Ⅱ. Induction of specific suppressor cells by maternal IgG. Clin. Exp. Immunol. 1983, 51:157 - 164
    [65] Isabelle Schwartz-Cornil, et al. Heterologous Protection Induced by the Inner Capsid Proteins of Rotavirus Requires Transcytosis of Mucosal Immunoglobulins. J. Virol, 76(16): 8110-8117
    [66] JAN WILLEM SANDERS, GERARD VENEMA, JAN KOK. A Chloride-Inducible Gene Expression Cassette and Its Use in Induced Lysis of Lactobacillus lactis. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Dec. 1997, p. 4877-4882
    [67] JEAN-PHILIPPE BRUNET, JACQUELINE COTTE-LAFFITTE, CATHERINE LINXE, etal. Rotavirus Infection Induces an Increase in Intracellular Calcium Concentration in Human Intestinal Epithelial Cells:Role in Microvillar Actin Alteration. JOURNAL OF VIROLOGY, Mar. 2000, p. 2323-2332
    [68] John L. Vancott, Manuel A. Franco, et al. Protective Immunity to Rotavirus Shedding in the Absence of Interleukin-6: Thl Cells and Immunoglobulin A Develop Normally. J. Virol, 2000, 74(1):5250-5256
    [69] Kapikian AZ et al. Philadelphia:Lippincott-Raven Press, 1996, 12:1675~1708
    [70] Lements, and Richard L. Ward. Antibody-Independent Protection against Rotavirus Infection of Mice Stimulated by Intranasal Immunization with Chimeric VP4 or VP6 Protein. J. Virol, 2001 73(9): 7574-7581
    [71] Yu-Zhang Wu, Jin-Tao Li, Zhi-Rong Mou, etal. Oral immunization with rotavirus VP7 expressed in transgenic potatoes induced high titers of mucosal neutralizing IgA. Virology313,2003,337-342
    [72] M. Banasaz, E. Norin, R. Holma, et al. Increased enterocyte production in Gnotobiotic rats mono-associated with Lactobacillus Rhamnosus GG. Appiled and Environmental Microbiology, June 2002, 3031-3034
    
    
    [73] Manca, F., D. Fenoglio, G. LiPira, A. Kunkl, and F. Celada. Effect of antigen/antibody ratio on macrophage uptake, processing, and presentation to T cells of antigen complexed with polyclonal antibodies. J. Exp. Med. 1991, 173:37- 48
    [74] MARIA JOSE GOSALBES, CARLOS DAVID ESTEBAN, JOSE LUIS GALAN, etal. Integrative Food-Grade Expression System Based on the Lactose Regulon of Lactobacillus casei. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2000, p. 482-4828
    [75] McNeal, M.M., K. S. Barone, M. N. Rae, and R. L. Ward. Effector functions of antibody and CD81 cells in resolution of rotavirus infection and protection against reinfection in mice. Virology 1995, 214:387-397
    [77] MINGDONG ZHANG, CARL Q.-Y. ZENG, ANDREW P. MORRIS, etal. A Functional NSP4 Enterotoxin Peptide Secretedfrom Roavirus-Infected Cells. JOURNAL OF VIROLOGY, Dec. 2000, p.11663-11670
    [78] MINGDONGZHANG, CARL Q.-Y. ZENG, YANJIE nONG, etal. iutations in Rotavirus Nonstructrual Glycoprotein NSP4 Are Associated with hlterd Virus Virulence. JOURNAL OF VIROLOGY, May, 1998, 3666-3672
    [79] MonicaM . McNeal, John L. VanCott, et al. CO4 T Cells Are the Only Lymphocytes Needed To Protect Mice against Rotavirus Shedding after Intranasal Immunization with a Chimeric VP6 Protein and the Adjuvant LT(R192G). J. Virol, 2002, 76, ( 2):560- 568
    [80] Natasha Kushnir, Nicolaas A. Bos, et al. B2 but Not B1 Cells Can Contribute to CD41 T-Cell-Mediated Clearance of Rotavirus in SCID Mice. J. Virol, 2001, (12):5482 - 5490
    [81] PASCALLE G. G. A. DE RUYTER, OSCAR P. KUIPERS, WlLLEMM. DE VOS. Controlled Gene Expression System for Lactobacillus lactis with the Food-Grade Inducer Nisin. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 0ct. 1996, p. 3662-3667
    [82] Rennels, M. B. Influence of breast-feeding and oral poliovirus vaccine on the immunogenicity and efficacy of rotavirus vaccines. J. Infect. Dis, 1996, 174: 107- 111
    [83] Schaller, J. P., L. J. Sail, C. T. Cordle, et al. Prevention of human rotavirus-induced diarrhea in gnotobiotic piglets using bovine antibody. J. Infect. Dis, 1992, 165:623-630
    [84] Shaw, R. D., and S. J. nempson. Replication as a determinant of the intestinal response to rotavirus. J. Infect. Dis, 1996, 174:1328- 1331
    [85] Shaw, R. D., S. J. Hempson, and E. R. Mackow. Rotavirus diarrhea is caused by nonreplicating viral particles. J. Virol, 1995, 69:5946-5950
    [86] SYLVIE HUDAULT, VANESSA LIEVIN, MARIE-FANCOISE BERNET-CAMARD, etal. Antagonistic Activity Exerted In Vitro by Lactobacillus casei (Strain GG) against Salmonella typhimuriumC5 Infection. APPLIEDAND ENVIRONMENTAL MICROBIOLOGY, Feb. 1997, p. 513-518
    [87] Szakal, A.K., G. F. Burton, J. P. Smith, and J. G. Tew. Antigen processing and presentation in vivo, D. R. Spriggs and W. C. Koff (ed.), Topics in adjuvant research. CRC Press, Boca Raton, Fla. 1991, 11-23
    [88] The WHO Position on Rotavirus Vaccines. Vaccines. Immunization and Biologieals, 1998,1-4
    
    
    [89] V Lievin Moal, Ramsellem, et al. Lactobacillus acidophilus (strain LB) from the resident adult huma gastrointestinal microflora exerts activity against brush border damage promoted by a n diarrhoeagenic Escherichia coli in human enterocyte-like cells. INTESTINAL INFECTION, 2002, 50:803-811
    [90] Viveka Vadyvaloo, John W. Hastings, Marthinus J. van der Merwe, etal. Membranes of Class Ⅱa Bateriocin-Resistant Listeria monocytogenes Cells Contain Increased Levels of Desaturated and Short-Acyl-Chain Phosphatidylglycerols. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2002, p. 5223-5230
    [91] VWDQLV DZ, ZLQLDUF. Detection of group A Rotavirus in field samples from diarrheic piglets using cDNA probes. Bull. Vet. Inst. Pulawy, 2001, 45:29-35
    [92] Ward, L.A., E.D. Rich, and T. E. Besser. Role of maternally derived circulating antibodies in protection of neonatal swine against porcine group A rotavirus. J. Infect. Dis, 1996, 174:276-282
    [93] Ward, R. L., and D. I. Bernstein. Lack of correlation between serum rotavirus antibody titers and protection following vaccination with reassortant RRV vaccines. Vaccine, 1995, 13:1226- 1252.
    [94] WHO. INT. Vaccine, Immunization and Biologicals. TheWHO Position on Rotavirus Vaccine, 1998, 1-4
    [95] YANJIE DONG, CARL Q.-Y. ZENG, JUDITH M. BALL, etal. The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1, 4, 5-trisphosphate production. Medical Sciences, April 1997, Vol. 9, pp. 3960-965
    [96] Yasuko Sasaki, Yoshiyuki Ito, Takashi Sasaki. thA as a Selection Marker in Construction of Food-Grade Host-Vector and Integration System for Streptococcus thermophilus, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, March 2004, p. 1858-1864

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700