基于液压驱动柔性机械手的仿真与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据长春瑞星机器人科技有限公司要求,依照人体肌肉的工作原理,设计了一种新型关节液压驱动元件,以实现机械手工作的柔性化,此关节液压驱动元件在一定液压作用下能产生相应的弯曲变形。建立了相应的静态模型,通过实验论证了该模型的合理性。利用悬臂梁理论,建立了该驱动元件的动态模型。
     根据运动解剖学,设计了腕部带自锁能力的球副型全方位机械手,并用CATIA建立相应的三维模型,通过对模型的电子样机运动仿真,得出相应腕关节运动和手指抓取的仿真参数,对机械手模型的结构进行了优化。
     基于人手腕的运动规律,设计了由关节液压驱动元件并联构成的手腕驱动环,对手指的驱动采用驱动元件并联、再串联的驱动链形式。建立了三关节手指的数学模型,根据能量最小原则,应用Hopfield网络求得了机械手指的一个逆运动学解。
     对单个关节液压驱动元件,进行了伺服控制系统的设计,通过模糊控制算法对位置控制环进行力补偿。同时,运用神经网络对模糊控制算法的输入变换参数进行在线调节,使其对不同的刚度环境具有自适应性。仿真结果表明,该算法能够实现很好的力跟踪。
With the development of industrial modernization, flexible manipulator because of its advantage of flexible manufacturing has been more and more widely. Among them, the flexible joints manipulator component is the key to affect the movement of the flexible manipulator joint research of great significance. Therefore this article in accordance with the principle of human muscle, a new joint hydraulic drive components, the use of parallel or series of the components comprising the drive device, combined with a certain degree of mechanical structure, can be flexible manipulator of the work, and the joint drive the form of a decision of the manipulator has a strong anti-interference and control.
     This joint hydraulic drive components under a certain hydraulic pressure to produce the corresponding bending deformation. The analysis of the radial deformation and axial deformation at the same time, set up a static model, and experimental verification of the model is reasonable. Using cantilever beam theory, the dynamic model-driven components. MATLAB simulation results show that by choosing the structure of reasonable parameters, this component can have a very good dynamic properties.
     According to Sports Anatomy, designed with self-locking ability of the wrist of the ball, vice-type omni-directional robot, the robot fingers institutions using three fingers, each finger has three joints and three knuckle, joint use of hinged form, the aim of to adapt to a variety of end crawl. CATIA with the corresponding three-dimensional model of a prototype model of the electronic motion simulation, draw the corresponding wrist movement and finger crawling simulation parameters, indicating that the structural design of the robot's reasonable and practical. At the same time, in order to facilitate the installation of the drive components and other accessories, the model of the structure of manipulator optimized.
     Based on the movement of the wrist, design-driven by hydraulic joints consisting of components in parallel wrist drive ring, and an analysis of the loop device driver work. The results showed that the direction of the device to achieve bending and rotation, and has a certain anti-interference (stability); on the use of finger-driven components of the drive in parallel, and then the form of series of drive chain. Form in accordance with its campaign to develop a cycle of work processes, and introduced in the process of meeting the conditions of torque. This will enable the work of your fingers and the relationship between the moment a more standardized; subsequently, the establishment of a three-joint finger mathematical model can be seen from the mathematical model, its inverse kinematics is uncertain. According to the principle of energy minimization, the application of Hopfield network to achieve a mechanical finger inverse kinematics solution.
     In robot control, the first joint of a single hydraulic drive components, a servo control system design, and described the characteristics of control valves throughout the system. Through the fuzzy control algorithm of position control loop to force compensation. At the same time, the use of neural network fuzzy control algorithm to transform the parameters of the input-line adjustments to the stiffness of different self-adaptive environment. Simulation results show that the algorithm can achieve very good tracking ability.
     In some occasions for manipulator force raised by the special requirements of this paper, a stiffness to adapt to different environment, adaptive power control points based on neural network with link control algorithms. The simulation results prove the rationality of the algorithm.
     Finally, the results of this study, we can see that the use of hydraulic drive component design joints flexible three-finger manipulator are theoretically and technically feasible. In robot technology has broad applications in space. Since time is limited, the subject of study is flexible mechanical wrists and flexible mechanical fingers. Hydraulic components for the joint in the other joints have yet to be further applications for in-depth research. Follow-up studies may include: a manual for the model, the hydraulic drive components with joint design of artificial joints more than one hand. Through effective intelligence algorithms, to truly "smart"; fingers the work of analysis, the components of the output torque in a variable period of time increase or reduce them, and the changes in the law as well as the inter-relationships have yet to be through experiments and simulation analysis in order to achieve the best possible working condition; also can use the kinematic simulation has come to the inverse kinematics solution; virtual robot and virtual objects as the user interaction between the embodiment can be used in Virtual other research, such as real-time virtual assembly manually; considered minor components of joint design of a hydraulic-driven precision micro-manipulator to be used for small, precision parts, or crawling robot for medical surgery; Taking into account the hydraulic drive components such flexible joints large, can be widely used in agricultural robots, to achieve vegetables, fruits, non-destructive harvesting.
引文
[1]陆祥生,杨秀连.机械手理论及应用[M].北京:中国铁道出版社,1985:1-7.
    [2]Shigeo Hirose. Biological Inspired Robots[J]. Oxford University Press,1993.
    [3]J.H.Holland.Adaptation in Nature and Artificial Systems[J].MIT Press,1992.
    [4]郭木河,张戎军,孙增圻,孙富春.柔性机械手的建模与控制[J].控制与决策,1998,20[1].
    [5]杨钢,李宝仁,刘军.一种新型气动执行元件[J].中国机械工程,2003,15[8].
    [6]徐伟,孙序梁,何丽娟.仿生学在人工肌肉研究中的应用[J].机器人,1995,18[9].
    [7]臧克江,顾立志,陶国良.气动人工肌肉研究与展望[J].机床与液压,2004,30[4].
    [8]T.Gomi.Aspects of Non-Cartesian Robotics[J]. Chapter in Artificial Life in Robotics,ed.M.Sugisaka,Springer-Verlag,1997.
    [9]T.J.Sejnowski,P.S.Churchland.Brain and Congnition[J].IJCNN’91,1991.
    [10]T.Gomi.Behavior-based Approaches to Artificial Life[J].Chapter in Artificial Life in Robotics,ed.Takanori Shibata,IEEE Press,1996.
    [11]安辉.基于球齿轮机构的多关节柔性机械手的运动学仿真[D].武汉科技大学,2006.
    [12]网易NETEASE.有肌肉的机械手[J/OL].专利之家,2006,18(2):[2007-07-30]. http://tech.163.com/07/0730/09/3KL0JSEI000926PT.html#.
    [13]网易NETEASE.用火箭发动机驱动的机械手[J/OL].专利之家,2006,27(5):[2007-07-30]. http://tech.163.com/07/0823/11/3MJ1P7TF000926PT.html.
    [14]百度百科.聚氨酯橡胶[EB/OL]. ( 2001-03-02 ) [2002-06-21]. http://baike.baidu.com/view/479981.htm.
    [15]徐芝伦.应用弹性力学[M].北京:高等教育出版社,1992.
    [16]韩秀清,王纪海.材料力学[M].北京:中国电力出版社,2005.
    [17]L.普朗特.流体力学[M].北京:科学出版社,1981.
    [18]天中裕久.液压与气动的数字控制及应用[M].重庆:重庆大学出版社,1992.
    [19]百度百科.CATIA[EB/OL]. ( 2001-04-06 ) [2008-12-26]. http://baike.baidu.com/view/19756.htm.
    [20]D.Ackley and D.Littman.Interaction between Learning and Evolution[J].Artificial Life II,Addsion Wesley,1992.
    [21]陆祥生,杨秀连.机械手理论及应用[M].北京:中国铁道出版社,1985:47-48.
    [22]陆祥生,杨秀连.机械手理论及应用[M].北京:中国铁道出版社,1985:31-37.
    [23]Qiao Guo,et al Modeling Scheme for Flexible Robot Manipulators[J].Journal of BIT,Vol.7,No.3,1998.
    [24]Qiao Guo.Dynamic Stability of the Three-Dimensional Trunk Motion[J].Journal of BIT,Vol.7,No.1,1998.
    [25]DASSAULT SYSTEMES.Digital Mock-Up Kinematics Simulator[S].CATIA Training,2006.
    [26]DASSAULT SYSTEMES. DMU Kinematics Simulator Detailed Steps[S].CATIA Training,2002.
    [27]朱振华.虚拟环境中具有力反馈的灵巧手抓取方法研究及应用[D].杭州:浙江大学,2006.
    [28]王炜.基于生物肌肉的仿生驱动装置研究[D].西安:西北工业大学,2004.
    [29]孟伟正.正常腕骨三维运动学的在体实验研究[D].昆明:昆明医学院,2005.
    [30]T.S.Ray.An Evolutionary Approach to Synthetic Biology[J].Zen and the Art of Creating Life.Artificial Life,Vol.1,No.1/2,MIT,1994.
    [31]卢普生.高聚物凝胶驱动器及其在机器人中的应用[D].上海:上海大学,2001.
    [32]张丰信.N维超立方体及其在开关函数分析新化简法网络设计中的应用[M].北京:电子工业出版社,2008.
    [33]刘金春,杜青.结构力学[M].北京:人民交通出版社,2008.
    [34]王廷树.机器人运动学及动力学[M].西安:西安电子科技大学出版社,1990.
    [35]S.C.Thomopoulos.Sensor Intergration and Data Fusion[M].Proc.of SPIE,Vol.1198,1989,pp178-191.
    [36]J.J.Clark , A.L.Yuile.Data Fusion for Sensory Information Processing Systems[J].Kluwer A cademic Publishers,1990.
    [37]闫国荣,高学山,穆勇.一种基于基本坐标变换的运动学方程建立方法[J].哈尔滨工业大学学报,2001,33(1):120-123.
    [38]王建华等.智能控制基础[M].北京:科学出版社,1998.
    [39]De Wit,C C ,Diaz,EO ,Perrier,M.Control of underwater v ehicle/manipulator with composite dynamics[J]. Proceedings of American Control Conference,19 98(l):389-393.
    [40]Suzumori K,Likura S,Tanaka H. Development of flexible microactuator and its applications to robotic mecbanimm [J].IEEE International Conference on Robotics and Automation,1991(2):1622-1627.
    [41]Jenhwa G,Vladimir C.A Solution to the Inverse Kinematic Problem In Robotics Using Neural Network Processing[J].IJCNN, International Joint Conference on Neural Networks,1989(2):299-304.
    [42]蔡自兴,谢光汉,伍朝晖,符曦.直接在位置控制机器人上实现力/位置自适应模糊控制[J].机器人,1998,20(4):300-302.
    [43]陈刚.新型弯曲关节及其多关节手指的控制策略研究[D].杭州:浙江工业大学,2003.
    [44]喻俊志.多仿生机器鱼控制与协调研究[J].北京:中国科学院自动化研究所,2003.
    [45]林怡青,周其节,毛宗源.一种移动机器人系统的运动学解法[J].华南理工大学学报.2000,28(4):66-70.
    [46]罗文广,韩峻峰,兰洪莉.基于MATLAB(SIMLINK)语言的模糊控制系统高效仿真[J].计算机仿真,2001,18(3):14-16.
    [47]Driessen,B J ,Parker,G G.Experimental results for minimum-time trajectory tracking of a direct-drive three-link planar arm[J].Proceedings of American Control Conference,2000(3):1998-2002.
    [48]刘日昇,高卫华.MATLAB的动态数据交换及其应用研究[J].测控技术,2001,20(6): 39-40.
    [49]孟庆涛,谭永红.“灵巧机械手”的位置/力模糊控制算法研究[J].桂林电子工业学院学报,2001,21(1):10-17.
    [50]蔡自兴.智能控制基础与应用[M].北京:国防工业出版社,1998.
    [51]廖明,吴宇,谢品芳.MATLAIB在人工神经网络计算机仿真中的应用[J].计算机技术与自动化,1999,18(1):18-21.
    [52]Watanabe.K,Tang.J,Nakamura.M,Koga.S,Fukuda.T. Mobile robot control using fuzzy-Gaussian neural networks[J].IEEE/RSJ International Conference on Intelligent Robots and Systems,1993(2):919-925.
    [53]顺天,施阳.基于MATLAB的系统设计与分析[J].西安:西安电子科技大学出版社,1999.
    [54]李玉山,李丽平等译.信号完整性分析[M].北京:电子工业出版社,2005.
    [55]李世昌.运动解剖学[M].北京:高等教育出版社,2006.
    [56]全勇,杨杰等.蠕动式步行机器人研究[J].上海交通大学学报.2002,36(8):1-3.
    [57]文巨峰,颜景平.冗余度机器人运动规划的动态方法[J].机器人.2001,8(8):36-38.
    [58]黄真,孔令富,方越法.并联机器人机构学理论及控制[M].机械工业出版社,1997:12-37.
    [59]张铁,汤祥州,谢存禧.SMA驱动的微型平面关节机器人的研究[J].机器人.1998,20(6):449-454.
    [60]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来[J].机器人.2002,24(5):475-480.
    [61]许宏岩,付宜利,王树国,刘建国.仿生机器人的研究[J].机器人.2004,26(3):283-288.
    [62]林怡青,周其节,毛宗源.一种移动机器人系统的运动学解法[J].华南理工大学学报.2000,28(4):66-70.
    [63]刘华,颜国正,丁国清.仿蛇变体机器人运动机理研究[J].机器人.2002,24(2)154-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700