孔群喷注噪声理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷注噪声广泛存在于人类生产生活中,目前已成为影响人身健康和设备安全的重要原因之一。本文在对气动噪声理论,特别是喷注噪声产生机理、理论估算方法、仿真计算方法以及实验测试方法消化吸收的基础上,利用理论、数值仿真及实验方法研究了孔群喷注噪声的声源特性。
     文章首先利用大涡模拟计算了二维管内单孔受限喷注的流动和噪声特性。仿真计算结果表明,管内喷注噪声具有指向性,声压级随喷注距离的增加逐渐减小,且峰值频率基本与理论相符。然后利用理论方法推导了孔群喷注噪声声压级的估算公式,并利用实验对得到的公式进行了验证和修改。研究发现,对于大孔间距孔群,估算公式基本与实验测量相符,对于小孔间距孔群,即计及孔群汇合喷注噪声的总声压级估算公式,通过实验数据拟合,也能够用来估算孔群喷注噪声。
     对原有减温减压器结构进行了改进设计,并对其进行了流场仿真计算和噪声特性的实验研究。研究结果表明结构的振动噪声级与原型相比有所减小,达到了降低减温减压器振动噪声级的目的,对减温减压器的进一步结构和性能改进具有参考价值。
Jet noise, widely existing in human life, has become one of the main factors which affect human health and safety of equipments. Based on the thorough learning of aerodynamic noise theory, especially the jet noise generation mechanism, theoretical calculation methods, simulation methods and experimental testing methods, the sound source characteristics of multiple jets noise is investigated by theoretical, simulation and experimental methods in this paper.
     At first, the flow and noise characteristics of two-dimensional restricted jet in pipe are simulated by the Large-Eddy Simulation method. The results show that the jet noise in pipe has directivity, and the peak frequency is coincident with theoretical calculation results..
     Then, using the theoretical method, sound pressure level estimating formula of multiple jets noise is obtained, and then it is validated and modified with the experiment results. The study shows that for micro pores with large space between holes, the estimating formula is consistent with the experimental data, also for the micro pores with small space between holes, namely, the overall sound pressure level considering jet noise caused by multiple jets converging, by fitting the experimental data, the formula can be also used to estimate the sound pressure level of jet noise.
     At last, the paper improves the Temperature and Pressure Reducer design, which is with characteristics of multiple jets noise, simulates the flow field and experimental studies the jet noise characteristics. The research results show that the vibration and sound level are smaller than the prototype. This achieves the aim of decreasing the vibration and noise level, and the results are of reference value for the structure and performance improvements to the Temperature and Pressure Reducer.
引文
[1]章嘉炎.国外阀门噪声的研究. www.cnki.net
    [2]洪宗辉.环境噪声控制工程.高等教育出版社,2002,8:1-3页
    [3]徐世勤,王樯.工业噪声与振动控制.冶金工业出版社,1999,2:22-29页
    [4]王文奇.噪声控制技术及应用.辽宁科学技术出版社,1985,7:78-84页
    [5]李耀中.噪声控制技术.化学工业出版社,2001,5:4-6页
    [6]陈秀娟.实用噪声与振动控制.化学工业出版社,1996,5:47-51页
    [7] Lighthill, M. J.. On sound generated aerodynamically: I. General theory. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1952, 211(1107): 564-587P
    [8] Ribner, H. S.. Advances in Applied Mechanics,Ⅷ, 1964
    [9] Von Gierke, H. E.. Proc.3rd I.C.A.,Elsevier, 1961
    [10] Richards, E. J., Mead, D. J.ed., Noise and Acoustic Fatigue in Aeronautics, Chap.5,7, Wiley, 1968
    [11]马大猷.噪声与振动控制工程手册.机械工业出版社,2002
    [12] Curle, N.. The influence of solid boundaries upon aerodynamic sound. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1955, 231(1187): 505-514P
    [13] Ffowcs Williams , J. E., Hawkings, D. L.. Sound generation by turbulence and surfaces in arbitrary motion. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1969, 264(1151): 321-342P
    [14] Goldstein, M.. Unified Approach to Aerodynamic Sound Generation in the Presence of sound Boundaries. Journal of the Acoustical Society of America, 1974, 56: 497-509P
    [15] Lilley, G. M.. The radiated noise from isotropic turbulence with applications to the therory of jet noise. Journal of Sound and Vibration, 1996, 190(3), 463-476P
    [16] Goldstein, M. E.. The 90°Acoustic Spectrum of a High Speed Air Jet.
    [17] Tam, C. K. W., Auriault, L.. Jet mixing noise from fine-scale turbulence. AIAA Journal 37 , 1999 , 145–153P
    [18] Tam, C. K. W., Pastouchenko, N. N., Schlinker, R. H.. Noise source distribution in supersonic jets. Journal of Sound and Vibration, 2006, 291: 192-201P
    [19]马大猷、李沛滋、戴根华、王宏玉.小孔喷注噪声和小孔消声器.中国科学.1977,445-455页
    [20] Maa Dah-you, Li Pei-zi, Dai Gen-hua, Wang Hong-yu. Experimental investigation on shock-associated noise. Scientia. Sinica, 1980, 1237-1246P
    [21]马大猷、李沛滋、戴根华、王宏玉.排气噪声的有效降低.环境科学学报.1981,2-11页
    [22] Self, R. H.. Jet noise prediction using the Lighthill acoustic analogy. Journal of Sound and Vibration. 2004, 275: 757-768P
    [23] Dowling, A. P., Hynes, T. P.. Sound generation by turbulence. European Journal of Mechanics B/Fluids. 2004, 23: 491-500P
    [24] Balsa, T. F., Gliebe, P. R.. Aerodynamics and noise of coaxial jets. American Institute of Aeronautics and Astronautics Journal.1977, 15: 1550–1558P
    [25] Morris, P. J., Farassat, F.. Acoustic analogyand alternative theories for jet noise prediction. American Institute of Aeronautics and Astronautics Journal 2002, 40: 671–680P
    [26] Rembold, B., Freund, J. B., Wang, M.. An evaluation of LES for jet noiseprediction, in: Proceedings Summer Program 2002, Centre for Turbulence Research, Stanford, 2002
    [27] Bogey C, Bailly C. Decrease of the effective Reynolds number with eddy-viscosity subgrid-scale modeling. AIAA J 2005;43: 437–439P
    [28] Larcheve?que L. Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number. J Fluid Mech 2003; 516: 193–210P
    [29] Uzun A, Lyrintzkis A, Blaisdell G. Coupling of integral acoustics methods with LES for jet noise prediction. Paper 2004-0517. AIAA; 2004.
    [30] Shur M, Spalart P, Mongeau L. Towards the prediction of noise from jet engines. Int J Heat Fluid Flow 2003;24: 551–61P
    [31] Bodony, D. J.. The prediction and understanding of jet noise. Center for Turbulence Research Annual Research Briefs, 2005
    [32]郑克扬,桂辛民,岑拯.喷流噪声特性与控制研究.北京航空航天大学学报. NO.2 1991,72-78页
    [33] Laufer, J., Schlinker, R. H., Kaplan, R. E., Experiments on supersonic jet noise, AIAA Journal 14 , 1976: 489–497P
    [34] Krothapalli, A., Greska, B. et.al. High speed jet noise reduction using microjets.
    [35] Christopher K.W.Tam et al. The Sources of Jet Noise: Experimental Evidence. AIAA. 2007: 3641P
    [36]侯志鹏.减温减压器结构设计与实验研究.哈尔滨工程大学硕士学位论文. 2009,80页
    [37] Rayleigh John W. The Theory of Sound. Dover Publications, 1945
    [38] Lighthill, J. Early Development of an Acoustic Analogy Approach to Aero acoustic Theory. AIAA J. 20, No. 4, 1982. 449-450P
    [39]徐挺.相似理论与模型试验.中国农业机械出版社,1982,12-30页
    [40]罗先启.滑坡模型试验理论及其应用.上海交通大学博士后学位论文. 2008,7-13页
    [41] Fluent Inc, FLUENT User’s Guide . Fluent Inc., 2003,volume21
    [42]马大猷.空气动力噪声的普遍定律和它在噪声降低中的应用.声学基础研究论文集——庆贺马大猷原始九十华诞.科学出版社,2005,552-565页
    [43]马大猷,李沛滋,戴根华,王宏玉.多孔材料的出流和多孔扩散消声理论.物理学报.1978,631-644页
    [44] Baumann, H. D.. How to Estimate Aerodynamic Valve Throttling Noise: A Fresh Look. ISA Paper No. 1982, 82-902P
    [45] ISA Standard S75.01 Instrument Society of America, Triangle Park, North Carolina
    [46] Baumann, H. D.. On the Prediction of Aerodynamically Created Sound Pressure Level of Control Valves. ASME Paper WM/FE 1970, 28
    [47] Baumann, H. D.. Coefficients and Factors Relating to the Aerodynamic Sound Level Generated by Throttling Valves. Noise Control Eng. J., 22, 1984, 1-6P
    [48] Chow, G. C., Reethof, G.. A Study of Valve Noise Generation Process for Compressible Fluids. ASME Paper 80-WA/NC-15, 1980
    [49] Baumann, H. D.. Determination of Peak Internal Sound Frequency Generated by Throttling Valves for the Calculation of Pipe Transmission Losses. Noise Control Engineering Journal, 1991
    [50] Richards, E. J., Mead, D. J.ed.. Noise and Acoustic Fatigue in Aeronautics. Chap.5, 7, Wiley, 1968
    [51] GB/T 3767——1996,声压法测定噪声源声功率级——反射面上方近似自由场的工程法.
    [52]陶文铨.数值传热学.西安交通大学出版社,2001,351-415页
    [53]王福军.计算流体动力学分析-CFD软件原理与应用.清华大学出版社,1-23页
    [54]张兆顺等.湍流大涡数值模拟的理论和应用.清华大学出版社,2008,57-65页
    [55]郭鸿志.传输过程数值模拟.冶金工业出版社,1998,100-135页
    [56]马大猷.噪声与振动控制工程手册.机械工业出版社,2002, 512 -513页
    [57]季振林.工程声学与噪声控制手稿.哈尔滨工程大学,2008.
    [58] Krandall, S. H.. Random Vibration. MIT Press, 1958, 236P
    [59]赵松龄.噪声的降低与隔离(下).同济大学出版社,1989,4:103-111页
    [60]陈秀娟.实用噪声与振动控制.化学工业出版社,1996, 5:212-218页
    [61]周新祥.噪声控制及应用实例.北京:海洋出版社,1999, 332-375页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700