缙云山水源涵养林结构对生态功能调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缙云山位于长江三峡库区的尾端,处于嘉陵江水系的中上游端,作为重庆市的-个重要水源区,针对三峡库区近年来水土流失和水环境污染日趋严重的状况,区域内水源涵养林对蓄水保土和改善水质等具有重要作用。为探讨水源林结构对生态功能的影响和调控机制,本论文依托“十一五”国家科技支撑课题“重庆北部水源区水源涵养林构建技术试验示范(2006BAD03A1802)”,在重庆缙云山开展水源涵养林结构特征、保育土壤、涵养水源和改善水质功能的研究,以求为三峡库区乃至整个长江流域的水源涵养林建设和管理提供科学依据。
     研究内容主要包括水源林总体分布格局、林分非空间结构和空间结构特征、保育土壤功能、涵养水源功能、改善水质功能、生态功能综合评价、结构对生态功能影响机制、最优林分类型和水源林群落筛选等,主要研究成果如下:
     利用缙云山森林资源GIS数据库和遥感图像得到水源林主要分布于低山中陡坡和西北和北坡向地区,呈典型异龄林特征,林分已基本郁闭。
     以缙云山9种典型水源涵养林——马尾松阔叶树混交林、杉木阔叶树混交林、马尾松杉木阔叶树混交林、四川大头茶混交林、栲树混交林、毛竹马尾松混交林、毛竹杉木混交林、毛竹阔叶树混交林和毛竹纯林作为研究对象,采用大样地调查法对林分树种组成、直径、树高、林层分布、物种多样性等非空间结构特征首次进行系统研究,得到各林分密度、树种组成式、混交比例等。林分呈典型异龄林直径结构,树高分布范围广,林分类型对林木直径和树高分布的影响显著。
     应用混交度、大小比数、角尺度、方差均值比率和聚集指数5个空间结构参数首次对缙云山林分空间结构进行分析,结果为.:8种混交水源林平均混交度在0.48—0.82之间,马尾松阔叶林混交度最高(0.82),群落状态最稳定,毛竹杉木林最差(0.48),竹林群落普遍单种聚集严重(0.526—0.548),混交度最差;林分平均大小比数在0.35—0.65之间,毛竹马尾松林和毛竹阔叶林的大小分化严重,其它多数林分平均大小比数在0.5左右,处于中庸状态;林分平均角尺度在0.485—0.548之间,各林分中呈随机分布的林木比例最大,林木空间分布格局为随机分布的林分有马尾松阔叶林(0.485)、马尾松杉木阔叶林(0.499)和栲树林(0.517),其它林分均为聚集分布。针阔混交水源林以随机分布为主,常绿阔叶林有从聚集分布向随机分布演变的趋势,而竹林群落普遍为聚集分布。缙云山针阔混交水源林的结构较好,其中以马尾松阔叶树混交林结构最优,常绿阔叶林次之,竹林群落较差。
     对水源林的保育土壤功能进行研究和评价,结果为:林地土壤酸化严重,平均仅为4.14,物理化学指标除pH为弱度变异水平外,其余均为中等变异;土壤养分分级属稍缺偏中等水平,林地土壤供肥保肥能力较好。各林分保育土壤功能大小为:马尾松阔叶林(0.422)>栲树林(0.404)>杉木阔叶林(0.394)>四川大头茶林(0.388)>马尾松杉木阔叶林(0.383)>毛竹阔叶林(0.346)>毛竹马尾松林(0.344)>毛竹杉木林(0.340)>毛竹纯林(0.316)。
     对水源林的林冠层、灌草层、枯落物层和土壤层的涵养水源功能分别进行研究和评价,9种林分综合涵养水源功能强弱依次为:马尾松阔叶林(0.838)>马尾松杉木阔叶林(0.815)>杉木阔叶林(0.738)>栲树林(0.685)>四川大头茶林(0.661)>毛竹阔叶林(0.648)>毛竹杉木林(0.570)>毛竹马尾松林(0.452)>毛竹纯林(0.450)。
     对大气降水和水源林地产流水质分别进行对比研究并采用综合污染指数法、灰色关联法、BP神经网络法对径流水质进行综合评价,结果表明,林分对降雨酸性的缓冲作用显著,各水源林地输出水的水质得到较好的改善,均达到国家《地表水环境质量标准》(GB3838-2002)的Ⅱ类水以上,已达到集中式生活饮用水水平。
     采用层次分析法构建缙云山水源林生态功能评价指标体系和模型,并引进综合评分法得各林分生态功能大小依次为:马尾松阔叶树混交林(0.668)>马尾松杉木阔叶树混交林(0.612)>杉木阔叶树混交林(0.594)>栲树混交林(0.533)>四川大头茶混交林(0.512)>毛竹阔叶树混交林(0.491)>毛竹杉木混交林(0.480)>毛竹马尾松混交林(0.445)>毛竹纯林(0.387)。水源林生态功能以马尾松阔叶树混交林强,毛竹纯林最差;针阔混交型水源林最优,常绿阔叶型水源林次之,竹林群落最差。
     通过逐步回归和通径分析得到对生态功能因子具有显著影响的结构因子及其作用机制。林分结构对保育土壤、涵养水源和改善水质功能的影响作用均显著(p<0.05),构建并验证得到缙云山水源涵养林结构与生态功能耦合模型:Z=11.907-0.006X1+0.084X2-0.166X3+0.025X4+0.024X5—0.008X6-0.043X7+0.226X8+0.17X9+1.246X10+0.451X11+0.058X12+0.648X13+0.771X14-0.556X15+0.436X16-2.885X17
     其中,Z表示水源涵养林生态功能量化值;X1——X17为林分结构因子。
     采用单因素敏感性分析法检验结构因子对生态功能的影响程度,从大到小依次为:林分密度,土壤厚度,下层林密度,上层林密度,枯落物厚度,中层林密度,林木分布格局,草本多样性,群落总体物种多样性,平均胸径,树种混交度,乔木多样性,树种大小分化度,灌木多样性,郁闭度,平均树高,下木盖度。
     通过模型模拟预测和实测对比可知,缙云山水源涵养林最优群落为针阔混交型群落,最优林分类型为马尾松阔叶树混交林。以树种混交度大,林木呈随机分布、大小分化程度差异不大、林层密度分布均匀的林分结构对林木生长及提高物种多样性水平有促进作用,进而对发挥林分生态功能具有积极作用。
Jinyun Mountain is located in the end of the Three Gorges Reservoir, as an important source of water in Chongqing area. Water conservation forest in this region has an important role to improved water quality. The quantitative and qualitative research on the structural characteristics and ecological functions of water conservation forest in Jinyun Mountain was conducted by using field surveys, location monitoring and laboratory analysis of the means applied to statistical analysis, to survey a large sample, the classical statistical analysis method, the weighted index method, BP neural network, gray correlation method, AHP, etc. more comprehensive and in-depth on research, respectively, and the establishment of relations between structure and ecological function of the coupling model. The mechanism on forest structure on the ecological function was analyzed by path analysis and sensitivity testing. These fill in the blanks of analysis and evaluation of water conservation forest structure and ecological function and mechanism at Jinyun Mountain. The purpose of this paper is to provide scientific evidence for the management of water conservation forest of Three Gorges reservoir area of the Yangtze River and the whole construction. The main results are as follows:
     The nine typical forests were studied by analyzing the overall distribution pattern of the forest by using the forest resource GIS database and remote sensing images, which contains Pinus massoniana and Broad-leaved tress mixed forest(MKF); Cunninghamia lanceolata and Broad-leaved tress mixed forest(SKF); Pinus massoniana, Cunninghamia lanceolata and Broad-leaved tress mixed forest(MSKF); Gorodnia axillaris and other Broad-leaved tress mixed forest(DKF); Castanopsis fargesiiFranch and other Broad-leaved tress mixed forest(KKF); Phyllostachys pubescens and Pinus massoniana mixed forest(ZMF); Phyllostachys pubescens and Broad-leaved tress mixed forest(ZKF) Phyllostachys pubescens and Cunninghamia lanceolata mixed forest(ZSF); and Phyllostachys pubescens Pure forest(ZPF).
     The non-spatial structure of stands has been studied quantitatively, and the stand density, species composition style, mixed ratio, diameter distribution, tree height distribution characteristics are indicated using a large sample investigation and classical statistical analysis, from the species composition, diameter, tree height, tree species distribution within the forest floor, and other aspects of species. Overall forest is the diameter structure of a typical uneven-aged forest. There is a wide range of tree height of the stand. The forest type on the distribution of tree height and diameter significantly. The spatial structure of forests is analyzed by the index of five parameters containing mixed degrees the size ratio of the number of angular scale, the variance mean ratio and the aggregate for the first time. The mingling degree and frequency, neighborhood comparison and frequency and spatial pattern of stands as well as the degree of aggregation within the size of tree species of the typical stands have been received. The structure of mixed coniferous water conversation forest structure type is the best, followed by evergreen broad-leaved forest, and the one of bamboo forest community is the worst.
     The spatial variation of soil physical and nutrient characteristics was moderate heterogeneity to evaluate and study on soil ecological functions of stands. The order of soil conservation function of forest as follows:MKF(0.422)>KKF(0.404)>SKF(0.394)>DKF(0.388)> MSKF(0.383)>ZKF(0.346) >ZMF(0.344)>ZSF(0.340)>ZPF(0.316).
     Water conservation mechanism of the forest in Jinyun Mountain was studied and evaluated respectively, based on the quantitative analysis on canopy, shrub, litters and soil horizon. Results showed that the hydrological function of MKF is the strongest. However, pure bamboo forest is the worst. The strength order of water conservation functions of 9 stands as follows:MKF(0.838)> MSKF(0.815)>SKF(0.738)>KKF(0.685)>DKF(0.661)>ZKF(0.648)>ZSF(0.570)>ZMF(0.452)> ZPF(0.450).
     Comparison of water quality of rainfall and runoff water of forest stands and the multi-method evaluation in the Jinyun Mountain, the results showed that the water quality of the output of the forest has gotten better improvidently, the buffering effect of acid rain a significant, are up to state, "Surface Water Quality Standard "(GB3838-2002) of theⅡclass of water or more, has reached the level of centralized drinking water, some plots have been basically reached for the source of water, the water level of the National Nature Reserve.
     The ecological functions model of water conservation forest in Jinyun Mountain was constructed by AHP, and adopt an integrated score obtained the order of the ecological functions of forests, the results showed that:MKF(0.668)> MSKF(0.612)>SKF(0.594)>KKF(0.533)>DKF(0.512)> ZKF(0.491)>ZSF(0.480)>ZMF(0.445)>ZPF(0.387). Ecological functions of forest the size of water to mixed conifer forest community is better than the evergreen broad-leaved forest community, which is better than the bamboo community.
     The structure factors on the ecological functions of individual factors with significant influence and the order of the direct and indirect factors influence have been received by stepwise regression and path analysis. The role of stand structure on soil conservation, water conservation, and improve the function of water quality are very significant, especially the density characteristics, tree species diversity and spatial pattern characteristics of the most prominent. The coupling model of forest structure and ecological function is constructed, as follow, Z=11.907-0.006X1+0.084X2-0.166X3+0.025X4+0.024X5-0.008X6-0.043X7+0.226X8+0.17X9+1.246X10+0.451X11 +0.058X12+0.648X13+0.771X14-0.556X15+0.436X16-2.885X17
     Where, "Z" for water conservation forest ecological function of quantitative indicators; "X1-X17" for the stand structure factor.
     The degree of influence structural factors on the ecological function of is drawn by single factor sensitivity analysis. It showed that Stand density>Soil thickness>Undergrowth density> upper forest density>litter depth>Middle forest density>Distribution pattern>Herb diversity>overall species diversity>Average dbh> Mingling degree and frequency>Tree diversity>Neighbourhood comparison and frequency>Shrub diversity>Canopy density>Average height>Undergrowth coverage. The impact of various structural factors than significant interactions between factors together restrict the ecological functions.
引文
[1]安慧君.阔叶红松林空间结构的研究[D].北京:北京林业大学,2003.
    [2]安韶山.黄土丘陵区土壤肥力质量对植被恢复的响应及其演变[D].杨凌:西北农林科技大学,2004.
    [3]白静,田有亮,韩照日格图,等.油松人工林地上生物量、叶面积指数与林分密度关系的研究[J].干旱区资源与环境,2008,22(3):183-187.
    [4]白星.祁连山水源林调整林分结构的数学模拟[J].甘肃林业科技,2001,26(3):16-24.
    [5]包耀贤.黄土高原坝地和梯田土壤质量特征及评价[D].杨凌:西北农林科技大学,2008.
    [6]鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999.
    [7]毕晓丽,洪伟,吴承祯,等.改进单纯形法在林分结构规律研究中的应用[j].江西农业大学学报,2002,24(1):94-98.
    [8]蔡强国.坡面侵蚀产沙模型的研究[J].地理研究,1988,7(4):95-102.
    [9]曹承绵,严长生,张志明,等.关于土壤肥力数值化综合评价的探讨[J].土壤通报,1983,14(4):13-15.
    [10]车克钧,傅辉恩.祁连山水源林生态系统结构与功能的研究[J].林业科学,1998,34(5):29-37.
    [11]陈红跃,刘钱,康敏明,等.东江水源林不同混交组合林地枯落物和土壤持水能力研究[J].生态环境,2006,15(4):796-801.
    [12]陈龙乾,邓喀中,徐黎华,等.矿区复垦土壤质量评价方法[J].中国矿业大学学报,1999,28(5):449-452.
    [13]陈金林,俞元春.杉木、马尾松、甜槠等林分下土壤养分状况研究[J].林业科学研究,1998,11(6):586-591.
    [14]陈奇伯,张洪江,解明曙等.森林枯落物及其苔藓层阻延径流速度研究[J].北京林业大学学报,1996(1):1-5.
    [15]陈绍栓.杉木细柄阿丁枫混交林涵养水源功能和土壤肥力的研究[J].生态学报,2002,22(6):957-961.
    [16]陈欣,王兆骞,杨武德.红壤小流域坡地不同利用方式对土壤磷素流失的影响[[J].生态学报,2000,20(3):374-378.
    [17]陈祥伟,王文波,夏祥友.小流域水源涵养林优化配置[J].应用生态学报,2007,18(2):267-271.
    [18]陈冀楠.马尾松阔叶树混交林空间结构量化分析[D].福州:福建农林大学,2009.
    [19]成晨.重庆缙云山水源涵养林结构及功能研究[D].北京:北京林业大学,2008.
    [20]程积民.子午岭森林植被控制水土流失的作用[J].中国水土保持,1987,(5):8-10.
    [21]程鸿,吕军芬.CAD图形处理技术在植物叶而积测量中的应用[J].甘肃农业人学学报,2003(4):467-470.
    [22]崔启武,边履刚,史继德,等.林冠对降水的截留作用[J].林业科学,1980,16(2):144-146.
    [23]邓元德,陈汉章.台湾桂竹林分直径和树高结构规律分析[J].闽西职业大学学报,1999(1):56-58.
    [24]段劫,马履一,张萍,等.不同立地侧柏林下植被与水源涵养能力的关系[J].湖北农业科学,2010,49(2):330-333.
    [25]董智勇.中国生态林业理论与实践[M].北京:中国科学技术出版社.1994.
    [26]傅伯杰.景观生态学原理及应用[M].北京:科学出版社,2001.
    [27]高成德,余新晓,水源涵养林研究综述[J].北京林业大学学报,2000(9):78-82
    [28]高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报,2001,15(5):60-75.
    [29]高志勤.毛竹林群落特征与生态功能评价[D].北京:中国林业科学研究院,2004.
    [30]耿玉清.北京八达岭地区森林土壤理化特征及健康指数的研究[D].北京:北京林业大学,2006.
    [31]龚直文,顾丽,亢新刚,等.长白山森林次生演替过程中林木空间格局研究[J].北京林业大学学报,2010,32(2):92-99.
    [32]龚直文,亢新刚,顾丽,等.天然林林分结构研究方法综述[J].浙江林学院学报,2009,26(3):434-443.
    [33]国家环境保护总局,三峡库区及其上游水污染防治规划(2001~2010)[Z],2001.
    [34]国家环境保护总局、水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2006.
    [35]国家林业局.中华人民共和国林业行业标准-森林土壤分析方法[Z].北京:中国标准出版社.2000.
    [36]郭汉清,韩有志,白秀梅.不同林分枯落物水文效应和地表糙率系数研究[J].水土保持学报,2010,24(2):179-183.
    [37]郝奇林.岷江上游亚高山森林林冠截留与枯落物层持水特性的研究[D].南京:南京林业大学,2007.
    [38]郝占庆,于德永,杨晓明.长白山北坡植物群落α多样性及其随海拔梯度的变化[J].应用生态学报,2002,13(7):785-789.
    [39]韩艺师,魏彦昌,欧阳志云,等.连栽措施对桉树人工林结构及持水性能的影响[J].生态学报2008,28(9):4609-4617.
    [40]韩小杰,齐实,刘登峰,等.重庆缙云山典型林分的坡面糙率系数及影响因素[J].中国水上保持科学,2009,7(3):19-23.
    [41]何常清,于澎涛,管伟,等.华北落叶松枯落物覆盖对地表径流的拦阻效应[J].林业科学研究,2006,19(5):595-599.
    [42]何东宁,王占林,张洪勋.青海东都地区森林涵养水源效能研究[J].植物生态学报与地植物学学报,1991,15(1):71-78.
    [43]洪利兴,杜国坚,张庆荣,等.天然常绿阔叶异龄幼林胸径的Weibull分布及动态预测[J].植物生态学报,1995,19(1):29-42.
    [44]胡必琴.重庆主城区备用水源地污染评价[D].重庆:西南大学,2008.
    [45]胡海波,张金池.平原粉沙淤泥质海岸防护林土壤渗透特性的研究[J].水土保持学报,2001,15(1):39-42.
    [46]胡艳波,惠刚盈,戚继忠,等.吉林蛟河天然红松阔叶林的空间结构分析[J].林业科学研究,2003,16(5):523-530.
    [47]胡月明,万洪富,吴志峰,等.基于GIS的土壤质量模糊变权评价[J].土壤学报,2001,38(3):23-29.
    [48]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [49]黄丽霞,袁位高,江波,等.不同经营方式下杨梅林分空间结构比较[J].浙江林学院学报,2009,26(2):209-214.
    [50]黄承标,文受春.里骆林区常绿阔叶林和人工杉木林气候水文效应[J].生态学杂志,1993,12(3):1-7.
    [51]惠刚盈,K V Gadow, Matthias Albert.一个新的林分空间结构参数——大小比数[J].林业科学研究,1999,12(1):1-6.
    [52]惠刚盈,K V Gadow,胡艳波.林木分布格局类型的角尺度均值分析方法[J].生态学报,2004a,24(6):1225-1229.
    [53]惠刚盈,K V Gadow,胡艳波.林分空间结构参数角尺度的标准角选择[J].林业科学研究,2004b,17(6):687-692.
    [54]惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究,2001,14(1):23-27.
    [55]惠刚盈,克劳斯·冯佳多.森林空间结构量化分析方法[M].北京:中国科学技术出版社,2003.
    [56]惠刚盈,克劳斯·冯佳多.德国现代森林经营技术[M].北京:中国科学技术出版社,2001.
    [57]惠刚盈,克劳斯·冯佳多.角尺度—一个描述林木个体分布格局的结构参数[J].林业科学,1999,35(1):37-42.
    [58]惠刚盈,盛炜彤.林分直径结构模型的研究[J].林业科学研究[J].1995,8(2):127-131.
    [59]惠刚盈,赵中华,胡艳波.结构化森林经营技术指南[M].北京:中国林业出版社,2010.
    [60]惠淑荣,吕永震Weibull分布函数在林分直径结构预测模型中的应用研究[J].北华大学学报,2003,4(2):101-102.
    [61]霍亚贞,李天杰,等.土壤地理实验实习[M].北京:高等教育出版社,1986.
    [62]贾秀红,郑小贤.长白山过伐林区云冷杉针阔混交林空间结构分析[J].华中农业大学学报,2006,25(4):436-440.
    [63]姜磊,陆元昌,廖声熙,等.滇中高原云南松林分直径结构研究[J].林业科学研究,2008,21(1):126-130.
    [64]焦树锋.AHP法中平均随机一致性指标的算法及MATLAB实现[J].太原师范学院学报(自然科学版),2006,5(4):45-47.
    [65]亢新刚.森林资源经营管理[M].北京:中国林业出版社,2001.
    [66]亢新刚,胡文力,董景林,等.过伐林区检查法经营针阔混交林林分结构动态[J].北京林业大学学报,2003,25(6):1-5.
    [67]克劳斯·冯佳多,惠刚盈.森林生长与干扰模拟[M]Goettingen:Cuvillier Verlag Goerringen,1998.
    [68]赖玫妃,刘健.闽江生态公益林类型与森林水源涵养关系[J].福建林学院学报,2007,27(2):157-162.
    [69]雷廷武,刘汗,潘英华,等.坡地土壤降雨入渗性能的径流-入流-产流测量方法与模型[J].中国科学D辑(地球科学),2005,35(12):1180-1186.
    [70]雷相东,唐守正.林分结构多样性指标研究综述[J].林业科学,2002,38(3):140-146.
    [71]李谷景.水源涵养林的规划布局及其组织经营.吉林林业科技[J],1987,3.
    [72]李宝光,陶秀花,倪国平,等.扫描像素法测定植物叶而积的研究[J].江西农业学报,2006,18(3):78-81
    [73]李金良,郑小贤.北京地区水源涵养林健康评价指标体系的探讨[J].林业资源管理,2004(1):31-34.
    [74]李文宇.北京密云水库水源涵养林对水质的影响研究[D].北京:北京林业大学.2004.
    [75]李新平,陈欣,王兆骞,等.高植物篱笆条件下红壤坡耕地水土流失的发生特征[J].浙江大学学报(农业与生命科学版),2003,29(4):368-374.
    [76]李易麟,南忠仁.开垦对西北干旱区荒漠土壤养分含量及主要性质的影响:以甘肃省临泽县为例[J].干旱区资源与环境,2008,22(10):147-151.
    [77]李月臣,刘春霞,赵纯勇,等.重庆市三峡库区水土流失特征及类型区划分[J].水土保持研究,2009,16(1):13-17.
    [78]李月芬,汤洁,李艳梅.用主成分分析和灰色关联度分析评价草原土壤质量[J].世界地质,2004,23(2):169-175.
    [79]林海礼.钱塘江源头不同森林林分的水文功能研究[D].杭州:浙江林学院.2008.
    [80]林文镇.强化森林涵养水源功能之做法与制度[J].台湾林业,1982,8(9):1-3.
    [81]刘创民,李昌哲,陈军华,等.北京九龙山主要植被类型水文作用的研究[J].林业科技通讯,1994,(7):10-12.
    [82]刘崇洪.几种土壤质量评价方法的比较[J].干旱环境监测,1996,10(1):26-63.
    [83]刘道平,陈三雄,张金池,等.浙江安吉主要林地类型土壤渗透性[J].应用生态学报,2007,18(3):493-498.
    [84]刘梦云.半干旱山区植被恢复中的土壤质量演变[D].杨凌:西北农林科技大学.2003.
    [85]刘景海,马履一.北京低山油松、侧柏生态公益林的经营[J].西北林学院学报,2006,21(6):108-112
    [86]刘君然,赵东方.落叶松人工林威布尔分布参数与林分因子模型的研究[M].林业科学,1997,33(5):412-417.
    [87]刘钦普.华北黄泛平原潮土磷素含量与土壤粒级的关系研究[J].河南农业科学,2004,12:47-51.
    [88]刘世梁,傅伯杰,陈利顶,等.两种土壤质量变化的定量评价方法比较[J].长江流域资源与环境.2003,12(5):422-426.
    [89]刘世梁,傅伯杰,刘国华,等.我国土壤质量及其评价研究的进展[J].土壤通报2006,37(1):137-143.
    [90]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    [91]刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报,2003,27(1):16-22.
    [92]刘兴聪.祁连山北坡青海云杉林分结构规律探讨[J].甘肃农业大学学报,1985,(4):16-24.
    [93]刘向东,吴钦孝,苏宁虎.六盘山林区森林树冠截留、枯枝落叶层和土壤水文性质的研究[J].林业科学,1989,25(3):220-227.
    [94]刘向东,吴钦孝,赵鸿雁.黄土高原油松人工林枯枝落叶层水文生态功能研究[J].水土保持学报,1991,5.
    [95]刘运河,唐德富.水土保持[M].哈尔滨:黑龙江科学技术出版社,1988:160-165
    [96]陆元昌,雷相东,国红.西双版纳热带雨林直径分布模型[J].福建林学院院报,2005,25(1):1-4.
    [97]卢俊培.海南岛森林水文效应的初步探讨[J].热带林业科技,]982(1):13-20.
    [98]卢琦,李清河.美国森林的水文效应[J].世界林业研究,2002,15(3):54-60.
    [99]罗金旺.马尾松与几种阔叶树混交后水源涵养功能的变化[J].防护林科技,2006,11(6):12-14.
    [100]罗涛,何平,张志勇,等.渝西地区火烧迹地不同植被恢复方式下的物种多样性动态[J].西南大学学报(自然科学版),2007,29(6):118-123.
    [101]吕春花.黄土高原子午岭地区土壤质量对植被恢复过程的响应[D].杨凌:西北农林科技大学,2000.
    [102]马强,宇万太,赵少华,等.黑土农田土壤肥力质量综台评价[j].应用生态学报,2004,15(10):1016-1030.
    [103]马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [104]马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学,1987,23(3):253-265.
    [105]孟宪宇.测树学[M].北京:中国林业出版社,1996:66-80
    [106]孟宪宇.使用Weibull分布对人工油松林直径分布的研究[J].北京林学院学报,1985(1):30-40.
    [107]孟宪宇.使用Weibull函数对树高分布和直径分布的研究[J].北京林业大学学报,1988,1:40-48.
    [108]缪宁.川西亚高山红桦-岷江冷杉天然次生林的空间格局分析[D].北京:中国林业科学研究院,2009.
    [109]莫菲,于澎涛,王彦辉,等.六盘山华北落叶松林和红桦林枯落物持水特征及其截持降雨过程[J].生态学报,2009,29(6):2868-2876.
    [110]莫菲,王彦辉,熊伟,等.六盘山华北落叶松人工纯林枯落物储量的空间变异分析[J].林业科学,2009,45(9):1-5.
    [111]宁金魁,黄新峰,刘旭升,等.改进邻体干扰模型在北京侧柏水源涵养林中的应用[J].林业资源管理,2004,2(1):35-38.
    [112]宁金魁.水源涵养林结构调整研究-以北京密云水库周边水源涵养林为例[D].北京:北京林业大学,2004.
    [113]欧勇胜,张世熔,余凉,等.横断山北部生态脆弱区土壤磷素空间分布特征[[J].生态学报,2005,25(10):2776-2781.
    [114]钱颂迪.运筹学[M].北京:清华大学出版社,2000.
    [115]秦富仓,余新晓,张满良,等.小流域林草植被控制土壤侵蚀机理研究[J].应用生态学报,2005,16(9):1618-1622.
    [116]秦耀东.土壤物理学[M].北京:高等教育出版社,2003.
    [117]秦永胜,刘松,余新晓,等.华北土石山区水源保护林小流域土壤侵蚀过程的模拟研究田[J].土壤学报,2004,41(6):864-869.
    [118]秦钟,周兆德.森林与水资源的可持续利用[J].热带农业科学,2001,(3):49-55.
    [119]邱莉萍.黄土高原植被恢复生态系统土壤质量变化及调控措施[D].杨凌:西北农林科技大学,2007.
    [120]饶良懿.三峡库区理水调洪型防护林空间配置与结构优化技术研究[D].北京:北京林业大学.2003.
    [121]日本林野厅.森林公益效能计量调查—绿色效益调查[M].杨惠民译.北京:中国林业出版社.1982.
    [122]戎建涛,雷相东,陆元昌,等.北京十三陵林场侧柏人工林林分结构的研究[J].安徽农业科学,2010,38(2):989-994.
    [123]莎仁图雅.内蒙古大青山油松人工林水分特征的研究[D].呼和浩特:内蒙古农业大学,2009.
    [124]沈慧,姜凤歧,杜晓军,等.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11(3):3345-348.
    [125]时忠杰.六盘山香水河小流域森林植被的坡面生态水文影响[D].北京:中国林业科学研究院,2006.
    [126]时忠杰,王彦辉,徐丽宏,等.六盘山华山松林降雨再分配及其空间变异特征fJl,生态学报,2009,29(1):76-85.
    [127]史晓巍.水源涵养林功能指标与结构指标的定量模拟[D].哈尔滨:东北林业大学,2008.
    [128]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:科学技术出版社,1995.362-377.
    [129]孙晓娟,范文义,蔡体久.基于GIS平台的公别拉河流域水源涵养林景观格局与功能分析[J].林业科学研究,2007,20(2):257-262.
    [130]宋秀瑜.密云水库南岸水源涵养林生态功能研究[J].北京水务,2006(3):52-55.
    [131]谭万能,李志安,邹碧,等.地统计学方法在土壤学中的应用[J].热带地理,2005,25(4):307-311.
    [132]汤立群.流域产沙模型的研究[J].水科学进展,1996,7(1):47-53.
    [133]汤孟平.森林空间结构分析与优化经营模型研究[D].北京:北京林业大学,2003.
    [134]汤孟平.森林空间经营理论与实践[M].北京:中国林业出版社,2007.
    [135]唐克丽.子午岭林区自然侵蚀与人为加速侵蚀剖析.中国科学院水利部西北水土保持所集刊,1993,17:17-28.
    [136]万睿.兰陵溪小流域不同植被类型对水文过程及水质影响研究[D].武汉:华中农业大学.2007.
    [137]王德连.国内外森林水文研究现状和进展[J].西北林学院学报,2004,19(2):156-160.
    [138]王凤友.原始阔叶红叶林和天然次生林的养分循环.森林生态系统定位研究(一),1987:107-115.
    [139]王凤友.森林凋落量研究综述[J].生态学进展,1989,6(2):82-89.
    [140]王建国,杨林章,单艳红.模糊数学在土壤质量评价中的应用研究[J].土壤学报,2001,38(2):176-183.
    [141]王礼先.中国水利百科全书——水土保持分册[M].2004,北京:中国水利水电出版社.
    [142]王礼先,解明曙主编.山地防护林水土保持水文生态效益及其信息系统[M].北京:中国林业出版社.1997.
    [143]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,11(6):14-23.
    [144]王让会,张慧芝著.生态系统耦合的原理与方法[M].新疆:新疆人民出版社,2005.
    [145]王淑元,林升寿.中国森林生态系统定位研究.哈尔滨:中国森林生态系统定位研究进展.东北林业大学出版社,1994:1-30.
    [146]王威.北京山区水源涵养林结构与功能耦合关系研究[D].北京:北京林业大学,2009.
    [147]王效举,龚子同.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学,1997,17(2):141-148.
    [148]王馨,张一平.西双版纳热带季节雨林与橡胶林林冠的持水能力[J].应用生态学 报,2006,17(10):1782-1788.
    [149]王彦辉.刺槐对降雨的截持作用[J].生态学报,1986,7(1):43-49.
    [150]王彦辉.几个树种的林冠降雨特征[J].林业科学,2001,37(4):2-9.
    [151]王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    [152]王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报,2000,14(4):108-113.
    [153]王永安.论我国水源涵养林建设中的几个问题[J].水土保持学报,1989,3(4):74-82.
    [154]王玉杰,王云琦.森林对坡面产流的影响研究[J].世界林业研究,2005,(03):12-15.
    [155]王云琦,王玉杰.森林溪流水质的研究进展[J].水土保持研究.2003.12-16.
    [156]温远光,刘世荣.我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1 995,3(4):289-298.
    [157]吴钦孝,韩冰,李秧秧.黄土丘陵区小流域土壤水分入渗特征研究[J].中国水土保持科学,2004,2(6):125-129.
    [158]吴钦孝,赵鸿雁.沙棘林的水土保持功能及其在治理和开发黄土高原中的作用[J].沙棘,2002,15(1):27-30.
    [159]吴建平,袁正科,等.湘西南沟谷森林土壤水文-物理特性与涵养水源功能研究[J].水土保持研究,2004,11(1):74-77.
    [160]谢春华,王秀珍.北京密云水库集水区森林景观生态分类研究[J].林业资源管理,2006,4:85-88.
    [161]徐柏林,王金叶,葛双兰,等.祁连山(北坡)水源涵养林类型划分与组成结构分析[J].甘肃林业科技,2001,26(3):16-24.
    [162]徐琪,刘逸农.三峡库区移民环境容量研究[M].北京:科学出版社,1993,40-82.
    [163]薛立,邝立刚,陈红跃,等.不同林分土壤养分、微生物与酶活性的研究[J].土壤学报,2003,40(2):280-285.
    [164]薛建辉主编.森林生态学(修订版)[M].北京:中国林业科出版社,2010.
    [165]阎海平,谭笑,孙向阳,等.北京西山人工林群落物种多样性的研究[J].北京林业大学学报,2001,23(2):16-19.
    [166]杨松.流溪河不同水源涵养林对降水化学的影响[D].北京:中国林业科学研究院.2007.
    [167]杨春时.系统论-信息论-控制论浅说[M].北京:中国广播电视出版社,1987(2):23-24.
    [168]杨吉华,李红云,李焕平,等.4种灌木林地根系分布特征及其固持土壤效应的研究[J].水土保持学报,2007,21(3):48-51.
    [169]杨万勤,钟章成,陶建平.缙云山森林土壤速效P的分布特征及其与物种多样性的关系[J].生态学杂志,2001,20(4):24-27.
    [170]殷有,周永斌,崔建国,等.林冠截留模型[J].辽宁林业科技,2001,(2):10-12.
    [171]尹光彩,周国逸,刘景时,等.鼎湖山针阔叶混交林生态系统水文效应研究[J].热带亚热带植物学报,2004,12(3):195-201.
    [172]于贵瑞.生态系统管理学的概念框架及其生态学基础[J].应用生态学报,2001,12(5):787-794.
    [173]于政中主编.森林经理学(第2版)[M].北京:中国林业出版社,1993.
    [174]于志民,王礼先.水源涵养林效益研究[M].北京:中国林业出版社,1999.
    [175]余建英,何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003.
    [176]余新晓,甘敬.水源涵养林研究与示范[M].北京:中国林业出版社,2007.
    [177]余新晓,秦永胜,陈丽华,等.北京山地森林生态系统服务功能及其价值初步研究[J].生态学报,2002,22(5):783-786.
    [178]余新晓,于志民.水源保护林[M].北京:中国林业出版社,2001.
    [179]余新晓,赵玉涛,张志强,等.长江上游亚高山暗针叶林土壤水分入渗特征研究[J].应用生态学报,2003,14(1):15-19
    [180]余新晓,张振明等.森林生态系统结构与功能模型[M].北京:科学出版社,2010.
    [181]余树全,李翠环.千岛湖水源涵养林优势树种生态位研究[J].北京林业大学学报,2003,25(2):18-23.
    [182]袁春明,朗南军,孟广涛,等.长江上游华山松水土保持人工群落的结构特征和生物量[J].北京林业大学学报,2002,30(3):5-7.
    [183]苑希民.神经网络和遗传算法在水利学领域的应用[M].北京:中国水利水电出版社.2002.
    [184]岳永杰,余新晓,李钢铁,等.北京松山自然保护区蒙古栎林的空间结构特征.应用生态学报,2009,20(8):1811-1816.
    [185]赵鸿雁,吴钦孝,刘向东.山杨枯枝落叶的水文水保作用研究[J].林业科学,1994,30(2):176-182.
    [186]赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42-45.
    [187]赵洋毅,王玉杰,王云琦,等.重庆北部水源区水源涵养林构建模式对土壤养分的影响[J].水土保持学报.2009,23(4):236-240.
    [188]赵洋毅,王玉杰,王云琦,等.渝北不同模式水源涵养林植物多样性及其与土壤特征的关系[J].生态环境学报.2009,18(6):2260-2266.
    [189]赵洋毅,王玉杰,王云琦,等.渝北水源区水源涵养林构建模式对土壤渗透性的影响[J].生态学报,2010,30(15):4162-4072.
    [190]赵中华,惠刚盈,袁士云,等.小陇山锐齿栎天然林空间结构特征[J].林业科学,2009,(45)3:1-6.
    [191]张保华,何毓蓉,周红艺,等.长江上游典型区亚高山不同林型土壤的结构性与水分效应[J].水土保持学报,2002,16(4):127-129.
    [192]张昌顺,范少辉,管凤英,等.闽北毛竹林的土壤渗透性及其影响因子[J].林业科学,2009,45(1):36-42.
    [193]张凤荣,昌贻忠.北京白花山区自然土壤与耕作土壤的肥力比较以及土壤管理措施[J].土壤通报,2005,36(2):155-159.
    [194]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68.
    [195]张光灿,刘霞,赵玖.泰山几种林分枯落物和土壤水文效应研究[J].林业科技通讯,1999,(6):28-29.
    [196]张光灿,周泽福,刘霞,等.五台山华北落叶松水源涵养林密度结构与生长动态[J].中国水土保持科学,2007,5(1):1-6.
    [197]张华,张甘霖.热带低丘地区农场尺度土壤质量指标的空间变异[J].土壤通报,2003,34(4):241-245.
    [198]张华,张甘霖.土壤质量指标和评价方法[J].土壤,2001,(6):326-330.
    [199]张洪江,北原曜.几种林木枯落物对糙率系数n值的影响[J].水土保持学报,1994,8(4):4-10.
    [200]张金屯.数量生态学[M].北京:科学出版社,2004.
    [201]张玲,王震洪.云南牟定三种人工林森林水文效应的研究[J].水土保持研究,2001,8(2):69-73.
    [202]张建国,段爱国,童书振.林分直径结构模拟与预测研究概述[J].林业科学研究,2004,(17)6:787-795.
    [203]张建国,李吉跃.北方主要造林树种耐旱机理及其分类模型的研究一叶保水力及维持膨压[J].河北林学院学报,1995,10(3):187-193
    [204]张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999.2(2):174-179.
    [205]张生,朱诚.长江流域水土流失及其对洪灾的影响[J].水土保持学报,2001,15(6):9-13.
    [206]张一平,王馨,刘文杰.热带森林林冠对降水再分配作用的研究综述[J].福建林学院学报,2004,24(3):274-282.
    [207]张韵.重庆市城镇饮用水水源地水安全调查与评价[D].重庆:西南大学,2009.
    [208]中野秀章.森林水文学[M].李云森译.北京:中国林业出版社,1983.
    [209]中国科学院南京土壤研究所.土壤理化性质分析[M].上海:上海科学技术出版社,1978.
    [210]钟剑飞,刘东兰,郑小贤。水源涵养林结构与功能量化研究进展[J].干旱区资源与环境,2009,,16(3):110-112.
    [211]张志强,王礼先,余新晓,E. Klaghofer,森林植被影响径流形成机制研究进展[J].自然资源学报,2001,16(1):79-84.
    [212]张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报2005,19(3):139-143.
    [213]章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社,2006.
    [214]周春国,佘光辉,吴富桢,等.用变型Weibull分布对热带雨林结构规律的研究[J].南京林业大学学报,1998,22(4):14-18.
    [215]周国模,刘恩斌,刘安兴,等Weibull分布参数辨识改进及对浙江毛竹林胸径年龄分布的测度[J].生态学报,2006,(26)9:148-156.
    [216]周国逸.生态系统水热原理及其应用[M].北京:气象出版社,1997.
    [217]周玮.花江峡谷喀斯特土壤酶与可氧化有机碳研究[D].贵阳:贵州大学.2007.
    [218]周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.
    [219]周泽福,张光灿,林富荣.太行山水源涵养林研究[M].北京:中国林业出版社,2006.
    [220]朱金兆.昕水河流域生态经济型防护林体系分布及其主要功能[J].北京林业大学学报,1996,18(2):120-124.
    [221]朱金兆,刘建军,朱清科,等.森林凋落物层水文生态功能研究[J].北京林业大学学报,2002,24(5):30-34
    [222]朱静华,周艺敏,景海春,等.天津地区土坡机械组成鱼土壤养分状况相关性的探讨[J].天津农业科学,1994.7(1):1-3.
    [223]朱显漠.黄寸地区植被因素对水土流失的影响[J].土壤学报,1960,8(2):110-115.
    [224]朱显漠,田积莹.强化黄土高原土壤渗透性及抗冲性的研究[J].水土保持学报,1993,7(3):1-10.
    [225]朱祖祥主编.土壤学[M].北京:农业出版社,1982.
    [226]邹晓雯.水质评价的灰色关联方法[J].水资源保护,1994,3:11-16.
    [227]Andrews S S, Karlen D L, Cyntha C A. The soil management assessment framework a quantitative soil quality evaluation method[J]. Soil Science Society of America Journal. 2004,68(6):1945-1962.
    [228]Andreassian V. Waters and forests:from historical controversy to scientific debate[J]. Jouranl of Hydrology,2004,291:1-27.
    [229]Bailey R L, Dell T R. Quantifying diameter distribution with the Weibull function[J]. For Sci, 1973,19:97-104.
    [230]Blackman G E. Statistical and ecological studies in the distribution of species in plant communities. I. Dispersion as a factor in the study of changes in plant populations. Ann. Bot. 1942,6:351-370
    [231]Biging G S, Dobbertin M. Evaluation of competition indices in individual tree growth models[J].Forest Seienee,1995,41(2):360-377.
    [232]Bliss C I, Reinker K A. A lognormal approach to diameter distributions in even-aged stands[J]. For Sci,1964,10 (3):350-360.
    [233]Bonell. Progress in the understanding of runoff generation dynamics in forests[J]. Hydrology, 1998,7:148-152.
    [234]Bormann, F.H. and Likens, G.E. Pattern and Process in a Forested Ecosystem, Springer-Verlag,1979.
    [235]Bruijnzeel L.A. and Wiersum K.F. Rainfall interception by a young Acacia Auriculiformis (A.Cunn)plantation forest in west Java Indonesia:Application of Gash analytical model. Hydrogeology Processes,1987,1:309-319.
    [236]Bruijnzeel L. A. Hydrological functions of tropical forests:not seeing the soils for the trees[J]. Agriculture Ecosystems and Environment,2004,104,185-228.
    [237]Buongiorno J, Dahir S, Lu H et al..Tree size diversity and economic returns in uneven-aged forest stand. For.Sci.1994,40(1):83-103.
    [238]Burger J.A., Kelting D.L. The contributions of soil science to the development of andImplementation of criterion and Indicators for sustainable forest Management[J]. Soil Science Society of America Journal,1998 (53):1-67.
    [239]Clark P J and Evans F C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology.1954,35(4):445-453.
    [240]C.M. Regalado. A geometrical model of bound water permittivity based on weighted averages:the allophane analogue[J]. Journal of Hydrology.2006,316(10):98-107.
    [241]Craig Loehle, James G MacCracken, Douglas Runde, et al. Forest management at landscapes sales:Solving the Problems[J].Journal of Forestry,2007,100(6):25-34.
    [242]Daniel H Pote, Brandon C Grigg, Catalino A Blanche, et al.. Effects of pine straw harvesting onquantity and quality of surface runoffiJ]. Journal of Soil and Water Conservation,2004, 59(5):197-204.
    [243]David F.N. and Moor P.G.. Notes on contagious Distribution in palant populations. Ann.Bot.Lond.N.S.1954,18.
    [244]Douglas C A. Characterizing flow regimes for floodplain forest conservation:anassessment of factors affecting sapling growth and survivorship on three cold desert rivers[J].Canadian Journal of Forest Research,2005,35(12):2886-2900.
    [245]Dunne T. Field studies of hill slope flow processes[J]. In Kirkby (editor), Hillslope hydrology, John Wiley & Sons,1978,227-294.
    [246]Doran J W, Liebig M A, Santan D P. Soil health and global sustainability[M].Proceedings of the 16th World Congress of soil science Montepellier. France,1998:20-26.
    [247]Doran J W, Parkin T B. Defining and assessing soil quality[M]. Doran J W, Coleman D C, Bedzeek D F, et al..Declining soil quality for a sustainable environment. Soil society of America special publication 35 Madison. WI Soil Sci.Soc.Am.Inc.1991:3-21.
    [248]Doran J W, Parkin T B. Quqntitative indicators of soil quality A minimum data set [M]. Doran J W, Jones A J. Methods for assessing soil quality. Soil society of America special publication 49 Madison[J]. WI Soil Sci.Soc.Am.Inc.1996:25-37.
    [249]Doran J W, Sarrantomo M, Liebig M A. Soil health and global sustainability[M]. Sparks D L. Advance in Agronomy San Drego C A. Academic press,1996,56:1-54.
    [250]E. E.Prepas, B. Pinel-Alloul, D. Planas, et al. Forest harvest impacts on water quality and aquatic biota on the Boreal Plain:introduction to the TROLS lake program[J]. Aquat. Sci. 2001,58(2):421-436.
    [251]Fisher R F, Binkley D. Ecology and management of forest soils[M](3rd). New York John wiley & sons me.2000.
    [252]Francioso, O., Ciavatta, C., Sanchez, S. et al. Spectroscopic characterization of soil organic matter in long-term amendment trials[J]. Soil Sci.2000, (165):495-504.
    [253]Fueldner K. Strukturbeschreibung von Bucher-edellaubholz-Mischwaeldern. Dissertation Universitat Gottingen[J]. Goettingen:Cuvillier Verlag Goettingen.1995,146
    [254]Fueldner K. Strukturbeschreibung von Bucher Edellaubholz-Mischwaeldern[M]. Goettingen: Cuvillier Verlag Goettingen.1995.
    [255]Gadow K V and Bredenkamp B V.Forest Management.Academica[M]. Pretoria,1992.
    [256]Gadow K V and Bredenkamp B V.Forest Management[M]..Academica Publishers,1992.
    [257]Gadow K V, Gangying Hui. Modeling Forest Development[M]. Kluwer academic publishers.1999.
    [258]Gadow K V. Forsteinrichtung. Skriptvon Instiutder Forsteinrichtung[D]. Universita Gottingen.1993.
    [259]Gash J. H. C., Wright I. R. and Lloyd C. R. Comparative estimates of interceptiong loss from three coniferous forests in Great Britain [J]. Journal of Hydrology,1980,48:89-105.
    [260]Gash, J. H. C., Lloyd, C. R. and Lachaud G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology,1995,170(1):79-86.
    [261]Gardiner J J. Environmental conditions and site aspects. In:A.F.M. Olsthoorn H H, Bartelink J J, Gardiner H, Pretzsch H J, Hekhuis A, Frano(eds). Manafement of mixed-species forest: silviculture and economics[J]. Dlo Instisute for Forestry and Nature Research (IBN-DLO), Wageningen,1999.
    [262]Gupta V V S R, Yeates G W. Soil micro-fauna as indicators of soil health [A]. In:Biological Indicators of Soil Health [C].CAB International,1997.201-233.
    [263]Gustafsson L. Indicators and assessment of biodiversity from a Swedish forestry perspective[J]. Forestry Research Institute of Sweden.2000, Report No.1.
    [264]Hafley W L Schreuder H T. Statistical distributions for fitting diameter and height data in even aged stands [J]. Can J For Res,1977:481-487.
    [265]Hairrlson T P, Miehie B R. A generalized approach to the use of matrix growth models[J].Forest Science,1985,31:851-865
    [266]Hanus M L, Hann D W, Marshall D D. Reconstructing the spatial pattern of trees from routine stand examination measurements [J]. Forest Seienee.1998,44(1):125-133.
    [267]Hao Qingyu, Zhou Yuping, Wang Lihai, et al. Optimization models of stand structure and selective cutting cycle for large diameter trees of broadleaved forest in Changbai Mountain[J]. J For Res,2006,17(2):135-140.
    [268]Helvey J D, Patric J H. Canopy and litter interception of rainfall by hardwoods of eastern United States. Water Resour Res,1965,1:193-205.
    [269]Horton R E.1919. Rainfall interception. Month Weather Rev,47:603-623.
    [270]Issaks E.H.and R.M.Srivatava. An introduction to applied geotatitics[M]. NewYork: OxfordUniv.press.1989.
    [271]J A Gravelle, T E Link. Influence of Timber Harvesting on Headwater Peak Stream Temperatures in a Northern Idaho Watershed(J]. Forest Science,2007,53(2):206-209.
    [272]Jennifer K Rohrs-Richey, Christa P H Minder. Effects of local changes in active layer and soil climate on seasonal foliar nitrogen concentrations of three boreal forest shrubs[J].Canadian Journal of Forest Research,2007,37(2):383-395.
    [273]John Mcolt. Soil chemical and microbial effect of simulated acid rain on covet and soft chess[J]. Water,Air & Soil Pollution,1991,60(3):301-314.
    [274]Karin O, L O Eriksson. The core area concept in forming contiguous areas for long-term forest planning[J]. Canadian Journal of Forest Research,1998,28(7):1032-1040.
    [275]Kelliher F M. Evaporation and canopy characteristics of coniferous forests and grasslands[J].Oecologia,1989,95:153-163.
    [276]Kittler, J. and E. R. Hancock. Combining evidence in probabilistic relaxation, Int.J. Pattern Recognition and Artificial Intelligence,1989.3(1):30-39.
    [277]Kotar M.Venteilungsmuster der Baeume in einer Optimalphase im Urwald. Vortag beim, Symposium ueber die Urwaelder in Zvolen.1993.
    [278]Kolmogoroff A N. Sulla determinazione empirica di una legge di distribuzione. Giornale Instituto Italiano Attuari,1933,4:441-452.
    [279]Kuuluvainen T, Penttinen A, Leinonen K. Statistical opportunities for comparing stand structural Heterogeneity in managed and Primeval forests:An example from boreal spruce forest in southern Finland[J]. Silva Fennie,1996,30(2-3):315-328.
    [280]Lahde E, Laiho O and Norokorpi Y. Diversity-oriented silviculture in the boreal zone of Europe[J]. For. Ecology. Manage.1999,118:223-243.
    [281]Larson W E, and Pierce F J. Conservation and enhancement of soil quality. In Proc. Of the Int. Workshop on Evaluation for Sustainable land Management in the Developing World. Vol.2. IBSRAM Proc.12(2). Int. Board for Soil Res. And Management. Rangkok, Thailand,1991.
    [282]Leonard R E. Net precipitation in a northern hardwood forest[J]. J Geophys Res,1961,66: 2417-2421.
    [283]Li Hemin,Paul Waley,Phil Rees.Reservoir resettlement in China:past experience and the Three Gorges Dam[J].The Geographical Journal.2001,167(3):195-201.
    [284]Liu C M, Zhang S Y, Lei Y C, et al.. Evaluation of three methods for predicting diameter distributions of black spruce Picea mariana plantations in central Canada[J]. Can J For Res, 2004,12:2424-2432.
    [285]Lloyd,M. Mean Crowding[J].Anim.Ecol.1967,36.
    [286]Lin H S, Mclnnes K J. Macro-porosity and initial moisture effects on infiltration rates in Vertisols and vertical intergrades[J]. Soil Science,1998,163 (1):2-8.
    [287]Mario Polemio and Rhoaoes J D. Determination caution exchange capacity:A new procedure for calcareous and Gypsiferous soil[J].Soil Sci.Soc.Am.J.1997,1.
    [288]Mason D B, Takashi Gomi, Jack J Piccolo. Structures Linking Physical and Biological Forest Science, Processes in Headwater Streams of the Mavbeso hed,Southeast Alaska[J].2007, 53(2):371-384.
    [289]McCulloch J G, Robinson M. History of forest hydrology [J]. Journal of Hydrology,1993 (150):189-216.
    [290]Meng Q H, Fu B J, Yang L Z. Effects of land use on soil erosion and nutrient loss in the Three Gorges Reservoir Area,China.Soil Use and Management:2001,17(4):288-292.
    [291]Meyer H A. Pennsylvania Vally Publishers,Pennsylvania. Forest Mensuration [M],1953.
    [292]Meyer H A. Structure, growth and drain in balanced uneven-aged forests [J]. J.For.1952.50,85-92.
    [293]Mitchell J K, Engel B A, Srinivasan R, et al. Validation of AGNPS for Small Watersheds using an integrated AGNPS/GIS system[A]. In:Geographic Information Systems and Water Resources[C],1993.
    [294]Moeur,M. Characterizing spatial patterns of trees using stem-mapped data[J]. For.Sci.1993,39(4).
    [295]Moiseev B N. Stream flow and forest coverage in watershed in northwest USSR and along Upper Volga River[J]. Forestry(RV),1984,5:34-38.
    [296]Morisita,M. Composition of the Is-index[J]. Res.Popul.Ecology.1971,13.
    [297]Motta Renzo and Haudemand Jean-Claude Protective Forests and Silvicultural Stability-An Example of Planning in the Aosta Valley[J]. Mountain Research and Development.2000,20(2):180-187.
    [298]Osch J M,Hewlett J D.A review of catchment experiments to determine the effects of vegetation changes on water yield and evapotranspiration [J].Journal of Hydrology.1982,55:3-23.
    [299]Pamela J Edwards. Karl W J Williard Declines in soil-water nitrate in nitrogen-saturated watersheds[J]. Canadian Journal of Forest Research,2006,36(8):1931-1943.
    [300]Pommerening A.Approaches to quantifying forest structures.Foresty,2002,75(3):305-324.
    [301]Pretzsch H. Structural diversity as a result of silvicultural operations. In:A.F.M. Olsthoorn H H, Bartelink J J,Gardiner H, Pretzsch H,J, Hekhuis A, Frano (eds). Manafement of mixed-species forest:silviculture and economics. Dlo Instisute for Forestry and Nature Research(IBN-DLO), Wageningen.1999.
    [302]Qiu Yang, Zhang Jin-tun, Zheng Feng-ying.The Kernel of Landscape Ecology:Spatial and Temporal Heterogeneity in Ecological Systems [J].Chinese Journal of Ecology,2000, 19(2):42-49.
    [303]Raison R, et al. Nutrition of shorted rotations in plantation forest. Forest site and Productivity(ed by Gessel) [M]. Martings Nijhoff Publisher.1986.
    [304]Renzo Motta and Jean-Claude Haudemand Protective Forests and Silvicultural Stability-An Example of Planning in the Aosta Valley[J]. Mountain Research and Development.2000,20(2):180-187.
    [305]R Lowrance, R K Hubbard, R G Williams. Effects of a managed three zone riparian buffer system on shallow groundwater quality in the southeastern coastal plain[J]. Journal of Soil and Water Conservation,2000,55(2):212-221.
    [306]R Lowrance, J M Sheridan. Surface Runoff Water Quality in a Managed Three Zone Buffer[J]. Journal of Environmental Quality,2005,34(5):1851—1860.
    [307]Ripley. B. D. Modeling spatial patterns(with discussion). J.Ry.Stat.Soc.B.1977.39.
    [308]Rutter A. J., Kershaw K. A., Robins P. C. etal.. Predictive model of rainfall interception in forests. Derivation of the model from observation in a plantation of Corsican pine [J]. Agriculture and Meteorology,1971,9:367-384.
    [309]Ruiz-Jaen M C, Aide T M. Restoration success:how is it being measured?. Restoration Ecology,2005,13 (3):569-577.
    [310]Sarkkola S, Hokka H, Penttila T. Natural development of stand structure in Pearland Scots pine following drainage Results based on long term monitoring of permanent sample plots[J]. Silva Fennica.2004,4:405-412.
    [311]Schnitzer M. Soil organic matter-the next 75 years[J]. Soil science,1991,151:41-58.
    [312]Scott A S, Jeremy D R, Toby N C. Dual urban and rural hydrograph signals in three small watersheds[J]. Journal of the American Water Resources Association,2002,38(4):1027-1041.
    [313]Shi Z J, Wang Y H, Xu L H, et al. Fraction of incident rainfall within the canopy of a pure stand of Pinus armandiiith revised Gash model in the Liupan Mountains of China[J]. Journal of Hydrology,2010,02.003,1-7.
    [314]Smith R E, Parlange J Y. A parameter-efficient hydrologic model[J]. Water Res R, 1978,14(3):533-538.
    [315]Stednick, J.D., Monitoring the effects of timber harvest on annual water yield[J]. Journal of Hydrology.,1996.176:79~95.
    [316]Stevenson F J. Nitrogen-organic forms In:Methods of soil analysis. Agronomy[J]. American Society of Agronomy. Inc,Madison,Wisconsin,USA.1982,9(2):625-643.
    [317]Susan J Grayston, Heinz Rennenberg. Assessing effects of forest management on microbial community structure in a central European beech forest[J]. Canadian Journal of Forest Research,2006,36(10):2595-2605.
    [318]Sun G.Mcnulty S. G.,Shepard J. P., et al.. Effects of timber management on the hydrology of wetland forest in the southern United States[J]. Forest Ecology and Management,2001,143,227-236.
    [319]Swank W T, Crossley D A. Forest Hydrology and Ecology at Coweeta[J]. Springer-Verlag. NewYork:1988,102-155.
    [320]Turner B L, Meyer W B, Skole D L. Global land-use/land-cover change:Towards an integrated program of study[J]. Ambio,1994,23 (1):91-95.
    [321]Valente, F., David, J.S., Gash, J.H.C.. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology,1997,190:141-162.
    [322]Vertessy R. A., Watson F., and O'Sullivan S. K.. Factors determining relations between stand age and catchment water balance in mountain ash forests[J]. Forest Ecology and Management,2001,143:13-26.
    [323]Viles H A,1990. The agency of organic beings:A selective review of recent work in biogeomorphology [J]. In:Thornes, J.B(ed.), Vegetation and erosion. John Wiley & Sons Ltd, 1990.5-24
    [324]V Andreu, J L Rubio, R Cerni. Effects of Mediterranean shrub cover on water erosion (Valencia, Spain)[J]. Journal of Soil and Water Conservation,1998,53(2):112-121.
    [325]Viville D. etal. Interception on a mountainous declining spruce stand in the Strengbach catchment (Voges, France) [J]. Journal of Hydrology,1993,144:273-282.
    [326]Wallace J, McJannet, D. Modeling interception in coastal and montane rainforests in northe Queensland, Australia[J]. Journal of hydrology,2008,348:480-495.
    [3271 Wander M, Yang X. Influence of tillage on the dynamics of loose and occluded particulate and humified organic matter fractions [J]. Soil Biol. Biochem.2000, (32):1151-1160.
    [328]Wang Mingliang Rennolls K. Tree diameter distribution modeling introducing the legit logistic distribution[J]. Can J For Res,2005:1305-1313.
    [329]Wischmeir W H. Predicting rainfall erosion losses[M]. US Dept-Agri. Handbook,1978.537.
    [330]Wienhold B J, Andrews S S, Karlen D L. Soil quality a review of the science and experiences in the USA[J].Environmental Geochemistry and Health.2004,26:89-95.
    [331]William Lowry.Potential Focusing Projects and Policy Change.Policy Studies Journal.2006, 34(3):313-335
    [332]Zaimes G N, Schultz R C, Isenhart T M. Stream bank erosion adjacent to riparian forest buffers,row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa[J].Journal of Soil and Water Conservation,2004(59):19-28.
    [333]Zerbe S, Kreyer D. Introduction to special section on "ecosystem restoration and biodiversity: how to assess and measure biological diversity?"[J]. Restoration Ecology,2006,14 (1): 103-104.
    [334]Zibilske L M, Bradford J M, Smart J R. Conservation tillage induced changes in organic carbon, totalnitrogen and available phosphorus in as-arid alkaline subtropical soil[J]. Soil&Tillage Research,2002,66:153-163.
    [335]Ziqiang Tian,Weilie Chen,Changming Zhao.Plant biodiversity and its conservation strategy in the in-undation and resettlement districts of the Yangtze Three Gorges,China Acta Ecologica Sinica,2007,8:3110-3118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700